Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms
Abstract
:1. Introduction
2. Material and Methods
2.1. Em + DynDEA Method
2.2. Definition of the Case Study
Wind Farm Code | Year 2007 | Year 2008 | Year 2009 | Year 2010 | Year 2011 | Installed Capacity |
---|---|---|---|---|---|---|
WF1 | 91.88 | 102.01 | 91.63 | 101.93 | 109.25 | 44.80 |
WF2 | 81.60 | 93.36 | 91.26 | 82.27 | 89.98 | 33.40 |
WF3 | 109.29 | 128.76 | 124.62 | 123.29 | 107.22 | 50.00 |
WF4 | 93.30 | 100.39 | 99.85 | 96.61 | 83.92 | 49.50 |
WF5 | 102.29 | 113.00 | 99.91 | 100.86 | 91.71 | 49.50 |
WF6 | 98.51 | 94.41 | 95.71 | 94.78 | 83.84 | 49.30 |
WF7 | 22.09 | 90.26 | 76.75 | 73.30 | 79.89 | 48.00 |
WF8 | 89.61 | 100.89 | 98.65 | 94.08 | 80.98 | 45.05 |
WF9 | 83.22 | 92.03 | 93.98 | 88.01 | 74.30 | 41.65 |
WF10 | 76.41 | 84.91 | 71.06 | 73.98 | 77.45 | 42.00 |
WF11 | 77.98 | 88.84 | 86.26 | 83.80 | 73.67 | 37.60 |
WF12 | 82.21 | 90.83 | 90.19 | 84.01 | 77.83 | 37.40 |
WF13 | 86.89 | 91.71 | 85.48 | 81.41 | 84.69 | 36.96 |
WF14 | 62.77 | 71.00 | 70.68 | 69.44 | 68.54 | 31.45 |
WF15 | 60.76 | 65.04 | 62.64 | 61.15 | 53.63 | 31.02 |
WF16 | 66.30 | 61.83 | 74.35 | 71.23 | 59.74 | 30.00 |
3. Results and Discussion
3.1. Application of the Em + DynDEA Method
Inputs | Units | Average ± Standard Deviation |
From Nature | ||
Land | m2a | 4.24 ± 1.60 |
Kinetic energy (converted) | MWh | 1.08 ± 0.00 |
From the Technosphere | ||
Concrete (foundations) | kg | 19.30 ± 11.63 |
Iron (foundations) | kg | 0.69 ± 0.42 |
Steel (foundations) | kg | 0.41 ± 0.25 |
Steel (tower) | kg | 3.33 ± 1.82 |
Paint (tower) | g | 44.97 ± 24.6 |
Iron (nacelle) | kg | 0.51 ± 0.31 |
Steel (nacelle) | kg | 0.49 ± 0.31 |
Silica (nacelle) | g | 9.49 ± 5.71 |
Copper (nacelle) | kg | 0.10 ± 0.06 |
Plastic (nacelle) | g | 13.79 ± 8.30 |
Aluminum (nacelle) | g | 4.96 ± 2.99 |
Fiberglass (nacelle) | g | 22.06 ± 13.29 |
Epoxy resin (nacelle) | g | 33.08 ± 19.92 |
Epoxy resin (rotor) | kg | 0.31 ± 0.33 |
Fiberglass (rotor) | kg | 0.15 ± 0.07 |
Iron (rotor) | kg | 0.38 ± 0.23 |
Lubricating oil | g | 16.85 ± 6.70 |
Diesel, combusted | g | 44.15 ± 44.17 |
Outputs | Units | Average ± Standard Deviation |
Products | ||
Electricity | MWh | 1.00 ± 0.00 |
Waste to treatment | ||
Waste to recycling | kg | 6.60 ± 3.83 |
Waste to incineration | kg | 0.47 ± 0.23 |
Wind Farm | Year 2007 | Year 2008 | Year 2009 | Year 2010 | Year 2011 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Code | EI | CCO | EI | CCO | EI | CCO | EI | CCO | EI | CCO |
WF1 | 1.54 × 108 | 0.49 | 1.39 × 108 | 0.44 | 1.55 × 108 | 0.49 | 1.40 × 108 | 0.44 | 1.31 × 108 | 0.41 |
WF2 | 2.00 × 108 | 0.41 | 1.75 × 108 | 0.36 | 1.79 × 108 | 0.37 | 1.98 × 108 | 0.41 | 1.82 × 108 | 0.37 |
WF3 | 1.18 × 108 | 0.46 | 1.01 × 108 | 0.39 | 1.05 × 108 | 0.40 | 1.06 × 108 | 0.41 | 1.21 × 108 | 0.47 |
WF4 | 3.29 × 108 | 0.53 | 3.06 × 108 | 0.49 | 3.07 × 108 | 0.50 | 3.17 × 108 | 0.51 | 3.65 × 108 | 0.59 |
WF5 | 1.72 × 108 | 0.48 | 1.57 × 108 | 0.44 | 1.76 × 108 | 0.50 | 1.75 × 108 | 0.49 | 1.92 × 108 | 0.54 |
WF6 | 2.50 × 108 | 0.50 | 2.60 × 108 | 0.52 | 2.57 × 108 | 0.52 | 2.59 × 108 | 0.52 | 2.92 × 108 | 0.59 |
WF7 | 1.20 × 109 | 2.17 | 2.97 × 108 | 0.53 | 3.48 × 108 | 0.63 | 3.64 × 108 | 0.65 | 3.35 × 108 | 0.60 |
WF8 | 2.51 × 108 | 0.50 | 2.23 × 108 | 0.45 | 2.28 × 108 | 0.46 | 2.39 × 108 | 0.48 | 2.77 × 108 | 0.56 |
WF9 | 2.50 × 108 | 0.50 | 2.27 × 108 | 0.45 | 2.22 × 108 | 0.44 | 2.37 × 108 | 0.47 | 2.79 × 108 | 0.56 |
WF10 | 1.42 × 108 | 0.55 | 1.28 × 108 | 0.49 | 1.52 × 108 | 0.59 | 1.47 × 108 | 0.57 | 1.40 × 108 | 0.54 |
WF11 | 2.99 × 108 | 0.48 | 2.63 × 108 | 0.42 | 2.71 × 108 | 0.44 | 2.78 × 108 | 0.45 | 3.16 × 108 | 0.51 |
WF12 | 2.26 × 108 | 0.45 | 2.06 × 108 | 0.41 | 2.07 × 108 | 0.41 | 2.22 × 108 | 0.45 | 2.39 × 108 | 0.48 |
WF13 | 2.64 × 108 | 0.43 | 2.51 × 108 | 0.40 | 2.68 × 108 | 0.43 | 2.82 × 108 | 0.45 | 2.71 × 108 | 0.44 |
WF14 | 2.56 × 108 | 0.50 | 2.27 × 108 | 0.44 | 2.28 × 108 | 0.44 | 2.32 × 108 | 0.45 | 2.35 × 108 | 0.46 |
WF15 | 3.16 × 108 | 0.51 | 2.96 × 108 | 0.48 | 3.07 × 108 | 0.50 | 3.14 × 108 | 0.51 | 3.57 × 108 | 0.58 |
WF16 | 1.26 × 108 | 0.45 | 1.34 × 108 | 0.49 | 1.13 × 108 | 0.40 | 1.17 × 108 | 0.42 | 1.39 × 108 | 0.50 |
DMU Code | Φ Year 2007 | Φ Year 2008 | Φ Year 2009 | Φ Year 2010 | Φ Year 2011 | Overall Φ |
---|---|---|---|---|---|---|
WF1 | 81.85 | 82.01 | 81.95 | 81.86 | 100.00 | 85.83 |
WF2 | 59.28 | 59.50 | 59.44 | 59.44 | 71.38 | 61.81 |
WF3 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
WF4 | 36.05 | 36.24 | 36.18 | 36.16 | 36.08 | 36.14 |
WF5 | 68.68 | 68.92 | 68.86 | 68.87 | 68.85 | 68.84 |
WF6 | 47.46 | 47.69 | 47.58 | 47.58 | 47.58 | 47.58 |
WF7 | 34.30 | 34.14 | 34.03 | 34.02 | 37.48 | 34.79 |
WF8 | 47.22 | 47.43 | 47.37 | 47.35 | 47.28 | 47.33 |
WF9 | 47.36 | 47.58 | 47.52 | 47.50 | 47.43 | 47.48 |
WF10 | 83.33 | 83.56 | 83.61 | 83.59 | 87.85 | 84.39 |
WF11 | 39.65 | 39.85 | 39.79 | 39.78 | 39.65 | 39.74 |
WF12 | 52.30 | 52.53 | 52.46 | 52.44 | 52.32 | 52.41 |
WF13 | 44.84 | 45.06 | 44.95 | 44.95 | 44.83 | 44.93 |
WF14 | 46.26 | 46.48 | 46.42 | 46.41 | 54.89 | 48.09 |
WF15 | 37.47 | 37.66 | 37.59 | 37.58 | 37.52 | 37.56 |
WF16 | 94.21 | 94.82 | 94.27 | 94.34 | 94.55 | 94.44 |
3.2. Comparison of Ecocentric and Anthropocentric Approaches
3.3. Comparison of Dynamic and Static Ecocentric Approaches
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bliesner, A.; Liedtke, C.; Welfens, M.J.; Baedeker, C.; Hasselkuß, M.; Rohn, H. “Norm-oriented interpretation learning” and resource use: The concept of “open-didactic exploration” as a contribution to raising awareness of a responsible resource use. Resources 2014, 3, 1–30. [Google Scholar] [CrossRef]
- Liedtke, C.; Bienge, K.; Wiesen, K.; Teubler, J.; Greiff, K.; Lettenmeier, M.; Rohn, H. Resource use in the production and consumption system—The MIPS approach. Resources 2014, 3, 544–574. [Google Scholar] [CrossRef]
- Bahn-Walkowiak, B.; Steger, S. Resource targets in Europe and worldwide: An overview. Resources 2015, 4, 597–620. [Google Scholar] [CrossRef]
- Huysman, S.; Sala, S.; Mancini, L.; Ardente, F.; Alvarenga, R.A.F.; De Meester, S.; Mathieux, F.; Dewulf, J. Toward a systematized framework for resource efficiency indicators. Resour. Conserv. Recy. 2015, 95, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Hagelaar, G.J.L.F.; van der Vorst, J.G.A.J. Environmental supply chain management: Using life cycle assessment to structure supply chains. Int. Food Agribus. Manage. Rev. 2001, 4, 399–412. [Google Scholar] [CrossRef]
- Buonocore, E.; Vanoli, L.; Carotenuto, A.; Ulgiati, S. Integrating life cycle assessment and emergy synthesis for the evaluation of a dry steam geothermal power plan in Italy. Energy 2015, 86, 476–487. [Google Scholar] [CrossRef]
- Neri, E.; Rugani, B.; Benetto, E.; Bastianoni, S. Emergy evaluation vs. life cycle-based embodied energy (solar, tidal and geothermal) of wood biomass resources. Ecol. Indic. 2014, 36, 419–430. [Google Scholar] [CrossRef]
- Sonnemann, G.; Gemechu, E.D.; Adibi, N.; De Bruille, V.; Bulle, C. From a critical review to a conceptual framework for integrating the criticality of resources into life cycle sustainability assessment. J. Clean Prod. 2015, 94, 20–34. [Google Scholar] [CrossRef]
- Raugei, M.; Rugani, B.; Benetto, E.; Ingwersen, W.W. Integrating emergy into LCA: Potential added value and lingering obstacles. Ecol. Model. 2014, 271, 4–9. [Google Scholar] [CrossRef]
- Iribarren, D.; Vázquez-Rowe, I.; Rugani, B.; Benetto, E. On the feasibility of using emergy analysis as a source of benchmarking criteria through data envelopment analysis: A case study for wind energy. Energy 2014, 67, 527–537. [Google Scholar] [CrossRef]
- Odum, H.T. Self-organization, transformity, and information. Science 1988, 242, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Sciubba, E.; Ulgiati, S. Emergy and exergy analyses: Complementary methods or irreducible ideological options? Energy 2005, 30, 1953–1988. [Google Scholar] [CrossRef]
- Raugei, M. Emergy indicators applied to human economic systems—A word of caution. Ecol. Model. 2011, 222, 3821–3822. [Google Scholar] [CrossRef]
- Pizzigallo, A.C.I.; Granai, C.; Borsa, S. The joint use of LCA and emergy evaluation for the analysis of two Italian wine farms. J. Environ. Manage. 2008, 86, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Reza, B.; Sadiq, R.; Hewage, K. Emergy-based life cycle assessment (Em-LCA) of multi-unit and single-family residential buildings in Canada. Int. J. Sust. Built Environ. 2014, 3, 207–224. [Google Scholar] [CrossRef]
- Brown, M.T.; Raugei, M.; Ulgiati, S. On boundaries and ‘investments’ in emergy synthesis and LCA: A case study on thermal vs. photovoltaic electricity. Ecol. Indic. 2012, 15, 227–235. [Google Scholar] [CrossRef]
- Cooper, W.W.; Seiford, L.M.; Tone, K. Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software; Springer: New York, NY, USA, 2007. [Google Scholar]
- Vázquez-Rowe, I.; Iribarren, D. Review of life-cycle approaches coupled with data envelopment analysis: Launching the CFP + DEA method for energy policy making. Sci. World J. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Tone, K.; Tsutsui, M. Dynamic DEA: A slacks-based measure approach. Omega 2010, 38, 145–156. [Google Scholar] [CrossRef]
- Marvuglia, A.; Benetto, E.; Rios, G.; Rugani, B. SCALE: Software for calculating emergy based on life cycle inventories. Ecol. Model. 2013, 248, 80–91. [Google Scholar] [CrossRef]
- Rugani, B.; Huijbregts, M.A.J.; Mutel, C.; Bastianoni, S.; Hellweg, S. Solar energy demand (SED) of commodity life cycles. Environ. Sci. Technol. 2011, 45, 5426–5433. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yang, N.; Hu, S. Industrial metabolism of PVC in China: A dynamic material flow analysis. Resour. Conserv. Recy. 2013, 73, 33–40. [Google Scholar] [CrossRef]
- Kumar, Y.; Ringenberg, J.; Depuru, S.S.; Devabhaktuni, V.K.; Lee, J.W.; Nikolaidis, E.; Andersen, B.; Afjeh, A. Wind energy: Trends and enabling technologies. Renew. Sust. Energ. Rev. 2016, 53, 209–224. [Google Scholar] [CrossRef]
- Kaplan, Y.A. Overview of wind energy in the world and assessment of current wind energy policies in Turkey. Renew. Sust. Energ. Rev. 2015, 43, 562–568. [Google Scholar] [CrossRef]
- Macroeconomic Study on the Impact of Wind Energy in Spain; Spanish Wind Energy Association; AEE: Madrid, Spain, 2011.
- Spanish Ministry of Industry, Energy and Tourism. Available online: http://www.minetur.gob.es (accessed on 3 December 2015).
- Iribarren, D.; Martín-Gamboa, M.; Dufour, J. Environmental benchmarking of wind farms according to their operational performance. Energy 2013, 61, 589–597. [Google Scholar] [CrossRef]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.J.; Doka, G.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; Spielmann, M.; et al. Overview and Methodology; Ecoinvent Report No. 1; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- European Environment Agency. EMEP/EEA Air Pollutant Emission Inventory Guide Book 2009; EEA: Copenhagen, Denmark, 2009. [Google Scholar]
- Goedkoop, M.; Oele, M.; Leijting, J.; Ponsioen, T.; Meijer, E. Introduction to LCA with SimaPro; PRé Consultants: Amersfoort, the Netherlands, 2013. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Pastor, J.T.; Ruiz, J.L.; Sirvent, I. An enhanced DEA Russell graph efficiency measure. Eur. J. Oper. Res. 1999, 115, 596–607. [Google Scholar] [CrossRef]
- Tone, K.; Tsutsui, M. Dynamic DEA with network structure: A slacks-based measure approach. Omega 2014, 42, 124–131. [Google Scholar] [CrossRef]
- Saitech, Data Envelopment Analysis Software. Available online: http://www.saitech-inc.com/Products/Prod-DSP.asp (accessed on 3 December 2015).
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gamboa, M.; Iribarren, D. Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms. Resources 2016, 5, 8. https://doi.org/10.3390/resources5010008
Martín-Gamboa M, Iribarren D. Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms. Resources. 2016; 5(1):8. https://doi.org/10.3390/resources5010008
Chicago/Turabian StyleMartín-Gamboa, Mario, and Diego Iribarren. 2016. "Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms" Resources 5, no. 1: 8. https://doi.org/10.3390/resources5010008
APA StyleMartín-Gamboa, M., & Iribarren, D. (2016). Dynamic Ecocentric Assessment Combining Emergy and Data Envelopment Analysis: Application to Wind Farms. Resources, 5(1), 8. https://doi.org/10.3390/resources5010008