Possible Target Corridor for Sustainable Use of Global Material Resources
Abstract
:1. Introduction
2. Why Targets for Global Resource Use?
3. How to Define What a Safe Resource Use Could be?
3.1. The Issue of Scale and a System Perspective
3.2. Aspects of a Safe-Operating-Space for Biomass Use
3.3. Aspects of a Safe-Operating-Space of Minerals Use
3.4. Social Aspects of a Safe Resource Use
4. Material Flow Indicators and Target Valves
- direct material flows (used extraction and flows crossing the country border);
- raw material flows (used extraction within the country and upstream (indirect or upstream flows comprise the material flows from resource extraction to the border of the importing or exporting country along the whole production chain));
- total material flows (used and unused extraction within the country and upstream).
5. Potential Targets
5.1. Existing Target Setting Proposals for Minerals and Biomass Extraction
Authors | Spatial Scope | Resource Group or Field of Final Demand | Targets (Short to mid-Term) | Target Year (Short to mid-Term) | Targets (Long-Term) | Target Year (Long-Term) | Indicators | Base Year |
---|---|---|---|---|---|---|---|---|
Wuppertal Institute (2008) [26,79] | Germany | Primary Material Consumption | minus 25% | 2010 | minus 80%–90% | 2050 | TMC | 1995 |
Fossil fuels | minus 25% | 2010 | minus 80%–90% | 2050 | Energy consumption | 1995 | ||
Material resource productivity | +4% to +6% p.a. | 2010 | GDP/TMR | 1995 | ||||
Bringezu (2009, 2011) [27,80] | Europe | Abiotic materials (used and unused) | 10 t/cap | 2050–2100 | TMCabiot | 2000 | ||
Net addition to stock | 0 | 2050–2100 | NAS | 2000 | ||||
BIO Intelligence et al. (2012) [81] | EU | DMC | 11 t/cap (minus 30%) | 2020 | 5 t/cap (minus 70%) | 2050 | DMC | 2005 |
biomass | plus/minus 0% | 2020 | plus/minus 0% | 2050 | DMC | 2005 | ||
fossil fuels | minus 30% | 2020 | minus 90% | 2050 | DMC | 2005 | ||
minerals | minus 50% | 2020 | minus 85% | 2050 | DMC | 2005 | ||
metals | minus 20% | 2020 | minus 50% | 2050 | DMC | 2005 | ||
EMC | > minus 30% | 2020 | > minus 70% | 2050 | EMC | 2005 | ||
Dittrich, Giljum et al. (2012) [20] | Global | DMC, “freezing” a base year level | 50 billion tonnes | 2030 | 50 billion tonnes | 2050 | DMC | 2000 level |
Suggested target: | 8 t/cap | 2030 | DMC | |||||
Based on current best practices of countries (10 t/cap): | ||||||||
biomass | ca. 2.2 t/cap | DMC | 2008 | |||||
fossil fuels | 2–2.5 t/cap | DMC | 2008 | |||||
minerals | 4–5 t/cap | DMC | 2008 | |||||
metals | 0.8 t/cap | DMC | 2008 | |||||
Lettenmeier et al. (2014) [15] | Finland | Material footprint (TMR) * | 8 t/cap | 2050 | TMR | |||
Suggested cap for final demand: | ||||||||
food | 3 t/cap | 2050 | TMR | |||||
housing | 1.6 t/cap | 2050 | TMR | |||||
mobility | 2 t/cap | 2050 | TMR | |||||
product consumption | 0.5 t/cap | 2050 | TMR | |||||
leisure time | 0.5 t/cap | 2050 | TMR | |||||
others | 0.4 t/cap | 2050 | TMR |
5.2. Outlining a Safe Corridor of Minerals and Biomass Extraction and Use
2000 | 2010 | 2030 BAU trend | 2050 | Change required for 2030 BAU (%) | ||||
---|---|---|---|---|---|---|---|---|
Population | Return to 2000 level | Half 2000 level | ||||||
high target | low target | high target | low target | |||||
[Gt] | ||||||||
Abiotic extraction used | 33.8 | 51.9 | 117.5 | 33.8 | 16.9 | −71 | −86 | |
Abiotic extraction unused | 31.7 | 40.8 | 92.3 | 31.7 | 15.8 | −66 | −83 | |
Excavation | 40 to 50 | 43 to 57 | 57 to 90 | 45.0 | 22.5 | −21 to −50 | −61 to −75 | |
Sum minerals | 105 to 115 | 135 to 150 | 267 to 300 | 110.4 | 55.2 | −63 | −79 | |
Biotic used | 17.1 | 19.9 | 27.7 | 17.1 | 8.5 | −38 | −69 | |
Biotic unused | 4.3 | 5.2 | 7.2 | 4.3 | 2.1 | −41 | −70 | |
Sum biotic | 21.3 | 25.2 | 34.9 | 21.3 | 10.7 | −39 | −69 | |
Sum used min+bio | 50.8 | 71.8 | 145.2 | 50.8 | 25.4 | −65 | −83 | |
Sum total | 127 to 137 | 160 to 175 | 302 to 335 | 136.7 | 65.9 | −59 | −78 | |
[109] | 6.12 | 6.88 | 8.42 | 9.55 | Medium projection | |||
[t/Person] | ||||||||
Abiotic extraction used | 5.5 | 7.5 | 14.0 | 3.5 | 1.8 | −75 | −87 | |
Abiotic extraction unused | 5.2 | 5.9 | 11.0 | 3.3 | 1.7 | −70 | −85 | |
Excavation | 6.5 to 8.2 | 6.2 to 8.3 | 6.8 to 10.7 | 4.7 | 2.4 | −30 | −65 | |
Sum minerals: Abiotic plus excavation | 17.2 to 18.9 | 19.7 to 21.8 | 31.7 to 35.6 | 11.6 | 5.8 | −68 | −82 | |
Biotic used | 2.8 | 2.9 | 3.3 | 1.8 | 0.9 | −46 | −73 | |
Biotic unused | 0.7 | 0.8 | 0.9 | 0.4 | 0.2 | −48 | −74 | |
Sum biotic | 3.5 | 3.7 | 4.1 | 2.2 | 1.1 | −46 | −73 | |
Sum used min+bio | 8.3 | 10.4 | 17.2 | 5.3 | 2.7 | −69 | −85 | |
Sum total | 20.7 to 22.3 | 23.3 to 25.5 | 35.8 to 39.8 | 14.3 | 6.9 | −64 | −81 | |
10.9 | High projection | |||||||
[t/Person] | ||||||||
Abiotic extraction used | 3.1 | 1.6 | ||||||
Sum minerals: Abiotic plus excavation | 10.2 | 5.1 | ||||||
Biotic used | 1.6 | 0.8 | ||||||
Sum biotic | 2.0 | 1.0 | ||||||
Sum used min+bio | 4.7 | 2.3 | ||||||
Sum total | 12.6 | 6.1 | ||||||
8.34 | Low projection | |||||||
[t/Person] | ||||||||
Abiotic extraction used | 4.0 | 2.0 | ||||||
Sum minerals: Abiotic plus excavation | 13.2 | 6.6 | ||||||
Biotic used | 2.0 | 1.0 | ||||||
Sum biotic | 2.6 | 1.3 | ||||||
Sum used min+bio | 6.1 | 3.0 | ||||||
Sum total | 16.4 | 7.9 |
Indicator | Potential Sustainability Range (t/Person) | Possible Policy Target (t/Person) |
---|---|---|
TMCabiot | 6–12 | 10 |
TMCbiot | 2 | 2 |
RMC | 3–6 | 5 |
6. Discussion
7. Conclusions
Acknowledgments
Conflicts of Interest
References and Notes
- DESTATIS Federal Statistical Office. Sustainable Development in Germany. Indicator Report 2014; DESTATIS Federal Statistical Office: Wiesbaden, Germany, 2014. Available online: https://www.destatis.de/EN/Publications/Specialized/EnvironmentalEconomicAccounting/Indicators2014.pdf?__blob=publicationFile (accessed on 6 February 2015).
- BMU-German Ministry for Environment, Nature and Nuclear Safety. Deutsches Ressourceneffizienzprogramm (ProgRess). In Programm zur nachhaltigen Nutzung und zum Schutz der Natürlichen Ressourcen (German Resource Efficiency Programme (ProgRess). Programme for Sustainable Use and Protection of Natural Resources). Beschluss des Bundeskabinetts vom 29.2.2012; Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit: Berlin, Germany, 2012. [Google Scholar]
- Ministry of the Environment, Government of Japan. Fundamental Plan for Establishing a Sound Material-Cycle Society (Tentative Translation by Ministry of the Environment). Available online: http://www.env.go.jp/en/recycle/smcs/2nd-f_plan.pdf (accessed on 26 March 2013).
- European Commission. Thematic Strategy on the Sustainable Use of Natural Resources; (COM (2005) 670 final); European Commission: Brussels, Belgium, 2005. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Roadmap to a Resource Efficient Europe; (COM (2011) 571 final); European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Commission Staff Working Paper: Analysis Associated with the Roadmap to a Resource Efficient Europe-Part II; Accompanying the Document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Roadmap to a Resource Efficient Europe; (COM(2011) 571 final)/(SEC(2011) 1068 final); European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. General Union Environment Action Programme to 2020 Living Well, within the Limits of Our Planet; Publications Office: Luxembourg, Luxembourg, 2014. [Google Scholar]
- Bahn-Walkowiak, B.; Steger, S. Politische und rechtliche Ansätze für inputorientierte Ressourcenziele in Europa und weltweit. Available online: http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000003554/Polress_AP1-AS1.1_xbersichtxRessourcenzielexEuropaxundxweltweit_FINAL.pdf?hosts= (accessed on 6 February 2015).
- Eurostat. Economy-Wide Material Flow Accounts and Derived Indicators—A Methodological Guide; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2001. [Google Scholar]
- Eurostat. Economy Wide Material Flow Accounts: Compilation Guidelines for Reporting to the 2009 Eurostat Questionnaire; Version 01; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2009. [Google Scholar]
- Eurostat. Economy-wide Material Flow Accounts (EW-MFA). Compilation Guide 2012; Office for Official Publications of the European Communities: Luxembourg, Luxembourg, 2012. [Google Scholar]
- OECD. Measuring Material Flows and Resource Productivity; OECD Publishing: Paris, France, 2008. [Google Scholar]
- Friends of the Earth—Four Footprints Briefing. Available online: https://www.foe.co.uk/sites/default/files/downloads/four-footprints-45569.pdf (accessed on 6 February 2015).
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. PNAS 2013. [Google Scholar] [CrossRef]
- Lettenmeier, M.; Liedtke, C.; Rohn, H. Eight Tons of Material Footprint—Suggestion for a Resource Cap for Household Consumption in Finland. Resources 2014, 3, 488–515. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon Footprint of Nations: A Global, Trade-linked Analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [PubMed]
- McGlade, J.; Werner, B.; Young, M.; Matlock, M.; Jefferies, D.; Sonnemann, G.; Aldaya, M.; Pfister, S.; Berger, M.; Farell, C.; et al. Measuring Water Use in a Green Economy. A Report of the Working Group on Water Efficiency to the International Resource Panel. Available online: http://www.unep.org/resourcepanel/Portals/50244/publications/Measuring_Water.pdf (accessed on 6 February 2015).
- Bringezu, S.; O’Brien, M.; Schütz, H. Beyond biofuels: Assessing global land use for domestic consumption of biomass–A conceptual and empirical contribution to sustainable management of global resources. Land Use Policy 2012, 29, 224–232. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Swilling, M.; von Weizsäcker, E.U.; Ren, Y.; Moriguchi, Y.; Crane, W.; Krausmann, F.; Eisenmenger, N.; Giljum, S.; Hennicke, P.; et al. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth. A Report of the Working Group on Decoupling to the International Resource Panel. Available online: http://www.unep.org/resourcepanel/Portals/50244/publications/Decoupling_Report_English.pdf (accessed on 6 February 2015).
- Dittrich, M.; Giljum, S.; Lutter, S.; Polzin, C. Green Economies around the World? Implications of Resource Use for Development and the Environment; SERI: Vienna, Austria, 2012. [Google Scholar]
- Von Weizsäcker, E.U.; Aloisi de Larderel, J.; Hargroves, K.; Smith, M.H.; Enriquez Rodrigues, M.A.; Hudson, C.; Siriban Manalang, A.B.; Urama, K.; Suh, S.; Swilling, M.; et al. Decoupling 2. Technologies, Opportunities and Policy Options. A Report of the Working Group on Decoupling to the International Resource Panel. Available online: http://www.unep.org/resourcepanel/AreasofResearchPublications/AssessmentAreasReports/Decoupling/tabid/133329/Default.aspx (accessed on 6 February 2015).
- IRP-International Resource Panel. Managing and conserving the natural resource base for sustained economic and social development. A Reflection from the International Resource Panel on the Establishment of Sustainable Development Goals aimed at Decoupling Economic Growth from Escalating Resource Use and Environmental Degradation. Available online: http://www.unep.org/resourcepanel/Portals/50244/publications/IRP%20Think%20Piece%20Contributing%20to%20the%20SDGs%20Process.pdf (accessed on 6 February 2015).
- Bringezu, S.; Schütz, H.; Pengue, W.; O’Brien, M.; Garcia, F.; Sims, R.; Howarth, R.T.; Kauppi, L.; Swilling, M.; Herrick, J. Assessing Global Land Use: Balancing Consumption with Sustainable Supply. Report of the International Resource Panel. Available online: http://www.unep.org/resourcepanel/Portals/24102/PDFs//Full_Report-Assessing_Global_Land_UseEnglish_(PDF).pdf (accessed on 6 February 2015).
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Hertwich, E.; van der Voet, E.; Suh, S.; Tukker, A.; Huijbregts, M.; Kazmierczyk, P.; Lenzen, M.; McNeely, J.; Moriguchi, Y. Assessing the Environmental Impacts of Consumption and Production: Priority Products and Materials. A Report of the Working Group on the Environmental Impacts of Products and Materials to the International Panel for Sustainable Resource Management. Available online: http://www.unep.org/resourcepanel/AreasofResearchPublications/AssessmentAreasReports/EnvironmentalImpacts/tabid/133331/Default.aspx (accessed on 6 February 2015).
- Wuppertal Institute. Zukunftsfähiges Deutschland (Sustainable Germany); Birkhäuser Verlag: Basel, Swiss; Boston, MA, USA; Berlin, Germany, 1996. [Google Scholar]
- Bringezu, S. Visions of a sustainable resource use. In Sustainable Resource Management: Global Trends, Visions and Policies; Bringezu, S., Bleischwitz, R., Eds.; Greenleaf Publishing: Sheffield, UK, 2009; pp. 155–215. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015. [Google Scholar] [CrossRef]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Gaube, V.; Bondeau, A.; Plutzar, C.; Gingrich, S.; Lucht, W.; Fischer-Kowalski, M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS 2007, 104, 12942–12947. [Google Scholar] [CrossRef] [PubMed]
- MEA-Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- UNEP. Geo 5. Global environmental outlook. Environment for the Future We Want. 2012. Available online: http://www.unep.org/geo/geo5.asp (accessed on 6 February 2015).
- Townsend, A.; Howarth, R.W. Human acceleration of the global nitrogen cycle. Sci. Am. 2010, 302, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.; Swaney, D.; Billen, G.; Garnier, J.; Hong, B.; Humborg, C.; Johnes, P.; Mörth, C.; Marino, R. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 2012, 10, 37–43. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abrol, Y.P.; Adhya, T.K.; Billen, G.; et al. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution. Global Overview of Nutrient Management; Centre for Ecology and Hydrology on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative: Edinburgh, UK, 2013. [Google Scholar]
- Leach, A.M.; Galloway, J.N.; Bleeker, A.; Erisman, J.W.; Kohn, R.; Kitzes, J. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environ. Dev. 2012, 1, 40–66. [Google Scholar] [CrossRef]
- Schmidt-Bleek, F.; Bringezu, S.; Hinterberger, F.; Liedtke, Ch.; Spangenberg, J.; Stiller, H.; Welfens, M.J. MAIA. Einführung in die Material-Intensitätsanalyse nach dem MIPS-Konzept; Birkhäuser Verlag: Basel, Swiss; Berlin, Germany; Boston, MA, USA, 1998. [Google Scholar]
- Adriaanse, A.; Bringezu, S.; Hammond, A.; Moriguchi, Y.; Rodenburg, E.; Rogich, D.; Schütz, H. Resource Flows: The Material Basis of Industrial Economies; WRI: Washington, DC, USA, 1997. [Google Scholar]
- European Environment Agency (EEA). Environmental Signals 2000; EEA: Copenhagen, Denmark, 2000. [Google Scholar]
- EEA. Environmental pressures from European consumption and production. EEA Tech. Rep. 2013, 2. [Google Scholar] [CrossRef]
- Zah, R.; Binder, C.; Bringezu, S.; Reinhard, J.; Schmid, A.; Schütz, H. Future Perspectives of 2nd Generation Biofuels; Vdf Hochschulverlag: Zürich, Switzerland, 2010. [Google Scholar]
- Keledjian, A.; Brogan, G.; Lowell, B.; Warrenchuk, J.; Enticknap, B.; Shester, G.; Hirshfield, M.; Cano-Stocco, D. Wasted catch: Unsolved problems in the U.S. Fisheries. Oceana. Available online: http://oceana.org/sites/default/files/reports/Bycatch_Report_FINAL.pdf (accessed on 5 October 2014).
- Hilborn, R. Are Sustainable Fisheries Achievable? In Marine Conservation Biology; Norse, E.A., Crowder, L.B., Eds.; Island Press: Washington, DC, USA, 2005; pp. 247–259. [Google Scholar]
- Barbier, E.B. Economics, Natural Resource Scarcity and Development. In Conventional and Alternative Views; Earthscan Publications: London, UK, 1989. [Google Scholar]
- Daly, H.E. Towards some operational principles of sustainable development. Ecol. Econ. 1990, 2, 1–6. [Google Scholar] [CrossRef]
- Bringezu, S. Ressourcennnutzung in Wirtschaftsräumen (Resource Use of Economies); Springer: Berlin, Germany, 2000. [Google Scholar]
- NRC-National Research Council. Minerals, Critical Minerals, and the U.S. Economy; National Academies Press: Washington, DC, USA, 2008. [Google Scholar]
- European Commission. Report on critical raw materials for the EU: Report of the Ad hoc Working Group on defining critical raw materials European Commission. 2014. Available online: http://ec.europa.eu/enterprise/policies/raw-materials/critical/index_en.htm (accessed on 7 October 2014).
- Rørbech, J.T.; Vadenbo, C.; Hellweg, S.; Astrup, T.F. Impact Assessment of Abiotic Resources in LCA: Quantitative Comparison of Selected Characterization Models. Environ. Sci. Technol. 2014, 48, 11072–11081. [Google Scholar] [CrossRef] [PubMed]
- European Commission. ILCD Handbook: Recommendations for Life Cycle Impact Assessment in the European Context; European Commission: Luxembourg, Luxembourg, 2011. [Google Scholar]
- Swart, P.; Dewulf, J. Quantifying the impacts of primary metal resource use in life cycle assessment based on recent mining data. Resour. Conserv. Recycl. 2013, 73, 180–187. [Google Scholar] [CrossRef]
- Van der Voet, E.; Salminen, R.; Eckelman, M.; Mudd, G.; Norgate, T.; Hischier, R. Environmental Risks and Challenges of Anthropogenic Metals Flows and Cycles. A Report of the Working Group on the Global Metal Flows to the International Resource Panel. Available online: http://www.unep.org/resourcepanel/Portals/50244/publications/Environmental_Challenges_Metals-Full%20Report_150dpi_130923.pdf (accessed on 6 February 2015).
- Bösch, M.E.; Hellweg, S.; Huijbregts, M.A.J.; Frischknecht, R. Cumulative Exergy Demand LCA Methodology Applying Cumulative Exergy Demand (CExD) Indicators to the Ecoinvent Database. Int. J. Life Cycle Assess. 2007, 12, 181–190. [Google Scholar] [CrossRef]
- Ayres, R.U. Exergy flows in the economy: Efficiency and dematerialization. In A Handbook of Industrial Ecology; Ayres, R.U., Ayres, L.W., Eds.; Edward Elgar Publishing Ltd.: Cheltenham, UK, 2002; pp. 185–201. [Google Scholar]
- Graedel, T.E.; Barr, R.; Chandler, C.; Chase, T.; Choi, J.; Christofferson, L.; Friedlander, E.; Henly, C.; Jun, C.; Nassar, N.T.; et al. Methodology of metal criticality determination. Environ. Sci. Technol. 2012, 46, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in Earth’s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Schmidt-Bleek, F. Will Gemany remain a good place for Industry? The Ecological Side of the Coin’. Fres. Env. Bull. 1992, 1, 417–422. [Google Scholar]
- Schmidt-Bleek, F. Wieviel Umwelt braucht der Mensch? Faktor 10-das Maß für ökologisches Wirtschaften; Birkhäuser Verlag: Berlin, Germany, 1994. [Google Scholar]
- The International Factor 10 Club’s 2010 Declaration: A coalition of willing states needed to catalyze a ten-fold leap in energy and resource efficiency. In Proceedings of the Meeting of the Factor 10 Club, Carnoules, France, 9–12 September 2010.
- Bringezu, S.; Schütz, H.; Moll, S. Rationale for and Interpretation of Economy-Wide Materials Flow Analysis and Derived Indicators. J. Indust. Ecol. 2003, 7, 43–67. [Google Scholar] [CrossRef]
- Ekins, P.; Meyer, B.; Schmidt-Bleek, F. Reducing Resource Consumption-A Proposal for Global Resource and Environmental Policy. Available online: http://www.worldresourcesforum.org/files/file/gws-paper09-5-versionDavos.pdf (accessed on 6 February 2015).
- Crutzen, P.J.; Stoermer, E.F. The Anthropocene. Glob. Chang. News 2000, 41, 17–18. [Google Scholar]
- Steffen, W.; Grinevald, J.; Crutzen, P.; McNeill, J. The Anthropocene: Conceptual and historical perspectives. Philos. Trans. R. Soc. A 2011, 369, 842–867. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Kettner, A. Sediment flux and the Anthropocene. Philos. Trans. R. S. A 2011, 369, 957–975. [Google Scholar] [CrossRef]
- Oppenheimer, C. Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Progress Phys. Geogr. 2003, 27, 230–259. [Google Scholar] [CrossRef]
- This comprises both intrusive and extrusive magma formation by subduction volcanos and continental intrashield volcanos; these flows contribute to more or less abrupt changes of landscapes in contrast to the slower tectonic movements; most of those magma flows do not reach the surface. The extrusive magma formation (with eruptions) in the terrestrial zones is only 2 Gt/a
- Schmincke, H.-U. Vulkanismus; Wissenschaftliche Buchgesellschaft: Darmstadt, Germany, 1986. [Google Scholar]
- Schmincke, H.-U. Transfer von festen, flüssigen und gasförmigen Stoffen aus Vulkanen in die Atmosphäre. Umweltwissenschaften und Schadstoff-Forschung 1993, 5, 27–44. [Google Scholar] [CrossRef]
- The online portal for material flow data. Available online: http://www.materialflows.net (accessed on 27 September 2014).
- Bührs, T. Environmental Space as a Basis for Legitimating Global Governance of Environmental Limits. Glob. Environ. Politics 2009, 9, 111–135. [Google Scholar] [CrossRef]
- WCED–World Commission on Environment and Development. Our Common Future; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Freestone, D.; Hey, E. The Precautionary Principle and International Law: The Challenge of Implementation; Kluwer Law International: Alphen aan den Rijn, The Netherlands, 1996. [Google Scholar]
- Raworth, K. A safe and just space for humanity. Can we live within the doughnut? Oxfam Discuss. Pap. 2012, 8, 1–26. [Google Scholar]
- Contraction and Convergence. Available online: http://www.gci.org.uk/index.html (accessed on 6 February 2015).
- Eurostat. Material Flow Accounts. Available online: http://ec.europa.eu/eurostat/statistics-explained/index.php/Material_flow_accounts (accessed on 6 February 2015).
- The Organisation for Economic Co-operation and Development (OECD). Resource Productivity in the G8 and the OECD. 2008. Available online: http://www.oecd.org/env/waste/47944428.pdf (accessed on 6 February 2015).
- Eurostat. Estimates for Raw Material Consumption (RMC) and Raw Material Equivalents (RME) conversion factors. 2014. Available online: http://ec.europa.eu/eurostat/documents/1798247/6191533/RME-project-Introduction.pdf/96bbe739-bfda-47a2-99c7-cc3ec1048832 (accessed on 6 February 2015).
- European Resource Efficiency Platform (EREP). Manifesto and policy recommendations. 2014. Available online: http://ec.europa.eu/environment/resource_efficiency/documents/erep_manifesto_and_policy_recommendations_31-03-2014.pdf (accessed on 6 February 2015).
- Bringezu, S. Towards Increasing Resource Productivity: How to Measure the Total Material Consumption of Regional or National Economies? Fresenius Environ. Bull. 1993, 8, 437–442. [Google Scholar]
- Wuppertal Institute. Zukunftsfähiges Deutschland (Sustainable Germany); Fischer Taschenbuch Verlag: Frankfurt/Main, Germany, 2008. [Google Scholar]
- Bringezu, S. Key elements for Economy-wide Sustainable Resource Management. Annal. Mines Serie Responsab. Environ. 2011, 61, 78–87. [Google Scholar] [CrossRef]
- BIO Intelligence Service; Institute for Social Ecology; Sustainable Europe Research Institute. Assessment of Resource Efficiency Indicators and Targets; Final Report Prepared for the European Commission, DG Environment. 2012. Available online: http://ec.europa.eu/environment/enveco/resource_efficiency/pdf/report.pdf (accessed on 6 February 2015).
- Schütz, H.; Wuppertal Institute, Wuppertal, Germany. Unpublished work. 2013.
- Rogich, D.; Cassara, A.; Wernick, I.; Miranda, M. Material Flows in the United States. A Physical Accounting of the U.S. Industrial Economy. An WRI Report; Word Resources Institute: Washington, WA, USA, 2008. [Google Scholar]
- Wang, H.; Yue, Q.; Lu, Z.; Schütz, H.; Bringezu, S. Total material requirement of growing China: 1995–2008. Resources 2013, 2, 270–285. [Google Scholar] [CrossRef]
- Dredging amounts to about an additional 10% of the excavation, and would not significantly change that order of magnitude. For dredging, only data for Denmark, Germany, Netherlands and USA are available. For 2000, dredging in European countries was estimated with 0.59 t/person (Schütz based on country studies), and in the USA with 0.88 t/person when considering only deposition on land [46]
- Gustavsson, J.; Cederberg, C.; Sonesson, U.; van Otterdijk, R.; Meybeck, A. Global Food Losses and Food Waste. Extent, Causes and Prevention; FAO: Rome, Italy, 2011. [Google Scholar]
- O’Brien (in prep) based on the analysis of net annual increment of world forests determined 0.2 to 0.3 t/person as safe operating space
- Bringezu, S.; Schütz, H. Ziele und Indikatoren für die Umsetzung von ProgRess (Targets and indicators for implementing ProgRess). PolRess Arbeitspapier AS1.2/1.3. March 2013. Available online: http://www.ressourcenpolitik.de/ergebnisse/ (accessed on 6 February 2015).
- Meyer, B.; Barker, A.; Barton, J.; Long, K.; Pollitt, H.; Distelkamp, M.; Meyer, M.; Walter, H.; Giljum, S.; Kalcik, R.; et al. Macroeconomic modelling of sustainable development and the links between the economy and the environment. Final Report of the MacMod project (ENV.F.1/ETU/2010/0033) to the European Commission. 2011. Available online: http://ec.europa.eu/environment/enveco/studies_modelling/pdf/report_macroeconomic.pdf (accessed on 6 February 2015).
- Bringezu, S.; Bleischwitz, R. (Eds.) Sustainable Resource Management: Global Trends, Visions and Policies; Greenleaf Publishing: Sheffield, UK, 2009.
- Bringezu, S.; Schütz, H. Indikatoren und Ziele zur Steigerung der Ressourcenprodktivität (Indicators and targets for increasing resource productivity). PolRess Arbeitspapier AS 1.4. March 2014. Available online: http://www.ressourcenpolitik.de/ergebnisse/ (accessed on 6 February 2015).
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bringezu, S. Possible Target Corridor for Sustainable Use of Global Material Resources. Resources 2015, 4, 25-54. https://doi.org/10.3390/resources4010025
Bringezu S. Possible Target Corridor for Sustainable Use of Global Material Resources. Resources. 2015; 4(1):25-54. https://doi.org/10.3390/resources4010025
Chicago/Turabian StyleBringezu, Stefan. 2015. "Possible Target Corridor for Sustainable Use of Global Material Resources" Resources 4, no. 1: 25-54. https://doi.org/10.3390/resources4010025
APA StyleBringezu, S. (2015). Possible Target Corridor for Sustainable Use of Global Material Resources. Resources, 4(1), 25-54. https://doi.org/10.3390/resources4010025