Exploring the Interplay Between Food Provision and Habitat Quality Assessment for Sustainable Coexistence in the Bioproduction Systems of the Philippines
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Land-Use Land Cover Assessment
2.3. Projection of Land-Use Land Cover
2.4. Habitat Quality Assessment
2.5. Crop Production Analysis
2.6. Calculation of the Correlation Between Food Production and Habitat Quality
3. Results
3.1. The Historical and Predicted LULC in PLW and BW
3.2. Habitat Quality Assessment of PLW and BW
3.3. Food Production
3.4. Trade-Offs and Synergies Between Food Provision and Habitat Quality
4. Discussion
4.1. Land-Use Dynamics
4.2. Habitat Quality and Food Production Assessment
4.3. Managing the Trade-Offs and Synergies Between Food Production and Habitat Conservation for Sustainable Coexistence
4.4. Uncertainties and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niesenbaum, R.A. The Integration of Conservation, Biodiversity, and Sustainability. Sustainability 2019, 11, 4676. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MA). Ecosystems and Human Well-Being: Biodiversity Synthesis; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef] [PubMed]
- Pollock, L.J.; Thuiller, W.; Jetz, W. Large conservation gains possible for global biodiversity facets. Nature 2017, 546, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Folke, C.; Polasky, S.; Rockström, J.; Galaz, V.; Westley, F.; Lamont, M.; Scheffer, M.; Österblom, H.; Carpenter, S.R.; Chapin, F.S.; et al. Our future in the Anthropocene biosphere. AMBIO 2021, 50, 834–869. [Google Scholar] [CrossRef]
- Kumi, S.; Addo-Fordjour, P.; Fei-Baffoe, B.; Belford, E.J.; Ameyaw, Y. Land use land cover dynamics and fragmentation-induced changes in woody plant community structure in a mining landscape, Ghana. Trees For. People 2021, 4, 100070. [Google Scholar] [CrossRef]
- Stokes, A.; Bocquého, G.; Carrere, P.; Salazar, R.C.; Deconchat, M.; Garcia, L.; Gardarin, A.; Gary, C.; Gaucherel, C.; Gueye, M.; et al. Services provided by multifunctional agroecosystems: Questions, obstacles and solutions. Ecol. Eng. 2023, 191, 106949. [Google Scholar] [CrossRef]
- Lahoti, S.A.; Withaningsih, S.; Lomente, L.; Kamiyama, C.; De Luna, C.; Sahle, M.; Malik, A.D.; Parikesit, P.; Pulhin, J.; Hashimoto, S.; et al. Exploring bioproduction systems in socio-ecological production landscapes and seascapes in Asia through solution scanning using the Nature Futures Framework. Sustain. Sci. 2023, 1–19. [Google Scholar] [CrossRef]
- Torralba, M.; Nishi, M.; Cebrián-Piqueras, M.A.; Quintas-Soriano, C.; García-Martín, M.; Plieninger, T. Disentangling the practice of landscape approaches: A Q-method analysis on experiences in socio-ecological production landscapes and seascapes. Sustain. Sci. 2023, 18, 1893–1906. [Google Scholar] [CrossRef]
- Reynolds, T.W.; Waddington, S.R.; Anderson, C.L.; Chew, A.; True, Z.; Cullen, A. Environmental impacts and constraints associated with the production of major food crops in Sub-Saharan Africa and South Asia. Food Secur. 2015, 7, 795–822. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel approaches and practices to sustainable agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Landis, D.A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef]
- Colucci, A. Resilience Practices Contribution Enabling European Landscape Policy Innovation and Implementation. Land 2023, 12, 637. [Google Scholar] [CrossRef]
- Arceo, M.G.A.S.; Cruz, R.V.O.; Tiburan, C.L., Jr.; Balatibat, J.B.; Alibuyog, N.R. Modeling the hydrologic responses to land cover and climate changes of selected watersheds in the Philippines using Soil and Water Assessment Tool (SWAT) model. DLSU Bus. Econ. Rev. 2018, 28, 84–101. [Google Scholar]
- Ramirez, M.A.M.; Pulhin, J.M.; Garcia, J.E.; Tapia, M.A.; Pulhin, F.B.; Cruz, R.V.O.; De Luna, C.C.; Inoue, M. Landscape Fragmentation, Ecosystem Services, and Local Knowledge in the Baroro River Watershed, Northern Philippines. Resources 2019, 8, 164. [Google Scholar] [CrossRef]
- El Bilali, H.; Strassner, C.; Ben Hassen, T. Sustainable Agri-Food Systems: Environment, Economy, Society, and Policy. Sustainability 2021, 13, 6260. [Google Scholar] [CrossRef]
- Flores, J.J.M.; Inocencio, E.B., Jr. The structure of permaculture landscapes in the Philippines. Biodivers. J. Biol. Divers. 2021, 22, 2032–2044. [Google Scholar] [CrossRef]
- Natori, Y.; Hino, A. Global identification and mapping of socio-ecological production landscapes with the Satoyama Index. PLoS ONE 2021, 16, e0256327. [Google Scholar] [CrossRef]
- Pulhin, J.M.; Tapia-Villamayor, M.A.; Garcia, J.E.; De Luna, C.C.; Cruz RV, O.; Pulhin, F.B.; Ramirez MA, M. Participatory Climate Change Adaptation Using Watershed Approach: Processes and Lessons from the Philippines. In Interlocal Adaptations to Climate Change in East and Southeast Asia; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Singh, R.P.; Suman, R. Enhancing smart farming through the applications of Agriculture 4.0 technologies. Int. J. Intell. Netw. 2022, 3, 150–164. [Google Scholar] [CrossRef]
- Encisa-Garcia, J.; Pulhin, J.; Cruz, R.V.; Simondac-Peria, A.; Ramirez, M.A.; De Luna, C. Land Use/Land Cover Changes Assessment and Forest Fragmentation Analysis in the Baroro River Watershed, La Union, Philippines. J. Environ. Sci. Manag. 2020, 2, 14–27. [Google Scholar] [CrossRef]
- Almarines, N.R.; Hashimoto, S.; Pulhin, J.M.; Tiburan, C.L.; Magpantay, A.T.; Saito, O. Influence of Image Compositing and Multisource Data Fusion on Multitemporal Land Cover Mapping of Two Philippine Watersheds. Remote Sens. 2024, 16, 2167. [Google Scholar] [CrossRef]
- Chen, R.-C.; Dewi, C.; Huang, S.-W.; Caraka, R.E. Selecting critical features for data classification based on machine learning methods. J. Big Data 2020, 7, 1–26. [Google Scholar] [CrossRef]
- Clewley, D.; Whitcomb, J.; Moghaddam, M.; McDonald, K.; Chapman, B.; Bunting, P. Evaluation of ALOS PALSAR Data for High-Resolution Mapping of Vegetated Wetlands in Alaska. Remote Sens. 2015, 7, 7272–7297. [Google Scholar] [CrossRef]
- He, J.; Huang, J.; Li, C. The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model. Ecol. Model. 2017, 366, 58–67. [Google Scholar] [CrossRef]
- Verma, P.; Padghan, S.; Prakash, R. Land Use Land Cover Change Detection Using Random Forest Classifier. J. Environ. Manag. 2020, 242, 164–176. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R2 and its adjustments. Biometrics 2021, 77, 654–662. [Google Scholar] [CrossRef]
- Yang, X.; Cervone, G. Hyperparameter tuning in Random Forest for land use classification using remote sensing data. Geosci. Front. 2019, 10, 1481–1492. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Geospatial Monitoring and Modeling System: Manual; Clark Labs, Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Singh, S.K.; Srivastava, P.K.; Gupta, M.; Thakur, J.K. Modelling Land Use Land Cover Change Using Earth Observation Data: A Review of Techniques and Tools. Earth Syst. Environ. 2020, 4, 119–132. [Google Scholar] [CrossRef]
- Keshtkar, H.; Voigt, W. A spatiotemporal analysis of landscape change using an integrated Markov chain and cellular automata models. Model. Earth Syst. Environ. 2015, 2, 1–13. [Google Scholar] [CrossRef]
- Gharaibeh, A.; AbdelMoty, A.; Bandaru, V. Incorporating environmental variables for better predictions in land use and land cover change models. J. Environ. Manag. 2020, 262, 110349. [Google Scholar] [CrossRef]
- Musa, Z.N.; Ahmed, A.; Abubakar, I.R.; Bala, A. Modeling urban growth and land use changes using geospatial tools: A review. Land Use Policy 2022, 113, 105880. [Google Scholar] [CrossRef]
- Sahle, M.; Saito, O.; Fürst, C.; Demissew, S.; Yeshitela, K. Future land use management effects on ecosystem services under different scenarios in the Wabe River catchment of Gurage Mountain chain landscape, Ethiopia. Sustain. Sci. 2018, 14, 175–190. [Google Scholar] [CrossRef]
- Girma, R.; Fürst, C.; Moges, A. Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environ. Challenges 2022, 6, 100419. [Google Scholar] [CrossRef]
- Leta, M.K.; Demissie, T.A.; Tränckner, J. Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia. Sustainability 2021, 13, 3740. [Google Scholar] [CrossRef]
- Kim, Y.; Newman, G.; Güneralp, B. A Review of Driving Factors, Scenarios, and Topics in Urban Land Change Models. Land 2020, 9, 246. [Google Scholar] [CrossRef]
- Chowdhury, M.; Hasan, M.E.; Abdullah-Al-Mamun, M.M. Land use/land cover change assessment of Halda watershed using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2020, 23, 63–75. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Z.; Wang, Q.; Yang, C. Interaction of population density and slope will exacerbate spatiotemporal changes in land use and landscape patterns in mountain city. Sci Rep. 2025, 15, 3168. [Google Scholar] [CrossRef]
- Huang, C.; Yang, L.; Homer, C.G. The role of topography in land cover change detection: Elevation, slope, and aspect effects. Remote Sens. Environ. 2019, 230, 111207. [Google Scholar] [CrossRef]
- Huang, J.; Tang, Z.; Liu, D.; He, J. Ecological response to urban development in a changing socio-economic and climate context: Policy implications for balancing regional development and habitat conservation. Land Use Policy 2020, 97, 104772. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Shaamala, A.; Obeidat, R.; Al-Kofahi, S. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 2020, 6, e05092. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Wu, X.; Yao, Y.; Wu, X.; Chen, Y. Multiple intra-urban land use simulations and driving factors analysis: A case study in Huicheng, China. GIScience Remote Sens. 2018, 56, 282–308. [Google Scholar] [CrossRef]
- Wang, S.W.; Munkhnasan, L.; Lee, W.-K. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2020, 2, 100017. [Google Scholar] [CrossRef]
- Toma, M.B.; Belete, M.D.; Ulsido, M.D. Historical and future dynamics of land use land cover and its drivers in Ajora-Woybo watershed, Omo-Gibe basin, Ethiopia. Nat. Resour. Model. 2023, 36, e12353. [Google Scholar] [CrossRef]
- Eastman, J.R. TerrSet Tutorial, Geospatial Monitoring and Modeling System; Clark University: Worcester, MA, USA, 2016. [Google Scholar]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total. Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Liu, S.; Liao, Q.; Xiao, M.; Zhao, D.; Huang, C. Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China. Int. J. Environ. Res. Public Health 2022, 19, 3594. [Google Scholar] [CrossRef] [PubMed]
- Aneseyee, A.B.; Noszczyk, T.; Soromessa, T.; Elias, E. The InVEST Habitat Quality Model Associated with Land Use/Cover Changes: A Qualitative Case Study of the Winike Watershed in the Omo-Gibe Basin, Southwest Ethiopia. Remote Sens. 2020, 12, 1103. [Google Scholar] [CrossRef]
- Chu, L.; Sun, T.; Wang, T.; Li, Z.; Cai, C. Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA). Sustainability 2018, 10, 3854. [Google Scholar] [CrossRef]
- Sharp, R.P.; Douglass, J.; Wolny, S.; Arkema, K.K.; Bernhardt, J.; Bierbower, W.; Chaumont, N.; Denu, D.; Fisher, D.; Glowinski, K.; et al. InVEST 3.4.4 User’s Guide; 2018; Stanford University, University of Minnesota, The Nature Conservancy, World Wildlife Fund, The Natural Capital Project. [Google Scholar]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Legese, G. Assessment of land use and land cover changes and its driving forces in Finchaa catchment, Northwestern Ethiopia. Remote Sens. Appl. Soc. Environ. 2021, 22, 100557. [Google Scholar] [CrossRef]
- De Lange, H.; Sala, S.; Vighi, M.; Faber, J. Ecological vulnerability in risk assessment—A review and perspectives. Sci. Total. Environ. 2010, 408, 3871–3879. [Google Scholar] [CrossRef]
- Allan, J.R.; Venter, O.; Watson, J.E. Temporally inter-comparable maps of terrestrial wilderness and the Last of the Wild. Sci. Data 2015, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, C.; Wu, J. Assessing the vulnerability of global terrestrial ecosystems to climate change. Nat. Clim. Change 2020, 10, 540–546. [Google Scholar] [CrossRef]
- Bryan, B.A.; Crossman, N.D.; King, D.; Meyer, W.S. Land use change and ecosystem services provisioning in agricultural landscapes. Ecosyst. Serv. 2018, 31, 70–81. [Google Scholar] [CrossRef]
- Gibson, L.; Lee, T.M.; Koh, L.P.; Brook, B.; Gardner, T.A.; Barlow, J.; Peres, C.; Bradshaw, C.; Laurance, W.F.; Lovejoy, T.E.; et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 2011, 478, 378–381. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Alkemade, R.; van Oorschot, M.; Miles, L.; Nellemann, C.; Bakkenes, M.; Brink, B.T. GLOBIO3: A Framework to Investigate Options for Reducing Global Terrestrial Biodiversity Loss. Ecosystems 2009, 12, 374–390. [Google Scholar] [CrossRef]
- Bravo, M.R. Urbanization in the Philippines and Its Influence on Agriculture. In Sustainable Landscape Planning in Selected Urban Regions; Springer: Tokyo, Japan, 2017. [Google Scholar] [CrossRef]
- Buhay, A.F.V.; Cruz, R.V.O., Jr.; Tiburan, C.L.; Pulhin, J.M. Factors affecting land use, land cover change, and fragmentation in selected protected areas in the Philippines. SciEnggJ 2023, 16, 37–48. [Google Scholar] [CrossRef]
- Leppert, G.; Hohfeld, L.; Lech, M.; Wencker, T. Impact, Diffusion and Scaling-Up of a Comprehensive Land-Use Planning Approach in the Philippines: From Development Cooperation to National Policies; German Institute for Development Evaluation (DEval): Bonn, Germany, 2018. [Google Scholar]
- Sisay, G.; Gitima, G.; Mersha, M.; Alemu, W.G. Assessment of land use land cover dynamics and its drivers in Bechet Watershed Upper Blue Nile Basin, Ethiopia. Remote Sens. Appl. Soc. Environ. 2021, 24, 100648. [Google Scholar] [CrossRef]
- Reed, J.; Ickowitz, A.; Chervier, C.; Djoudi, H.; Moombe, K.; Ros-Tonen, M.; Yanou, M.; Yuliani, L.; Sunderland, T. Integrated landscape approaches in the tropics: A brief stock-take. Land Use Policy 2020, 99, 104822. [Google Scholar] [CrossRef]
- Hariram, N.P.; Mekha, K.B.; Suganthan, V.; Sudhakar, K. Sustainalism: An Integrated Socio-Economic-Environmental Model to Address Sustainable Development and Sustainability. Sustainability 2023, 15, 10682. [Google Scholar] [CrossRef]
- Wang, J.; Aenis, T. Stakeholder analysis in support of sustainable land management: Experiences from southwest China. J. Environ. Manag. 2019, 243, 1–11. [Google Scholar] [CrossRef] [PubMed]
- He, N.; Guo, W.; Wang, H.; Yu, L.; Cheng, S.; Huang, L.; Jiao, X.; Chen, W.; Zhou, H. Temporal and Spatial Variations in Landscape Habitat Quality under Multiple Land-Use/Land-Cover Scenarios Based on the PLUS-InVEST Model in the Yangtze River Basin, China. Land 2023, 12, 1338. [Google Scholar] [CrossRef]
- Santos, M.; Cajaiba, R.L.; Bastos, R.; Gonzalez, D.; Bakış, A.-L.P.; Ferreira, D.; Leote, P.; da Silva, W.B.; Cabral, J.A.; Gonçalves, B.; et al. Why Do Agroforestry Systems Enhance Biodiversity? Evidence From Habitat Amount Hypothesis Predictions. Front. Ecol. Evol. 2022, 9, 630151. [Google Scholar] [CrossRef]
- Tang, J.; Zhou, L.; Dang, X.; Hu, F.; Yuan, B.; Yuan, Z.; Wei, L. Impacts and predictions of urban expansion on habitat quality in the densely populated areas: A case study of the Yellow River Basin, China. Ecol. Indic. 2023, 151, 110320. [Google Scholar] [CrossRef]
- Hong, H.-J.; Kim, C.-K.; Lee, H.-W.; Lee, W.-K. Conservation, Restoration, and Sustainable Use of Biodiversity Based on Habitat Quality Monitoring: A Case Study on Jeju Island, South Korea (1989–2019). Land 2021, 10, 774. [Google Scholar] [CrossRef]
- Haregeweyn, N.; Berhe, A.; Tsunekawa, A.; Tsubo, M.; Meshesha, D.T. Integrated Watershed Management as an Effective Approach to Curb Land Degradation: A Case Study of the Enabered Watershed in Northern Ethiopia. Environ. Manag. 2012, 50, 1219–1233. [Google Scholar] [CrossRef]
- Stem, C.; Margoluis, R.; Salafsky, N.; Brown, M. Monitoring and Evaluation in Conservation: A Review of Trends and Approaches. Conserv. Biol. 2005, 19, 295–309. [Google Scholar] [CrossRef]
- Garbach, K.; Lubell, M.; DeClerck, F.A. Payment for Ecosystem Services: The roles of positive incentives and information sharing in stimulating adoption of silvopastoral conservation practices. Agric. Ecosyst. Environ. 2012, 156, 27–36. [Google Scholar] [CrossRef]
- Wegner, G.I. Payments for ecosystem services (PES): A flexible, participatory, and integrated approach for improved conservation and equity outcomes. Environ. Dev. Sustain. 2015, 18, 617–644. [Google Scholar] [CrossRef]
- Lansigan, F.; De Los Santos, W.L.; Coladilla, J. Agronomic impacts of climate variability on rice production in the Philippines. Agric. Ecosyst. Environ. 2000, 82, 129–137. [Google Scholar] [CrossRef]
- Kastner, T.; Nonhebel, S. Changes in land requirements for food in the Philippines: A historical analysis. Land Use Policy 2010, 27, 853–863. [Google Scholar] [CrossRef]
- Stuecker, M.F.; Tigchelaar, M.; Kantar, M.B. Climate variability impacts on rice production in the Philippines. PLoS ONE 2018, 13, e0201426. [Google Scholar] [CrossRef] [PubMed]
- Varca, L.M. Pesticide residues in surface waters of Pagsanjan-Lumban catchment of Laguna de Bay, Philippines. Agric. Water Manag. 2012, 106, 35–41. [Google Scholar] [CrossRef]
- Montoya, D.; Gaba, S.; de Mazancourt, C.; Bretagnolle, V.; Loreau, M. Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes. Ecol. Model. 2019, 416, 108889. [Google Scholar] [CrossRef]
- Ligaray, M.; Kim, M.; Baek, S.; Ra, J.-S.; Chun, J.A.; Park, Y.; Boithias, L.; Ribolzi, O.; Chon, K.; Cho, K.H. Modeling the Fate and Transport of Malathion in the Pagsanjan-Lumban Basin, Philippines. Water 2017, 9, 451. [Google Scholar] [CrossRef]
- Bucheli, V.J.P.; Bokelmann, W. Agroforestry systems for biodiversity and ecosystem services: The case of the Sibundoy Valley in the Colombian province of Putumayo. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2017, 13, 380–397. [Google Scholar] [CrossRef]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Reith, E.; Gosling, E.; Knoke, T.; Paul, C. Exploring trade-offs in agro-ecological landscapes: Using a multi-objective land-use allocation model to support agroforestry research. Basic Appl. Ecol. 2022, 64, 103–119. [Google Scholar] [CrossRef]
- Stuch, B.; Alcamo, J. Systems methods for analyzing trade-offs between food security and conserving biodiversity. Environ. Syst. Decis. 2023, 44, 16–29. [Google Scholar] [CrossRef]
- Almarines, N.R.; Hashimoto, S.; Pulhin, J.M.; Predo, C.D.; Pulhin, F.B.; Magpantay, A.T.; Saito, O. Spatiotemporal dynamics of bioproduction systems and ecosystem services in the Baroro and Pagsanjan-Lumban watersheds, Philippines. Paddy Water Environ. 2024. [Google Scholar] [CrossRef]
- Munang, R.T.; Thiaw, I.; Rivington, M. Ecosystem Management: Tomorrow’s Approach to Enhancing Food Security under a Changing Climate. Sustainability 2011, 3, 937–954. [Google Scholar] [CrossRef]
- Reed, J.; Van Vianen, J.; Deakin, E.L.; Barlow, J.; Sunderland, T. Integrated landscape approaches to managing social and environmental issues in the tropics: Learning from the past to guide the future. Glob. Change Biol. 2016, 22, 2540–2554. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.; Barlow, J.; Carmenta, R.; van Vianen, J.; Sunderland, T. Engaging multiple stakeholders to reconcile climate, conservation and development objectives in tropical landscapes. Biol. Conserv. 2019, 238, 108229. [Google Scholar] [CrossRef]
- Jiren, T.S.; Hanspach, J.; Schultner, J.; Fischer, J.; Bergsten, A.; Senbeta, F.; Hylander, K.; Dorresteijn, I. Reconciling food security and biodiversity conservation: Participatory scenario planning in southwestern Ethiopia. Ecol. Soc. 2020, 25, 24. [Google Scholar] [CrossRef]
- Aryal, K.; Maraseni, T.; Apan, A. Transforming agroforestry in contested landscapes: A win-win solution to trade-offs in ecosystem services in Nepal. Sci. Total. Environ. 2022, 857, 159301. [Google Scholar] [CrossRef]
- Estrada-Carmona, N.; Hart, A.K.; DeClerck, F.A.; Harvey, C.A.; Milder, J.C. Integrated landscape management for agriculture, rural livelihoods, and ecosystem conservation: An assessment of experience from Latin America and the Caribbean. Landsc. Urban Plan. 2014, 129, 1–11. [Google Scholar] [CrossRef]
- Tafoya, K.A.; Brondizio, E.S.; Johnson, C.E.; Beck, P.; Wallace, M.; Quirós, R.; Wasserman, M.D. Effectiveness of Costa Rica’s Conservation Portfolio to Lower Deforestation, Protect Primates, and Increase Community Participation. Front. Environ. Sci. 2020, 8, 580724. [Google Scholar] [CrossRef]
- IPBES. Global Assessment Report on Biodiversity and Ecosystem Services. In Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., Eds.; IPBES Secretariat: Bonn, Germany, 2019. [Google Scholar] [CrossRef]
- Maisharou, A.; Chirwa, P.; Larwanou, M.; Babalola, F.; Ofoegbu, C. Sustainable land management practices in the Sahel: Review of practices, techniques and technologies for land restoration and strategy for up-scaling. Int. For. Rev. 2015, 17, 1–19. [Google Scholar] [CrossRef]
- Simonson, W.D.; Miller, E.; Jones, A.; García-Rangel, S.; Thornton, H.; McOwen, C. Enhancing climate change resilience of ecological restoration—A framework for action. Perspect. Ecol. Conserv. 2021, 19, 300–310. [Google Scholar] [CrossRef]
- Correa Ayram, C.A.; Mendoza, M.E.; Etter, A.; Salicrup, D.R.P. Habitat connectivity in biodiversity conservation: A review of recent studies and applications. Prog. Phys. Geogr. Earth Environ. 2016, 40, 7–37. [Google Scholar] [CrossRef]
- Danielsen, F.; Burgess, N.D.; Balmford, A. Monitoring Matters: Examining the Potential of Locally-based Approaches. Biodivers. Conserv. 2005, 14, 2507–2542. [Google Scholar] [CrossRef]
LULC | Definitions |
---|---|
Built-up | Areas characterized by the presence of infrastructure, buildings, and other man-made structures. This category typically includes urban and suburban developments and the bare land allocated built up. |
Closed forests | A land cover type representing areas densely covered with trees, where the canopy cover is so dense that it limits sunlight penetration to the forest floor. |
Annual crops | Areas are used to cultivate crops planted and harvested within the same agricultural year. These crops typically have a short growing cycle, including corn, palay (rice), vegetables, and herbs. |
Mixed agroforestry systems | A land-use system that combines trees or shrubs with perennial crops in the same area. This LULC includes an open forest and shrublands/ bushes, which mostly integrate perennial crops in the watershed area. |
Water | This category represents areas covered by water bodies, such as rivers, lakes, reservoirs, and ponds. |
Threat | Maximum Distance (km) | Weight (0–1) | Decay | LULC | ||||
---|---|---|---|---|---|---|---|---|
Annual crops | Built-up | Mixed agroforestry systems | Closed forest | Water | ||||
Habitat suitability score | ||||||||
0.4 | 0.2 | 0.7 | 1 | 0.9 | ||||
Habitat sensitivity to threats | ||||||||
Annual crops | 2 | 0.6 | Linear | 0 | 0.1 | 0.7 | 0.9 | 0.9 |
Population density | 2 | 0.6 | Exponential | 0.5 | 0.1 | 0.6 | 0.8 | 0.6 |
Urban area | 3 | 0.9 | Exponential | 0.4 | 0 | 0.7 | 1 | 0.9 |
Rural settlement | 1 | 0.5 | Linear | 0.1 | 0 | 0.4 | 0.6 | 0.5 |
High-graded roads | 2 | 0.5 | Exponential | 0.5 | 0.1 | 0.7 | 0.8 | 0.5 |
Low-graded roads | 1 | 0.2 | Linear | 0.3 | 0.1 | 0.3 | 0.5 | 0.3 |
LULC | PLW | BW | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Historical Trends (%) | Prediction (%) | Historical Trends (%) | Prediction (%) | |||||||
2000 | 2010 | 2020 | 2035 | 2050 | 2000 | 2010 | 2020 | 2035 | 2050 | |
Annual crops | 14.3 | 12.0 | 13.0 | 13.2 | 16.1 | 34.4 | 34.2 | 32.5 | 31.1 | 31.9 |
Built-up | 2.0 | 3.1 | 2.8 | 3.3 | 3.4 | 0.9 | 1.4 | 1.7 | 3.2 | 4.1 |
Closed forests | 1.6 | 2.8 | 2.7 | 2.8 | 2.8 | 4.3 | 1.9 | 1.6 | 1.5 | 0.8 |
Mixed agroforestry systems | 77.7 | 77.8 | 76.7 | 76.1 | 72.8 | 59.9 | 62.0 | 63.8 | 63.7 | 62.6 |
Water | 4.4 | 4.2 | 4.7 | 4.6 | 4.9 | 0.4 | 0.5 | 0.3 | 0.6 | 0.5 |
LULC | PLW | BW | ||||
---|---|---|---|---|---|---|
2000 | 2020 | 2050 | 2000 | 2020 | 2050 | |
Annual crop | 0.2 | 0.3 | 0.3 | 0.0 | 0.0 | 0.0 |
Built-up | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.0 |
Mixed agroforestry system | 0.3 | 0.6 | 0.6 | 0.5 | 0.7 | 0.4 |
Closed forest | 0.4 | 0.8 | 0.8 | 0.2 | 0.1 | 0.2 |
Water | 0.3 | 0.5 | 0.4 | 0.1 | 0.2 | 0.1 |
Watersheds | LULC | Mean Food Crop Production (Mt ha−1) | Yield per Production Type (Mt) | Yield per Production Type (Mt) | Yield per Production Type (Mt) |
---|---|---|---|---|---|
2000 | 2020 | 2050 | |||
PLW | Annual crop | 5.4 | 32,081 | 29,279 | 36,131 |
Mixed agroforestry system | 1 | 32,300 | 31,883 | 30,249 | |
Total production | 64,381 | 61,162 | 66,380 | ||
BW | Annual crop | 5.4 | 36,050 | 34,009 | 33,442 |
Mixed agroforestry system | 0.4 | 4643 | 4952 | 4860 | |
Total production | 40,694 | 38,962 | 38,302 |
Watersheds | Food Provisions vs. Habitat Quality | Correlation Coefficient | p-Value |
---|---|---|---|
PLW | 2000 | −0.0256 | 0.1057 |
2020 | −0.0355 | 0.0248 | |
2050 | −0.0151 | 0.3392 | |
BW | 2000 | 0.1869 | 3.56 × 10−17 |
2020 | 0.0267 | 0.2326 | |
2050 | 0.2567 | 1.79 × 10−31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahle, M.; Almarines, N.R.; Lahoti, S.A.; Tiburan, C.L., Jr.; Pulhin, J.M.; Saito, O. Exploring the Interplay Between Food Provision and Habitat Quality Assessment for Sustainable Coexistence in the Bioproduction Systems of the Philippines. Resources 2025, 14, 45. https://doi.org/10.3390/resources14030045
Sahle M, Almarines NR, Lahoti SA, Tiburan CL Jr., Pulhin JM, Saito O. Exploring the Interplay Between Food Provision and Habitat Quality Assessment for Sustainable Coexistence in the Bioproduction Systems of the Philippines. Resources. 2025; 14(3):45. https://doi.org/10.3390/resources14030045
Chicago/Turabian StyleSahle, Mesfin, Nico R. Almarines, Shruti Ashish Lahoti, Cristino L. Tiburan, Jr., Juan M. Pulhin, and Osamu Saito. 2025. "Exploring the Interplay Between Food Provision and Habitat Quality Assessment for Sustainable Coexistence in the Bioproduction Systems of the Philippines" Resources 14, no. 3: 45. https://doi.org/10.3390/resources14030045
APA StyleSahle, M., Almarines, N. R., Lahoti, S. A., Tiburan, C. L., Jr., Pulhin, J. M., & Saito, O. (2025). Exploring the Interplay Between Food Provision and Habitat Quality Assessment for Sustainable Coexistence in the Bioproduction Systems of the Philippines. Resources, 14(3), 45. https://doi.org/10.3390/resources14030045