Aquatic Plants for Blue Protein Innovation: Bridging Nutrition, Sustainability, and Food Security
Abstract
1. Introduction
2. Methodology
3. Aquatic Plant Resources
3.1. Fresh Water
3.1.1. Duckweed
3.1.2. Floating Vegetables and Ferns
| Crop | Protein Content (DW) | EAA Profile | Vitamins/Bioactivities | References |
|---|---|---|---|---|
| Azolla (Azolla spp.) | ~20–25% | High in Lys, Met | Antimicrobial, antioxidant, anticancer, anti-inflammatory | [36,37] |
| Ipomoea aquatica (water spinach) | ~20% | All EAAs Low in Trp, His, Thr | Vitamins B1, C, A Anticancer, antihyperglycemic | [38,39] |
| Nasturtium officinale (watercress) | 6–30% | - | Lutein and β-carotene; antioxidant, anti-inflammatory, anticancer | [40,41,42] |
| Nymphae spp. (water lilies) | 23% (rhizome) | High in Leu, good EAA Limiting: Met | Antimicrobial, anti-inflammatory, anti-depressant | [43,44] |
| Nelumbo nucifera (lotus seed) | 16–28% | 36% EAA to TAA, variable studies, Limiting: Phe, Lys, Leu, and Tyr | Vitamin B, Zn, Fe, Ca, Mn Anticancer, antidiabetic, neuroregenerative | [45,46] |
| Euryale ferox (fox nut) | 9.7–11.16% | Rich in EAA; Leu, Ile, Met, Cys, Arg, and Glu are the highest | Vitamins C and E, Mg, K, P, Fe, Zn Antidiabetic, anti-fatigue, anti-aging | [47,48,49] |
3.1.3. Seed-Bearing Crops
3.2. Marine
3.2.1. Microalgae
3.2.2. Macroalgae
| Type | Macronutrient Profile | EAA Profile Highlights | Quality and Digestibility | Reference |
|---|---|---|---|---|
| Chlorella vulgaris (microalgae) | High protein: up to 67% | Balanced EAAs, high in Lys Limiting: Met | Cell-wall disruption/extraction improves bioaccessibility | [78,79,80] |
| Arthrospira platensis (cyanobacterium) | Very high protein (50–70% DW) | All EAAs, strong in Leu and Val Limiting: sulfur AA | Generally high digestibility; matrix-dependent | [5,81] |
| Nannochloropsis spp. (microalga) | Moderate-to-high protein | Robust Leu and Lys Limiting: Met | Composition is reasonably stable across media in one study | [82,83] |
| Tetraselmis spp. (microalga) | Protein-rich | Balanced EAAs; good Lys Limiting: Thr and Met | Digestibility increases with milling/enzymatic pretreatment | [82] |
| Pyropia/Porphyra (nori; red) | Moderate-to-high protein; low fat | All EAAs; rich in Leu, Lys, and Val Limiting: Trp and Met | Vitamin B12 is present and bioavailable in animal and human studies | [84,85,86,87] |
| Ulva spp. (sea lettuce; green) | 15–30% protein (DW); high fiber; low fat | High percentage of EAAs; rich in His; Limiting: Trp and Met | Minerals (Ca, Fe, Mg, and I) and Vitamin B | [84,87,88,89,90] |
| Gracilaria spp. (red) | Carbohydrate-rich (agar); moderate protein; low fat | All EAAs; rich in Leu, Val, and Thr Limiting: Trp and Met | Fe and Ca can be appreciable; variable by site/season | [85,87,91] |
| Saccharina/Laminaria (kelp; brown) | Low-to-moderate protein and fiber, and low fat | Reliable EAA source Limiting: Met, Cys, and Lys | Iodine is very high; managed via portioning/processing | [84,85,92,93] |
| Zostera marina seeds (eelgrass; seagrass) | 9–13% protein | Balanced amino-acid pattern | Food use is still niche; composition varies by site/season | [94,95] |
4. Green Processing
4.1. Fermentation
4.2. Ultrasound-Assisted Extraction
4.3. High-Pressure Processing
4.4. Pulsed Electric Field
5. Sustainability and Blue Economy
5.1. Sustainability
5.2. Blue Economy
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The Future of Food and Agriculture—Alternative Pathways to 2050|Global Perspectives Studies|Food and Agriculture Organization of the United Nations; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Soma, K.; Kals, J.; Opiyo, M.A.; Ndambi, A.; García-Cubero, R.; Barbosa, M.J.; Rurangwa, E.; Vernooij, A. Toward sustainable food systems: Can spirulina (Arthrospira platensis) become a sustainable source of protein to enhance the nutritional benefits of cultured Nile Tilapia (Oreochromis niloticus)? Front. Sustain. Food Syst. 2024, 8, 1283150. [Google Scholar] [CrossRef]
- Choręziak, A.; Rosiejka, D.; Michałowska, J.; Bogdański, P. Nutritional Quality, Safety and Environmental Benefits of Alternative Protein Sources—An Overview. Nutrients 2025, 17, 1148. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-N.; Kim, H.-Y. Exploring Sustainable Future Protein Sources. Food Sci. Anim. Resour. 2025, 45, 81–108. [Google Scholar] [CrossRef]
- Podgórska-Kryszczuk, I. Spirulina—An Invaluable Source of Macro- and Micronutrients with Broad Biological Activity and Application Potential. Molecules 2024, 29, 5387. [Google Scholar] [CrossRef]
- Habeeb, F.; Majid, D.; Makroo, H.A.; Castagnini, J.M.; Barba, F.J.; Dar, B.N. Duckweed as a sustainable protein source: Extraction methods, functional properties, and applications in food systems. Food Chem. 2025, 493, 145854. [Google Scholar] [CrossRef]
- Anal, A.K.; Panesar, P.S.; Kaur, R. Agro-Industrial Waste as Wealth. In Valsorization of Agro-Industrial Byproducts; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–10. [Google Scholar]
- Midlen, A. What is the Blue Economy? A spatialised governmentality perspective. Marit. Stud. 2021, 20, 423–448. [Google Scholar] [CrossRef]
- Colgrave, M.L.; Dominik, S.; Tobin, A.B.; Stockmann, R.; Simon, C.; Howitt, C.A.; Belobrajdic, D.P.; Paull, C.; Vanhercke, T. Perspectives on Future Protein Production. J. Agric. Food Chem. 2021, 69, 15076–15083. [Google Scholar] [CrossRef] [PubMed]
- Sosa, D.; Alves, F.M.; Prieto, M.A.; Pedrosa, M.C.; Heleno, S.A.; Barros, L.; Feliciano, M.; Carocho, M. Lemna minor: Unlocking the Value of This Duckweed for the Food and Feed Industry. Foods 2024, 13, 1435. [Google Scholar] [CrossRef] [PubMed]
- Pagliuso, D.; Grandis, A.; Fortirer, J.S.; Camargo, P.; Floh, E.I.S.; Buckeridge, M.S. Duckweeds as Promising Food Feedstocks Globally. Agronomy 2022, 12, 796. [Google Scholar] [CrossRef]
- Takács, K.; Végh, R.; Mednyánszky, Z.; Haddad, J.; Allaf, K.; Du, M.; Chen, K.; Kan, J.; Cai, T.; Molnár, P.; et al. New Insights into Duckweed as an Alternative Source of Food and Feed: Key Components and Potential Technological Solutions to Increase Their Digestibility and Bioaccessibility. Appl. Sci. 2025, 15, 884. [Google Scholar] [CrossRef]
- Appenroth, K.-J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional value of duckweeds (Lemnaceae) as human food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef]
- Romano, L.E.; Aronne, G. The World Smallest Plants (Wolffia sp.) as Potential Species for Bioregenerative Life Support Systems in Space. Plants 2021, 10, 1896. [Google Scholar] [CrossRef]
- Said, D.S.; Chrismadha, T.; Mayasari, N.; Widiyanto, T.; Ramandita, A. Nutritional Content and Growth Ability of Duckweed Spirodela polyrhiza on Various Culture Media. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar]
- Appenroth, K.-J.; Sree, K.S.; Bog, M.; Ecker, J.; Seeliger, C.; Böhm, V.; Lorkowski, S.; Sommer, K.; Vetter, W.; Tolzin-Banasch, K.; et al. Nutritional Value of the Duckweed Species of the Genus Wolffia (Lemnaceae) as Human Food. Front. Chem. 2018, 6, 483. [Google Scholar] [CrossRef]
- Petersen, F.; Demann, J.; Restemeyer, D.; Olfs, H.-W.; Westendarp, H.; Appenroth, K.-J.; Ulbrich, A. Influence of Light Intensity and Spectrum on Duckweed Growth and Proteins in a Small-Scale, Re-Circulating Indoor Vertical Farm. Plants 2022, 11, 1010. [Google Scholar] [CrossRef]
- Hu, Z.; Fang, Y.; Yi, Z.; Tian, X.; Li, J.; Jin, Y.; He, K.; Liu, P.; Du, A.; Huang, Y.; et al. Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT 2022, 153, 112477. [Google Scholar] [CrossRef]
- Baek, G.; Saeed, M.; Choi, H.-K. Duckweeds: Their utilization, metabolites and cultivation. Appl. Biol. Chem. 2021, 64, 73. [Google Scholar] [CrossRef] [PubMed]
- Sender, J.; Różańska-Boczula, M. Preliminary studies of selected Lemna species on the oxygen production potential in relation to some ecological factors. Peer J 2024, 12, e17322. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Fang, Y.; Wang, S.; Xiao, Y.; Ding, Y.; Jin, Y.; Tian, X.; Du, A.; Liao, Z.; He, K.; et al. Duckweed: A starch-hyperaccumulating plant under cultivation with a combination of nutrient limitation and elevated CO2. Front. Plant Sci. 2025, 16, 1531849. [Google Scholar] [CrossRef]
- Bog, M.; Sree, K.S.; Fuchs, J.; Hoang, P.T.N.; Schubert, I.; Kuever, J.; Rabenstein, A.; Paolacci, S.; Jansen, M.A.K.; Appenroth, K. A taxonomic revision of Lemna sect. Uninerves (Lemnaceae). Taxon 2020, 69, 56–66. [Google Scholar] [CrossRef]
- Thongthung, H.; Chungopast, S.; Petchpoung, K.; Kaewtapee, C. Chemical Composition and In Vitro Protein Digestibility of Duckweed and Feed Ingredients. Trends Sci. 2024, 21, 8324. [Google Scholar] [CrossRef]
- Kaplan, A.; Zelicha, H.; Tsaban, G.; Yaskolka Meir, A.; Rinott, E.; Kovsan, J.; Novack, L.; Thiery, J.; Ceglarek, U.; Burkhardt, R.; et al. Protein bioavailability of Wolffia globosa duckweed, a novel aquatic plant—A randomized controlled trial. Clin. Nutr. 2019, 38, 2576–2582. [Google Scholar] [CrossRef]
- Sela, I.; Yaskolka Meir, A.; Brandis, A.; Krajmalnik-Brown, R.; Zeibich, L.; Chang, D.; Dirks, B.; Tsaban, G.; Kaplan, A.; Rinott, E.; et al. Wolffia globosa–Mankai Plant-Based Protein Contains Bioactive Vitamin B12 and Is Well Absorbed in Humans. Nutrients 2020, 12, 3067. [Google Scholar] [CrossRef]
- Yaskolka Meir, A.; Tsaban, G.; Zelicha, H.; Rinott, E.; Kaplan, A.; Youngster, I.; Rudich, A.; Shelef, I.; Tirosh, A.; Brikner, D.; et al. A Green-Mediterranean Diet, Supplemented with Mankai Duckweed, Preserves Iron-Homeostasis in Humans and Is Efficient in Reversal of Anemia in Rats. J. Nutr. 2019, 149, 1004–1011. [Google Scholar] [CrossRef]
- de Beukelaar, M.F.A.; Zeinstra, G.G.; Mes, J.J.; Fischer, A.R.H. Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food Qual. Prefer. 2019, 71, 76–86. [Google Scholar] [CrossRef]
- Dhamaratana, S.; Methacanon, P.; Charoensiddhi, S. Chemical composition and in vitro digestibility of duckweed (Wolffia globosa) and its polysaccharide and protein fractions. Food Chem. Adv. 2025, 6, 100867. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 2023, 39, 3620–3634. [Google Scholar] [CrossRef]
- Kumar, A.S.; Murugesan, S.; Balamurugan, P. Feeding of Azolla as a Green Fodder Feed Supplement on Productive Performance and Milk Composition of Crossbred Dairy Cows in Theni District of Tamil Nadu, India. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 1388–1392. [Google Scholar] [CrossRef]
- Song, Y.; Hu, Z.; Liu, S.; Luo, S.; He, R.; Yang, X.; Li, S.; Yang, X.; An, Y.; Lu, Y. Utilization of Microalgae and Duckweed as Sustainable Protein Sources for Food and Feed: Nutritional Potential and Functional Applications. J. Agric. Food Chem. 2025, 73, 4466–4482. [Google Scholar] [CrossRef] [PubMed]
- Korsa, G.; Alemu, D.; Ayele, A. Azolla Plant Production and Their Potential Applications. Int. J. Agron. 2024, 2024, 1716440. [Google Scholar] [CrossRef]
- Mishra, S.; Khune, V.N.; Bara, S.; Banjara, S. Nutritional evaluation of Azolla pinnata. Pharma Innov. J. 2020, 9, 16–17. [Google Scholar]
- Miranda, C.D.; Dm Prasad, R.M.V.; Jagadeeswararao, S.; Jayalaxmi, P.; Kumar, D.S. A study on the nutritive value of Azolla pinnata. Livest. Res. Int. 2014, 2, 13–15. [Google Scholar]
- Winstead, D.; Di Gioia, F.; Jauregui, M.; Jacobson, M. Nutritional properties of raw and cooked Azolla caroliniana Willd., an aquatic wild edible plant. Food Sci. Nutr. 2024, 12, 2050–2060. [Google Scholar] [CrossRef] [PubMed]
- Bibi, K.; Krishnappa, S.S.; Kachintaya, C.K.; Kalikeri, S.; Gurusiddappa, L.H. Harnessing Nature’s Power of Azolla pinnata Superfood with Biofertilizers for a Sustainable Future. Int. J. Health Allied Sci. 2024, 13, 8–17. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; El-Sheshtawy, A.-N.A.; Abd El-Razek, U.A.; Abd El-Hakim, A.F.; Hasham, M.M.A.; Sami, R.; Khojah, E.; Al-Mushhin, A.A.M. Growth, Yield, Quality, and Phytochemical Behavior of Three Cultivars of Quinoa in Response to Moringa and Azolla Extracts Under Organic Farming Conditions. Agronomy 2021, 11, 2186. [Google Scholar] [CrossRef]
- Saikia, K.; Dey, S.; Hazarika, S.N.; Handique, G.K.; Thakur, D.; Handique, A.K. Chemical and biochemical characterization of Ipomoea aquatica: Genoprotective potential and inhibitory mechanism of its phytochemicals against α-amylase and α-glucosidase. Front. Nutr. 2023, 10, 1304903. [Google Scholar] [CrossRef] [PubMed]
- Purayil, F.T.; Alzaabi, M.; Sasi, S.; Krishnan, S.; Badar, Z.; Li, L.; Kottackal, M.; Amiri, K.M.A. Genetic modification of Water spinach (Ipomoea aquatica), a genoprotective perennial leafy green. Physiol. Plant. 2025, 177, e70257. [Google Scholar] [CrossRef] [PubMed]
- Araújo-Rodrigues, H.; Santos, D.; Campos, D.A.; Guerreiro, S.; Ratinho, M.; Rodrigues, I.M.; Pintado, M.E. Impact of Processing Approach and Storage Time on Bioactive and Biological Properties of Rocket, Spinach and Watercress Byproducts. Foods 2021, 10, 2301. [Google Scholar] [CrossRef]
- Ibrahim, M.; Akhtar, N.; Sara, H.B. Proximate nutritional, elemental and phytochemical analysis of selected wild edible plants of District Malakand, Pakistan. Pure Appl. Biol. 2021, 10, 781–788. [Google Scholar] [CrossRef]
- Pinela, J.; Barreira, J.C.M.; Barros, L.; Verde, S.C.; Antonio, A.L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Suitability of gamma irradiation for preserving fresh-cut watercress quality during cold storage. Food Chem. 2016, 206, 50–58. [Google Scholar] [CrossRef]
- Abelti, A.L.; Teka, T.A.; Bultosa, G.; Vermeir, P. Characterization of water lily (Nymphaea lotus) for nutrients, anti-nutrients, phytochemicals, and antioxidant capacities. Food Biosci. 2024, 61, 104588. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, J.; Yang, Y.; Chen, Y.; Su, Q.; Zhao, Y.; Wang, J.; Xia, Z.; Wang, L.; Zhang, L.; et al. Water lily research: Past, present, and future. Trop. Plants 2023, 2, 1–8. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Dunno, K.; Kumar, M.; Mostafa, H.; Maqsood, S. A comprehensive review on lotus seeds (Nelumbo nucifera Gaertn.): Nutritional composition, health-related bioactive properties, and industrial applications. J. Funct. Foods 2022, 89, 104937. [Google Scholar] [CrossRef]
- Saeed, M.; Zahra, N.; Saeed, A.; Kazim, M.Z.; Javeria, S. Nutritional Composition, Bioactive Compounds and Food Applications of Lotus Seeds (Nelumbo nucifera): A Review. Int. J. Biomed. Res. 2025, 4. [Google Scholar]
- Mittal, R.; Sharma, S.; Mittal, A. A Critical Review on Ethnobotanical and Pharmacological Aspects of Euryale Ferox Salisb. Pharmacogn. J. 2020, 12, 1444–1454. [Google Scholar] [CrossRef]
- Tehseen, S.; Sarfraz, F.; Ateeq, N.; Ashfaq, F.; Yasmin, I.; Mehmood, T. Foxnut (Euryale ferox Salisb.): A Health Promising Fruit. Acta Sci. Agric. 2020, 4, 68–72. [Google Scholar]
- Kapoor, S.; Kaur, A.; Kaur, R.; Kumar, V.; Choudhary, M. Euryale ferox, a prominent superfood: Nutritional, pharmaceutical, and its economical importance. J. Food Biochem. 2022, 46, e14435. [Google Scholar] [CrossRef] [PubMed]
- Dikshita, P.A. Ipomea aquatica . Int. J. Pharm. Sci. Med. 2025, 10, 13–34. [Google Scholar] [CrossRef]
- Schuchardt, J.P.; Hahn, A.; Greupner, T.; Wasserfurth, P.; Rosales-López, M.; Hornbacher, J.; Papenbrock, J. Watercress–cultivation methods and health effects. J. Appl. Bot. Food Qual. 2019, 92, 232–239. [Google Scholar] [CrossRef]
- Maluwa, C.; Zinan’dala, B.; Chuljerm, H.; Parklak, W.; Kulprachakarn, K. Watercress (Nasturtium officinale) as a Functional Food for Non-Communicable Diseases Prevention and Management: A Narrative Review. Life 2025, 15, 1104. [Google Scholar] [CrossRef]
- Spritzler, F. Oxalate (Oxalic Acid): Good or Bad? 2023. Available online: https://www.healthline.com/nutrition/oxalate-good-or-bad (accessed on 24 September 2025).
- Yamini, R.; Kannan, M.; Thamaraisevi, S.; Uma, D.; Santhi, R. Phytochemical screening and nutritional analysis of Nelumbo nucifera (Pink lotus) flower petals and seeds. Int. J. Chem. Stud. 2019, 7, 3540–3545. [Google Scholar]
- Showkat, Q.A.; Rather, J.A.; Jabeen, A.; Dar, B.N.; Makroo, H.A.; Majid, D. Bioactive components, physicochemical and starch characteristics of different parts of lotus (Nelumbo nucifera Gaertn.) plant: A review. Int. J. Food Sci. Technol. 2021, 56, 2205–2214. [Google Scholar] [CrossRef]
- Bishayee, A.; Patel, P.A.; Sharma, P.; Thoutireddy, S.; Das, N. Lotus (Nelumbo nucifera Gaertn.) and Its Bioactive Phytocompounds: A Tribute to Cancer Prevention and Intervention. Cancers 2022, 14, 529. [Google Scholar] [CrossRef]
- Sun, H.; Xin, J.; Song, H.; Chen, L.; Yang, D.; Yang, H.; Deng, X.; Liu, J.; Cui, R.; Su, Y.; et al. Harnessing genomic and molecular biology resources for genetic improvement of lotus: Current achievements and future directions. Hortic. Adv. 2025, 3, 1. [Google Scholar] [CrossRef]
- Nguyen, M.P. Effect of Boiling and Roasting to Nutrients and Anti-nutritients of Lotus (Nelumbo nucifera) Seed. Biosci. Res. 2020, 17, 304–307. [Google Scholar]
- Danhassan, M.S.; Salihu, A.; Inuwa, H.M. Effect of boiling on protein, mineral, dietary fibre and antinutrient compositions of Nymphaea lotus (Linn) seeds. J. Food Compos. Anal. 2018, 67, 184–190. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Ahmad, H. Makhana and the Sustainable Development Goals: A Pathway to Nutrition, Livelihoods, and Environmental Sustainability. Int. J. Adv. Multidiscip. Res. Stud. 2025, 5, 1481–1483. [Google Scholar] [CrossRef]
- Thoré, E.S.J.; Muylaert, K.; Bertram, M.G.; Brodin, T. Microalgae. Curr. Biol. 2023, 33, R91–R95. [Google Scholar] [CrossRef]
- Usman Shah, S.M.; Abdullah, M.A. Effects of macro/micronutrients on green and brown microalgal cell growth and fatty acids in photobioreactor and open-tank systems. Biocatal. Agric. Biotechnol. 2018, 14, 10–17. [Google Scholar] [CrossRef]
- Sharma, A.K.; Jaryal, S.; Sharma, S.; Dhyani, A.; Tewari, B.S.; Mahato, N. Biofuels from Microalgae: A Review on Microalgae Cultivation, Biodiesel Production Techniques and Storage Stability. Processes 2025, 13, 488. [Google Scholar] [CrossRef]
- Huntley, M.E.; Johnson, Z.I.; Brown, S.L.; Sills, D.L.; Gerber, L.; Archibald, I.; Machesky, S.C.; Granados, J.; Beal, C.; Greene, C.H. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res. 2015, 10, 249–265. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Barkia, I.; Saari, N.; Manning, S.R. Microalgae for High-Value Products Towards Human Health and Nutrition. Mar. Drugs 2019, 17, 304. [Google Scholar] [CrossRef]
- Andrade-Bustamante, G.; Martínez-Ruiz, F.E.; Ortega-García, J.; Renganathan, P.; Gaysina, L.A.; Mahendhiran, M.; Puente, E.O.R. Microalgae-Based Functional Foods: A Blue-Green Revolution in Sustainable Nutrition and Health. Appl. Microbiol. 2025, 5, 39. [Google Scholar] [CrossRef]
- Machado, L.; Carvalho, G.; Pereira, R.N. Effects of Innovative Processing Methods on Microalgae Cell Wall: Prospects towards Digestibility of Protein-Rich Biomass. Biomass 2022, 2, 80–102. [Google Scholar] [CrossRef]
- Braspaiboon, S.; Osiriphun, S.; Surawang, S.; Jirarattanarangsri, W.; Kanha, N.; Laokuldilok, T. Ultrasound-assisted alkaline extraction of proteins in several algae and their nutritional characteristics. Int. J. Food Sci. Technol. 2022, 57, 6143–6154. [Google Scholar] [CrossRef]
- Vizcaíno, A.J.; Sáez, M.I.; Martínez, T.F.; Acién, F.G.; Alarcón, F.J. Differential hydrolysis of proteins of four microalgae by the digestive enzymes of gilthead sea bream and Senegalese sole. Algal Res. 2019, 37, 145–153. [Google Scholar] [CrossRef]
- Nesic, A.; Meseldzija, S.; Benavides, S.; Figueroa, F.A.; Cabrera-Barjas, G. Seaweed as a Valuable and Sustainable Resource for Food Packaging Materials. Foods 2024, 13, 3212. [Google Scholar] [CrossRef]
- Leser, S. The 2013 FAO report on dietary protein quality evaluation in human nutrition: Recommendations and implications. Nutr. Bull. 2013, 38, 421–428. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marbà, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Araújo, J.; Carvalho, A.C.; Matias, A.C.; Ribeiro, M.C.; Soares, F.; Pousão-Ferreira, P. Integration of Ulva ohnoi in a Recirculating Aquaculture System for Gilthead Seabream (Sparus aurata) and Its Use as Feed for Sea Urchin (Paracentrotus lividus) Production: A Contribution to Circular and Sustainable Aquaculture Practices. Fishes 2025, 10, 447. [Google Scholar] [CrossRef]
- Santelices, B.; Doty, M.S. A review of Gracilaria Farming. Aquaculture 1989, 78, 95–133. [Google Scholar] [CrossRef]
- Massocato, T.F.; Robles-Carnero, V.; Moreira, B.R.; Castro-Varela, P.; Pinheiro-Silva, L.; Oliveira Wda, S.; Vega, J.; Avilés, A.; Bonomi-Barufi, J.; Rörig, L.R.; et al. Growth, biofiltration and photosynthetic performance of Ulva spp. cultivated in fishpond effluents: An outdoor study. Front. Mar. Sci. 2022, 9, 981468. [Google Scholar] [CrossRef]
- Rusco, G.; Roncarati, A.; Di Iorio, M.; Cariglia, M.; Longo, C.; Iaffaldano, N. Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem. Biology 2024, 13, 946. [Google Scholar] [CrossRef]
- Jui, T.J.; Tasnim, A.; Islam, S.M.R.; Manjur, O.H.; Bin Hossain, M.d.S.; Tasnim, N.; Karmakar, D.; Hasan, M.d.R.; Karim, M.d.R. Optimal growth conditions to enhance Chlorella vulgaris biomass production in indoor phyto tank and quality assessment of feed and culture stock. Heliyon 2024, 10, e31900. [Google Scholar] [CrossRef]
- Pinto, A.S.; Maia, C.; Sousa, S.A.; Tavares, T.; Pires, J.C.M. Amino Acid and Carotenoid Profiles of Chlorella vulgaris During Two-Stage Cultivation at Different Salinities. Bioengineering 2025, 12, 284. [Google Scholar] [CrossRef] [PubMed]
- Chaves, A.A.M.; Martins, C.F.; Carvalho, D.F.P.; Ribeiro, D.M.; Lordelo, M.; Freire, J.P.B.; de Almeida, A.M. A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding—A special emphasis on tropical regions. Trop. Anim. Health Prod. 2021, 53, 396. [Google Scholar] [CrossRef]
- Begum, N.; Qi, F.; Yang, F.; Khan, Q.U.; Faizan; Fu, Q.; Li, J.; Wang, X.; Wang, X.; Wang, J.; et al. Nutritional Composition and Functional Properties of A. platensis- Derived Peptides: A Green and Sustainable Protein-Rich Supplement. Processes 2024, 12, 2608. [Google Scholar] [CrossRef]
- Paterson, S.; Gómez-Cortés, P.; de la Fuente, M.A.; Hernández-Ledesma, B. Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023, 15, 477. [Google Scholar] [CrossRef]
- Gundersen, E.; Jacobsen, C. Cultivation of Nannochloropsis oceanica using food grade industrial side streams: Effect on growth and relative abundance of selected amino acids and unsaturated fatty acids. J. Biotechnol. 2025, 405, 249–253. [Google Scholar] [CrossRef]
- O’ Brien, R.O.; Hayes, M.; Sheldrake, G.; Tiwari, B.; Walsh, P. Macroalgal Proteins: A Review. Foods 2022, 11, 571. [Google Scholar] [CrossRef]
- Alba, K.; Kontogiorgos, V. Seaweed Polysaccharides (Agar, Alginate Carrageenan). In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 240–250. [Google Scholar]
- Huang, Q.-N.; Watanabe, F.; Koseki, K.; He, R.-E.; Lee, H.-L.; Chiu, T.H.T. Effect of roasted purple laver (nori) on vitamin B12 nutritional status of vegetarians: A dose-response trial. Eur. J. Nutr. 2024, 63, 3269–3279. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef]
- Li, C.; Tang, T.; Du, Y.; Jiang, L.; Yao, Z.; Ning, L.; Zhu, B. Ulvan and Ulva oligosaccharides: A systematic review of structure, preparation, biological activities and applications. Bioresour. Bioprocess. 2023, 10, 66. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef]
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- Rosemary, T.; Arulkumar, A.; Paramasivam, S.; Mondragon-Portocarrero, A.; Miranda, J.M. Biochemical, Micronutrient and Physicochemical Properties of the Dried Red Seaweeds Gracilaria edulis and Gracilaria corticata. Molecules 2019, 24, 2225. [Google Scholar] [CrossRef] [PubMed]
- Aakre, I.; Solli, D.D.; Markhus, M.W.; Mæhre, H.K.; Dahl, L.; Henjum, S.; Alexander, J.; Korneliussen, P.A.; Madsen, L.; Kjellevold, M. Commercially available kelp and seaweed products—Valuable iodine source or risk of excess intake? Food Nutr. Res. 2021, 65, 7584. [Google Scholar] [CrossRef] [PubMed]
- Din, N.A.S.; Mohd Alayudin, A.S.; Sofian-Seng, N.-S.; Rahman, H.A.; Mohd Razali, N.S.; Lim, S.J.; Wan Mustapha, W.A. Brown Algae as Functional Food Source of Fucoxanthin: A Review. Foods 2022, 11, 2235. [Google Scholar] [CrossRef]
- Pérez-Lloréns, J.L.; Brun, F.G. “Sea rice”: From traditional culinary customs to sustainable crop for high-end gastronomy? Int. J. Gastron. Food Sci. 2023, 34, 100814. [Google Scholar] [CrossRef]
- Azcárate-García, T.; Beca-Carretero, P.; Hernández, I.; Brun, F.G. Seasonal Variability in Non-Structural Carbohydrate Content of Warm-Adapted Zostera noltei and Zostera marina Populations. Diversity 2024, 16, 391. [Google Scholar] [CrossRef]
- Jaworowska, A.; Murtaza, A. Seaweed Derived Lipids Are a Potential Anti-Inflammatory Agent: A Review. Int. J. Environ. Res. Public Health 2022, 20, 730. [Google Scholar] [CrossRef]
- Guan, B.; Sun, Y.; Liu, X.; Zhong, C.; Li, D.; Shan, X.; Hui, X.; Lu, C.; Huo, Y.; Sun, R.; et al. Comparative evaluation of amino acid profiles, fatty acid compositions, and nutritional value of two varieties of head water Porphyra yezoensis:“ Jianghaida No. 1” and “Sutong No.1”. Food Chem. X 2024, 22, 101375. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, F.; Hou, C.; Zhang, C.; Tang, C. Mechanism and threshold of environmental stressors on seagrass in high-turbidity estuary: Case of Zostera japonica in Yellow River Estuary, China. Front. Mar. Sci. 2024, 11, 1432106. [Google Scholar] [CrossRef]
- Costa, M.; Cardoso, C.; Afonso, C.; Bandarra, N.M.; Prates, J.A.M. Current knowledge and future perspectives of the use of seaweeds for livestock production and meat quality: A systematic review. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1075–1102. [Google Scholar] [CrossRef]
- Andri, F.; Dono, N.D.; Sasongko, H.; Zuprizal, Z. The effects of dietary seaweed inclusion on growth performance of broiler chickens: A systematic review and meta-analysis. F1000Research 2020, 9, 1087. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, A.; Kaur, H.; Gupta, A.; Surasani, V.K.R.; Dhaliwal, S.S. Influence of Different Processing Conditions on Nutritional, Phytochemical, and Physical Properties of Aquatic Fern (Azolla pinnata): A Sustainable Nutrient-Rich Human Food. ACS Food Sci. Technol. 2024, 4, 344–354. [Google Scholar] [CrossRef]
- Anal, A.K.; Singh, R.; Rice, D.; Pongtong, K.; Hazarika, U.; Trivedi, D.; Karki, S. Millets as supergrains: A holistic approach for sustainable and healthy food product development. Sustain. Food Technol. 2024, 2, 908–925. [Google Scholar] [CrossRef]
- Valerozo, J.A.; Rice, D.; Bucao, D.S.; Ramil, R.J.D.; Agrupis, S.C.; Anal, A.K. Integrative approaches in microbial fermentation of underutilized crops for enhanced nutritional and bioactive functionalities. Food Biosci. 2025, 69, 106941. [Google Scholar] [CrossRef]
- Agrawal, D.; Awani, K.; Nabavi, S.A.; Balan, V.; Jin, M.; Aminabhavi, T.M.; Dubey, K.K.; Kumar, V. Carbon emissions and decarbonisation: The role and relevance of fermentation industry in chemical sector. Chem. Eng. J. 2023, 475, 146308. [Google Scholar] [CrossRef]
- Sooraj, I.P.; Leech, J.; O’Callaghan, T.F.; McAuliffe, O. Application and utilization of fermentation as a processing tool to mitigate protein putrefaction in plant-based diets. Front. Microbiol. 2025, 16, 1638378. [Google Scholar] [CrossRef]
- Hayati, R.L.; Hakim, L.; Prihanto, A.A. Improvement of duckweed (Azolla microphylla) nutrition by Leuconostoc sp. isolated from Nile tilapia (Oreochromis niloticus). AACL Bioflux 2023, 16, 1127–1135. [Google Scholar]
- Luo, J.; Ye, C.; Wen, Y.; Bao, Y.; Quek, S.Y. Investigation of solid-state fermentation of red seaweed (Pyropia spp.) with lactic acid Bacteria: Effects on protein profile and in vitro digestibility. Food Chem. 2025, 469, 142667. [Google Scholar] [CrossRef]
- Verni, M.; Dingeo, C.; Rizzello, C.G.; Pontonio, E. Lactic Acid Bacteria Fermentation and Endopeptidase Treatment Improve the Functional and Nutritional Features of Arthrospira platensis. Front. Microbiol. 2021, 12, 744437. [Google Scholar] [CrossRef]
- Yang, X.; Wen, D.; Liu, Z.; Zhang, Y.; Danzengjicha; Yixiduoji; Huang, X.; Li, B. Biofermentation of aquatic plants: Potential novel feed ingredients for dairy cattle production. Sci. Total Environ. 2024, 952, 175955. [Google Scholar] [CrossRef]
- Dohaei, M.; Karimi, K.; Rahimmalek, M.; Satari, B. Integrated biorefinery of aquatic fern Azolla filiculoides for enhanced extraction of phenolics, protein, and lipid and methane production from the residues. J. Clean. Prod. 2020, 276, 123175. [Google Scholar] [CrossRef]
- O’ Connor, J.; Meaney, S.; Williams, G.A.; Hayes, M. Extraction of Protein from Four Different Seaweeds Using Three Different Physical Pre-Treatment Strategies. Molecules 2020, 25, 2005. [Google Scholar] [CrossRef] [PubMed]
- Nitiwuttithorn, C.; Wongsasulak, S.; Vongsawasdi, P.; Yongsawatdigul, J. Effects of alkaline and ultrasonication on duckweed (Wolffia arrhiza) protein extracts’ physicochemical and techno-functional properties. Front. Sustain. Food Syst. 2024, 8, 1343615. [Google Scholar] [CrossRef]
- Maag, P.; Cutroneo, S.; Tedeschi, T.; Grüner-Lempart, S.; Rauh, C.; Karslioglu, Ö.Ö. Optimization of Protein Extraction from Duckweed Using Different Extraction Processes. Food Bioprocess Technol. 2025, 18, 5510–5531. [Google Scholar] [CrossRef]
- Cauduro, V.H.; Gohlke, G.; da Silva, N.W.; Cruz, A.G.; Flores, E.M. A review on scale-up approaches for ultrasound-assisted extraction of natural products. Curr. Opin. Chem. Eng. 2025, 48, 101120. [Google Scholar] [CrossRef]
- Fabrowska, J.; Messyasz, B.; Szyling, J.; Walkowiak, J.; Łęska, B. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycol. Res. 2018, 66, 52–57. [Google Scholar] [CrossRef]
- Mary Leema, J.T.; Persia Jothy, T.; Dharani, G. Rapid green microwave assisted extraction of lutein from Chlorella sorokiniana (NIOT-2)—Process optimization. Food Chem. 2022, 372, 131151. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, W.; Tu, R.; Guo, Q.; Han, S.; Chen, C.; Wang, Q.; Liu, W.; Jensen, P.D.; Wang, Q. Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. J. Clean. Prod. 2019, 221, 502–508. [Google Scholar] [CrossRef]
- Chew, K.W.; Chia, S.R.; Lee, S.Y.; Zhu, L.; Show, P.L. Enhanced microalgal protein extraction and purification using sustainable microwave-assisted multiphase partitioning technique. Chem. Eng. J. 2019, 367, 1–8. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Krishnan, S.B.; Leong, S.S.J. Pulsed Electric Field Technology for Recovery of Proteins from Waste Plant Resources and Deformed Mushrooms: A Review. Processes 2024, 12, 342. [Google Scholar] [CrossRef]
- Jaeschke, D.P.; Mercali, G.D.; Marczak, L.D.F.; Müller, G.; Frey, W.; Gusbeth, C. Extraction of valuable compounds from Arthrospira platensis using pulsed electric field treatment. Bioresour. Technol. 2019, 283, 207–212. [Google Scholar] [CrossRef]
- Robin, A.; Kazir, M.; Sack, M.; Israel, A.; Frey, W.; Mueller, G.; Livney, Y.D.; Golberg, A. Functional Protein Concentrates Extracted from the Green Marine Macroalga Ulva sp., by High Voltage Pulsed Electric Fields and Mechanical Press. ACS Sustain. Chem. Eng. 2018, 6, 13696–13705. [Google Scholar] [CrossRef]
- Pfeifer, L.; van Erven, G.; Sinclair, E.A.; Duarte, C.M.; Kabel, M.A.; Classen, B. Profiling the cell walls of seagrasses from A (Amphibolis) to Z (Zostera). BMC Plant Biol. 2022, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Moates, G.K.; Wellner, N.; Collins, S.R.A.; Coleman, M.J.; Waldron, K.W. Chemical characterisation and analysis of the cell wall polysaccharides of duckweed (Lemna minor). Carbohydr. Polym. 2014, 111, 410–418. [Google Scholar] [CrossRef]
- de Sousa, R.; Bragança, L.; da Silva, M.V.; Oliveira, R.S. Challenges and Solutions for Sustainable Food Systems: The Potential of Home Hydroponics. Sustainability 2024, 16, 817. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, S.; Praveen, B.; Kumar, B. Azolla: An Emerging and Sustainable Feed Resource for Successful Livestock and Poultry Production. Food Sci. Rep. 2022, 3, 42–46. [Google Scholar]
- Yang, L.; Luo, X.; Sun, J.; Ma, X.; Ren, Q.; Wang, Y.; Wang, W.; He, Y.; Li, Q.; Han, B.; et al. The Antimicrobial Potential and Aquaculture Wastewater Treatment Ability of Penaeidins 3a Transgenic Duckweed. Plants 2023, 12, 1715. [Google Scholar] [CrossRef]
- Heitzman, B.S.; Bueno, G.W.; Camargo, T.R.; Proença, D.C.; Yaekashi, C.T.O.; da Silva, R.M.G.; Machado, L.P. Duckweed application in nature-based system for water phytoremediation and high-value coproducts at family agrisystem from a circular economy perspective. Sci. Total Environ. 2024, 919, 170714. [Google Scholar] [CrossRef] [PubMed]
- Munaro, A.T.; Ndlovu, J.; Bunhu, T.; Siziba, N. Examining the potential of duckweed and Azolla species towards attaining bio-circularity in agricultural systems—A systematic literature review. Sustain. Environ. 2025, 11, 2505292. [Google Scholar] [CrossRef]
- Abdelrahman, H.; ElHady, M.; Alcivar-Warren, A.; Allen, S.; Al-Tobasei, R.; Bao, L.; Beck, B.; Blackburn, H.; Bosworth, B.; Buchanan, J.; et al. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges, and priorities for future research. BMC Genom. 2017, 18, 191. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Li, Z.; Zhang, J. Research on Plant Genomics and Breeding 2.0. Int. J. Mol. Sci. 2024, 25, 6659. [Google Scholar] [CrossRef]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular; Food and Agriculture Organization: Rome, Italy, 2021. [Google Scholar]
| Genus | Protein (%) | Lipid (%) | Carbohydrate (%) | Fiber (%) | Key Micronutrients | References |
|---|---|---|---|---|---|---|
| Lemna (L. minor, L. gibba, L. trisulca) | 25–35 | 4–7 | 30–40 | 10–15 | β-carotene, lutein, Vitamin C, Fe, Zn | [20] |
| Wolffia (W. globosa, W. arrhiza) | 35–45 | 3–6 | 25–35 | 8–12 | Fe, Zn, Vitamin B12, C, E, β-carotene | [12] |
| Spirodela (S. polyrhiza) | 20–30 | 3–6 | 35–45 | 12–18 | Iron, Mg, calcium | [10] |
| Landoltia (L. punctata) | 20–28 | 3–5 | 40–50 | 10–14 | Polyphenols, starch, trace minerals | [21] |
| Wolffiella (W. hyalina, W. lingulata) | 20–30 | 3–5 | 30–40 | 15–20 | [22] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anal, A.K.; Khadka, A.; Rice, D.L.; Shrestha, N.K.; Valerozo, J.A.; Zaw, K.N.C.; Nagase, R. Aquatic Plants for Blue Protein Innovation: Bridging Nutrition, Sustainability, and Food Security. Resources 2025, 14, 192. https://doi.org/10.3390/resources14120192
Anal AK, Khadka A, Rice DL, Shrestha NK, Valerozo JA, Zaw KNC, Nagase R. Aquatic Plants for Blue Protein Innovation: Bridging Nutrition, Sustainability, and Food Security. Resources. 2025; 14(12):192. https://doi.org/10.3390/resources14120192
Chicago/Turabian StyleAnal, Anil Kumar, Abhishek Khadka, Daniel Lee Rice, Nabindra Kumar Shrestha, Johnmel Abrogena Valerozo, Khin Nyein Chan Zaw, and Ryunosuke Nagase. 2025. "Aquatic Plants for Blue Protein Innovation: Bridging Nutrition, Sustainability, and Food Security" Resources 14, no. 12: 192. https://doi.org/10.3390/resources14120192
APA StyleAnal, A. K., Khadka, A., Rice, D. L., Shrestha, N. K., Valerozo, J. A., Zaw, K. N. C., & Nagase, R. (2025). Aquatic Plants for Blue Protein Innovation: Bridging Nutrition, Sustainability, and Food Security. Resources, 14(12), 192. https://doi.org/10.3390/resources14120192

