Comparative Life Cycle Assessment (LCA) of Conventional and Conservation Tillage Systems for Energy Crop Cultivation in Northern Italy
Abstract
1. Introduction
- (1)
- Minimum or no-tillage: Avoiding or minimizing ploughing and other mechanical tillage to maintain soil structure and natural fertility;
- (2)
- Permanent cover: Maintaining continuous organic cover by using cover crops or crop residues to protect the soil from erosion and improve organic matter levels;
- (3)
- Crop rotation: Alternating different crop species over time to break pest and disease cycles, improve soil structure and optimize nutrient use.
1.1. General Background of LCA Methodology
- -
- Heterogeneity and variability of data, such as agricultural techniques and system characteristics (largely composed of biotic components) vary considerably depending on geographical location, crop type and environmental conditions [36].
- -
- Complexity of interactions, since agriculture involves multiple interactions between soil, water, air and living organisms, making it challenging to identify and quantify the specific impacts of a single practice or input [38].
- -
- Temporal dynamics, as environmental impacts, particularly those related to fertiliser and pesticide use in agriculture [39], can vary over time and may have different levels of significance in the medium- to long-term.
1.2. Energy Crops
2. Materials and Methods
2.1. Agricultural Productions and Description of Scenarios
2.2. Agricultural Test Site Characterisation
- Thesis 1: Conventional tillage (3 plots)
- Thesis 2: Minimum tillage (3 plots) (Figure 2)
- Thesis 3: Conversion from conventional tillage to no tillage—start of soil management with no-tillage technique in 2023 (3 plots)
- Thesis 4: No tillage—start of soil management with no-tillage technique in 2017 (3 plots)
2.3. LCA Study Development
- (1)
- Goal and scope definition
- (2)
- Life Cycle Inventory (LCI)
- (3)
- Life Cycle Impact Assessment (LCIA)
- (4)
- Interpretation of the results
2.3.1. Goal and Scope Definition
- Production of maize silage (November 2022–August 2023)
- Soil management during the winter period with cover crops—a mix of plant species with a decompacting function (phacelia, family Boraginaceae, and horseradish and brown mustard, family Brassicaceae) (October 2023–February 2024).
- Sowing of sorghum silage (April 2024)

2.3.2. Life Cycle Inventories (LCI)
- -
- Primary data, specifically related to the analysed system, were obtained through the submission of a dedicated survey to the farm operators who carried out the agricultural operations. Most of the primary data collected for each agricultural operation analysed in the study are reported in Table S1 in the Supplementary Materials.
- -
- Secondary data, related to standardised processes, are available in databases. In particular, processes and flows present in the databases Agribalyse® (developed by ADEME, a French Ecological Transition Agency) and Ecoinvent® v.3.7.1, developed by the Swiss Centre for Life Cycle Inventories (Zurich, Switzerland), were used. Data relating to data and models specific to the geographical context analysed, obtained from scientific publications and technical dissemination by national research centres, are also included in the secondary data.
- -
- Inorganic fertiliser distribution (urea 46%): Emission factors from the IPCC guidance on ammonia and nitrous oxide were evaluated. For comparison, emission factors specifically calculated from literature studies on the dynamics of the nitrogen balance in agriculture according to the specific characteristics of the geographical area and crop were evaluated [63]. The use of the emission factors given in the official guideline of the IPCC [64] was found to be more compliant in order to maintain a good level of standardisation of the process under analysis, despite the fact that the values calculated in the official guideline are much overestimated compared to those calculated in site-specific scientific studies [63,65].
- -
- Distribution of organic fertiliser (digestate): Considering the high variability of the chemical composition of the product and the distribution methods, it was decided to use the emission factors inherent to ammonia, nitrous oxide, carbon dioxide and methane, calculated specifically for a context similar to the agricultural system under analysis [66].
- -
- Agricultural diesel combustion (biodiesel 7%): Emission factors from standardised processes in the Ecoinvent® database (diesel combustion, in tractor/FR U) were compared with current emission factors calculated taking into account the presence of biodiesel in the fuel [67]. The two values from the two different scientific sources agreed. As a result, the process and its emission factors from the Ecoinvent® database have been used.
- -
- Land use change: Based on EU Regulation 2018/841 [68] (Land Use, Land Use Change and Forestry LULUCF), the LUC must be calculated in relation to the geographical area under analysis and the type of crop (annual, perennial or paddy rice). The LUC processes standardised in the databases related to Italy assess the impact of one hectare of land use change over a 20-year interval, and one twentieth of the amount is then attributed to the annual crop through this process (Land use change, annual crop, annualised over 20 years (adapted from WFLDB [69])). However, in the context of the specific case study under analysis, cultivated land has been dedicated to agriculture for much longer than 20 years, corresponding to at least 100 years according to Navarra Foundation information and some historical maps. Based on these considerations, it was decided to consider the emission related to land use change as irrelevant for the agricultural system analysed.
2.3.3. Life Cycle Impact Assessment (LCIA)
- -
- Climate Change: This impact category represents an indicator of potential global warming due to emissions of greenhouse gases to the air; it is expressed in kg CO2-eq and quantifies the integrated infrared radiative forcing increase of a greenhouse gas (GHG) [74].
- -
- Eutrophication: This category includes the effects of eutrophication in freshwater and the sea. Freshwater Eutrophication potentials are expressed in kg P to freshwater-equivalents [74]. Marine Eutrophication potentials are expressed in kg N equivalent and represent an indicator of the enrichment of the marine ecosystem with nutritional elements due to the emission of nitrogen-containing compounds.
- -
- Human Toxicity: Indicator of the impact on humans of toxic substances emitted to the environment. The effects of chemical emissions expressed in kg 1,4-dichlorobenzene-equivalents (1,4DCB-eq) were used as characterisation factors for this impact category.
- -
- Water Depletion: Indicator of the relative amount of water used in human activity; the characterisation factor at midpoint level is m3 of water consumed per m3 of water extracted [74].
2.3.4. Interpretation of the Results
- -
- identification of hot-spots (the materials/processes that contribute most to the overall impacts are identified),
- -
- assessments of the completeness and robustness of the model (such as sensitivity and uncertainty analysis),
- -
- definition of the conclusions of the study, even considering the limitations present.
- -
- Normalisation (expressing the values of each category relative to a reference value),
- -
- Grouping (sorting and classifying the impact categories),
- -
- Weighting (converting and aggregating the indicators by applying weighting factors). These optional processing operations were not performed in this preliminary study, which will serve as the basis for future studies. In those studies, these optional phases will be explored in greater depth to integrate further aspects. In this preliminary study, we determined that the aforementioned phases would not provide significant additional relevant information.
3. Results
4. Discussion
Limitations of the Study and Future Challenges
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Organizzazione delle Nazioni Unite. Trasformare Il Nostro Mondo: L’Agenda 2030 Per Lo Sviluppo Sostenibile; Risoluzione Adottata Dall’Assemblea Generale il: New York, NY, USA, 2015; p. 25. [Google Scholar]
- Calabrò, G.; Vieri, S. The Process of Integration of the Agenda 2030 into European Policies: The Issue of Migration and the Role of Agriculture. Qual. Access Success 2019, 20, 118–122. [Google Scholar]
- Pretty, J.; Bharucha, Z.P. Sustainable Intensification in Agricultural Systems. Ann. Bot. 2014, 114, 1571–1596. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2019. [Google Scholar]
- Intergovernmental Panel On Climate Change. Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-009-15798-8. [Google Scholar]
- Ripple, W.J.; Wolf, C.; Gregg, J.W.; Levin, K.; Rockström, J.; Newsome, T.M.; Betts, M.G.; Huq, S.; Law, B.E.; Kemp, L.; et al. World Scientists’ Warning of a Climate Emergency 2022. BioScience 2022, 72, 1149–1155. [Google Scholar] [CrossRef]
- Shakoor, A.; Ashraf, F.; Shakoor, S.; Mustafa, A.; Rehman, A.; Altaf, M.M. Biogeochemical Transformation of Greenhouse Gas Emissions from Terrestrial to Atmospheric Environment and Potential Feedback to Climate Forcing. Environ. Sci. Pollut. Res. 2020, 27, 38513–38536. [Google Scholar] [CrossRef] [PubMed]
- Charles, A.; Rochette, P.; Whalen, J.K.; Angers, D.A.; Chantigny, M.H.; Bertrand, N. Global Nitrous Oxide Emission Factors from Agricultural Soils after Addition of Organic Amendments: A Meta-Analysis. Agric. Ecosyst. Environ. 2017, 236, 88–98. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the Intensification of Agriculture for Global Food Security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef] [PubMed]
- Alba, S.D.; Borselli, L.; Torri, D.; Pellegrini, S.; Bazzoffi, P. Assessment of Tillage Erosion by Mouldboard Plough in Tuscany (Italy). Soil Tillage Res. 2006, 85, 123–142. [Google Scholar] [CrossRef]
- Rasmussen, K.J. Impact of Ploughless Soil Tillage on Yield and Soil Quality: A Scandinavian Review. Soil Tillage Res. 1999, 53, 3–14. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The Role of Conservation Agriculture in Sustainable Agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity Limits and Potentials of the Principles of Conservation Agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Das, T.K.; Bandyopadhyay, K.K.; Ghosh, P.K. Impact of Conservation Agriculture on Soil Health and Crop Productivity under Irrigated Ecosystems. In Conservation Agriculture: A Sustainable Approach for Soil Health and Food Security: Conservation Agriculture for Sustainable Agriculture; Jayaraman, S., Dalal, R.C., Patra, A.K., Chaudhari, S.K., Eds.; Springer: Singapore, 2021; pp. 139–163. ISBN 978-981-16-0827-8. [Google Scholar]
- Boselli, R.; Fiorini, A.; Santelli, S.; Ardenti, F.; Capra, F.; Maris, S.C.; Tabaglio, V. Cover Crops during Transition to No-till Maintain Yield and Enhance Soil Fertility in Intensive Agro-Ecosystems. Field Crops Res. 2020, 255, 107871. [Google Scholar] [CrossRef]
- Fiorini, A.; Maris, S.C.; Abalos, D.; Amaducci, S.; Tabaglio, V. Combining No-till with Rye (Secale cereale L.) Cover Crop Mitigates Nitrous Oxide Emissions without Decreasing Yield. Soil Tillage Res. 2020, 196, 104442. [Google Scholar] [CrossRef]
- Michler, J.D.; Baylis, K.; Arends-Kuenning, M.; Mazvimavi, K. Conservation Agriculture and Climate Resilience. J. Environ. Econ. Manag. 2019, 93, 148–169. [Google Scholar] [CrossRef]
- Meng, X.; Meng, F.; Chen, P.; Hou, D.; Zheng, E.; Xu, T. A Meta-Analysis of Conservation Tillage Management Effects on Soil Organic Carbon Sequestration and Soil Greenhouse Gas Flux. Sci. Total Environ. 2024, 954, 176315. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Drury, C.F.; Liebig, M.; Johnson, J.M.F.; Wang, Z.; Feng, H.; Abalos, D. The Role of Conservation Agriculture Practices in Mitigating N2O Emissions: A Meta-Analysis. Agron. Sustain. Dev. 2023, 43, 63. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023. [Google Scholar]
- Wang, Y.; Liu, G.; Cai, Y.; Giannetti, B.F.; Agostinho, F.; Almeida, C.M.V.B.; Casazza, M. The Ecological Value of Typical Agricultural Products: An Emergy-Based Life-Cycle Assessment Framework. Front. Environ. Sci. 2022, 10, 824275. [Google Scholar] [CrossRef]
- Alhashim, R.; Deepa, R.; Anandhi, A. Environmental Impact Assessment of Agricultural Production Using LCA: A Review. Climate 2021, 9, 164. [Google Scholar] [CrossRef]
- Heiskanen, E. The Institutional Logic of Life Cycle Thinking. J. Clean. Prod. 2002, 10, 427–437. [Google Scholar] [CrossRef]
- Roy, P.; Nei, D.; Orikasa, T.; Xu, Q.; Okadome, H.; Nakamura, N.; Shiina, T. A Review of Life Cycle Assessment (LCA) on Some Food Products. J. Food Eng. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Curran, M.A. Life Cycle Assessment: A Review of the Methodology and Its Application to Sustainability. Curr. Opin. Chem. Eng. 2013, 2, 273–277. [Google Scholar] [CrossRef]
- Brunn, H.; Bretz, R.; Fankhauser, P.; Spengler, T.; Rentz, O. LCA in Decision-Making Processes. Int. J. Life Cycle Assess. 1996, 1, 221–225. [Google Scholar] [CrossRef]
- Clift, R. System Approaches: Life Cycle Assessment and Industrial Ecology; RSC Publishing: Cambridge, UK, 2013. [Google Scholar]
- Standard, I. Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO: London, UK, 2006. [Google Scholar]
- Heijungs, R. Is Mainstream LCA Linear? Int. J. Life Cycle Assess. 2020, 25, 1872–1882. [Google Scholar] [CrossRef]
- Fan, J.; Liu, C.; Xie, J.; Han, L.; Zhang, C.; Guo, D.; Niu, J.; Jin, H.; McConkey, B.G. Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health 2022, 19, 9817. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.A.; Sharaai, A.H.; Ponrahono, Z.; Rahim, N.N.a.N.A.; Bakar, N.A.A.; Hanifah, N.A.S.; Suptian, M.F.M.; Zubir, M.N.; Shafawi, N.A. Systematic Literature Review on the Application of the Life Cycle Sustainability Assessment in Agricultural Production. J. Sustain. Res. 2024, 6, e240069. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The Role of Life Cycle Assessment in Supporting Sustainable Agri-Food Systems: A Review of the Challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Brankatschk, G.; Finkbeiner, M. Modeling Crop Rotation in Agricultural LCAs—Challenges and Potential Solutions. Agric. Syst. 2015, 138, 66–76. [Google Scholar] [CrossRef]
- Rosenbaum, R.K.; Anton, A.; Bengoa, X.; Bjørn, A.; Brain, R.; Bulle, C.; Cosme, N.; Dijkman, T.J.; Fantke, P.; Felix, M.; et al. The Glasgow Consensus on the Delineation between Pesticide Emission Inventory and Impact Assessment for LCA. Int. J. Life Cycle Assess. 2015, 20, 765–776. [Google Scholar] [CrossRef]
- Catalano, G.; D’Adamo, I.; Gastaldi, M.; Nizami, A.-S.; Ribichini, M. Incentive Policies in Biomethane Production toward Circular Economy. Renew. Sustain. Energy Rev. 2024, 202, 114710. [Google Scholar] [CrossRef]
- González-García, S.; Bacenetti, J.; Negri, M.; Fiala, M.; Arroja, L. Comparative Environmental Performance of Three Different Annual Energy Crops for Biogas Production in Northern Italy. J. Clean. Prod. 2013, 43, 71–83. [Google Scholar] [CrossRef]
- Istat Coltivazioni—Superfici e Produzioni in Complesso. 2025. Available online: https://esploradati.istat.it/databrowser/#/it/dw/categories/IT1,Z1000AGR,1.0/AGR_CRP/DCSP_COLTIVAZIONI/IT1,101_1015_DF_DCSP_COLTIVAZIONI_2,1.0 (accessed on 21 March 2025).
- D’Adamo, I.; Sassanelli, C. A Mini-Review of Biomethane Valorization: Managerial and Policy Implications for a Circular Resource. Waste Manag. Res. 2022, 40, 1745–1756. [Google Scholar] [CrossRef]
- International Energy Agency. IEA Renewables 2024; International Energy Agency: Paris, France, 2024. [Google Scholar]
- Popović, V.; Vasileva, V.; Ljubičić, N.; Rakašćan, N.; Ikanović, J. Environment, Soil, and Digestate Interaction of Maize Silage and Biogas Production. Agronomy 2024, 14, 2612. [Google Scholar] [CrossRef]
- Hutnan, M.; Špalková, V.; Bodík, I.; Kolesarova, N.; Lazor, M. Biogas Production from Maize Grains and Maize Silage. Pol. J. Environ. Stud. 2010, 19, 323–329. [Google Scholar]
- Bahrs, E.; Angenendt, E. Status Quo and Perspectives of Biogas Production for Energy and Material Utilization. GCB Bioenergy 2019, 11, 9–20. [Google Scholar] [CrossRef]
- Wellinger, A.; Murphy, J.; Baxter, D. The Biogas Handbook: Science, Production and Applications; Woodhead Publishing: Cambridge, UK, 2013; pp. 1–476. [Google Scholar]
- Brychkova, G.; McGrath, A.; Larkin, T.; Goff, J.; McKeown, P.C.; Spillane, C. Use of Anaerobic Digestate to Substitute Inorganic Fertilisers for More Sustainable Nitrogen Cycling. J. Clean. Prod. 2024, 446, 141016. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Papalia, T.; Attinà, E.; Giuffrè, A.; Muscolo, A. Use of Digestate as an Alternative to Mineral Fertilizer: Effects on Growth and Crop Quality. Arch. Agron. Soil Sci. 2019, 65, 700–711. [Google Scholar] [CrossRef]
- Gustafsson, M.; Anderberg, S. Biogas Policies and Production Development in Europe: A Comparative Analysis of Eight Countries. Biofuels 2022, 13, 931–944. [Google Scholar] [CrossRef]
- Fritsche, U.; Brunori, G.; Chiaramonti, D.; Galanakis, C.; Matthews, R.; Panoutsou, C.; Avraamides, M.; Borzacchiello, M.T.; Stoermer, E. Future Transitions for the Bioeconomy Towards Sustainable Development and A Climate-Neutral Economy—Foresight Scenarios for the EU Bioeconomy in 2050; Avraamides, M., Borzacchiello, M.T., Stoermer, E., Eds.; Publications Office: Luxembourg, 2021. [Google Scholar]
- Tamburini, E.; Pedrini, P.; Marchetti, M.; Fano, A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef]
- Zulu, S.G.; Motsa, N.M.; Magwaza, L.S.; Ncama, K.; Sithole, N.J. Effects of Different Tillage Practices and Nitrogen Fertiliser Application Rates on Soil-Available Nitrogen. Agronomy 2023, 13, 785. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuzio, L.; Tozzi, D.; Soccio, M.; Flagella, Z. Impact of No Tillage and Low Emission N Fertilization on Durum Wheat Sustainability, Profitability and Quality. Agronomy 2024, 14, 2794. [Google Scholar] [CrossRef]
- Massarelli , C.; Losacco, D.; Tumolo, M.; Campanale, C.; Uricchio, V.F. Protection of water resources from agriculture pollution: An integrated methodological approach for the nitrates Directive 91–676-EEC implementation. Int. J. Environ. Res. Public Health 2021, 18, 13323. [Google Scholar] [CrossRef]
- Servizio Geologico Sismico e Dei Suoli, Regione Emilia-Romagna Carta Dei Suoli—1:250.000 Della Regione Emilia-Romagna—Edizione. 1994. Available online: https://geoportale.regione.emilia-romagna.it/catalogo/dati-cartografici/informazioni-geoscientifiche/suoli/layer-5 (accessed on 17 November 2025).
- ISO 14040; 2006—Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: London, UK, 2025. Available online: https://www.iso.org/standard/37456.html (accessed on 8 April 2025).
- Ekvall, T. Attributional and Consequential Life Cycle Assessment. In Sustainability Assessment at the 21st Century; IntechOpen: London, UK, 2019; p. 13. [Google Scholar]
- Birkved, M.; Hauschild, M.Z. PestLCI—A Model for Estimating Field Emissions of Pesticides in Agricultural LCA. Ecol. Model. 2006, 198, 433–451. [Google Scholar] [CrossRef]
- Soana, E.; Vincenzi, F.; Colombani, N.; Mastrocicco, M.; Fano, E.A.; Castaldelli, G. Soil Denitrification, the Missing Piece in the Puzzle of Nitrogen Budget in Lowland Agricultural Basins. Ecosystems 2022, 25, 633–647. [Google Scholar] [CrossRef]
- Paustian, K.; Ravindranath, N.H.; van Amstel, A.R. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Castaldelli, G.; Vincenzi, F.; Fano, E.A.; Soana, E. In Search for the Missing Nitrogen: Closing the Budget to Assess the Role of Denitrification in Agricultural Watersheds. Appl. Sci. 2020, 10, 2136. [Google Scholar] [CrossRef]
- Laura Valli. Giuseppe Moscatelli GOI Progetto Emissioni Digestato. Available online: https://digestatoemissioni.crpa.it/nqcontent.cfm?a_id=16865&tt=t_bt_app1_www (accessed on 3 February 2025).
- Department for Energy Security and Net Zero. Greenhouse Gas Reporting: Conversion Factors 2023; Department for Energy Security and Net Zero: London, UK, 2023.
- European Commission: Joint Research Centre; Korosuo, A.; Vizzarri, M.; Pilli, R.; Fiorese, G.; Colditz, R.; Abad Viñas, R.; Rossi, S.; Grassi, G. Forest Reference Levels Under Regulation (EU) 2018/841 for the Period 2021–2025—Overview and Main Findings of the Technical Assessment; Publications Office: Luxembourg, 2021. [Google Scholar]
- WFLDB: World Food LCA Database. Available online: https://quantis.com/services-solutions/consortium-building-and-management/wfldb/ (accessed on 8 April 2025).
- Hergoualc’h, K.; Mueller, N.; Bernoux, M.; Kasimir, Ä.; van der Weerden, T.J.; Ogle, S.M. Improved Accuracy and Reduced Uncertainty in Greenhouse Gas Inventories by Refining the IPCC Emission Factor for Direct N2O Emissions from Nitrogen Inputs to Managed Soils. Glob. Change Biol. 2021, 27, 6536–6550. [Google Scholar] [CrossRef] [PubMed]
- Fantin, V.; Buscaroli, A.; Dijkman, T.; Zamagni, A.; Garavini, G.; Bonoli, A.; Righi, S. PestLCI 2.0 Sensitivity to Soil Variations for the Evaluation of Pesticide Distribution in Life Cycle Assessment Studies. Sci. Total Environ. 2019, 656, 1021–1031. [Google Scholar] [CrossRef]
- Gentil, C.; Fantke, P.; Mottes, C.; Basset-Mens, C. Challenges and Ways Forward in Pesticide Emission and Toxicity Characterization Modeling for Tropical Conditions. Int. J. Life Cycle Assess. 2020, 25, 1290–1306. [Google Scholar] [CrossRef]
- Boggia, A.; Luciani, F.; Massei, G.; Paolotti, L. L’impatto Ambientale Ed Economico Del Cambiamento Climatico Sull’agricoltura; Università di Perugia, Dipartimento Economia, Finanza e Statistica, Quaderni del Dipartimento di Economia, Finanza e Statistica: Perugia, Italy, 2008. [Google Scholar]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Lo, S.-C.; Ma, H.; Lo, S.-L. Quantifying and Reducing Uncertainty in Life Cycle Assessment Using the Bayesian Monte Carlo Method. Sci. Total Environ. 2005, 340, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Ciroth, A.; Muller, S.; Weidema, B.; Lesage, P. Empirically Based Uncertainty Factors for the Pedigree Matrix in Ecoinvent. Int. J. Life Cycle Assess. 2016, 21, 1338–1348. [Google Scholar] [CrossRef]
- Kounina, A.; Margni, M.; Henderson, A.D.; Jolliet, O. Global Spatial Analysis of Toxic Emissions to Freshwater: Operationalization for LCA. Int. J. Life Cycle Assess. 2019, 24, 501–517. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, R.; Zhang, Q.; Kong, X.; Sun, D. Reduced-Tillage Management Enhances Soil Properties and Crop Yields in a Alfalfa-Corn Rotation: Case Study of the Songnen Plain, China. Sci. Rep. 2019, 9, 17064. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue Retention and Minimum Tillage Improve Physical Environment of the Soil in Croplands: A Global Meta-Analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Tsara, M.; Gerontidis, S.; Marathianou, M.; Kosmas, C. The Long-term Effect of Tillage on Soil Displacement of Hilly Areas Used for Growing Wheat in Greece. Soil Use Manag. 2006, 17, 113–120. [Google Scholar] [CrossRef]
- Costa, M.P.; Chadwick, D.; Saget, S.; Rees, R.M.; Williams, M.; Styles, D. Representing Crop Rotations in Life Cycle Assessment: A Review of Legume LCA Studies. Int. J. Life Cycle Assess. 2020, 25, 1942–1956. [Google Scholar] [CrossRef]
- Acosta-Alba, I.; Chia, E.; Andrieu, N. The LCA4CSA Framework: Using Life Cycle Assessment to Strengthen Environmental Sustainability Analysis of Climate Smart Agriculture Options at Farm and Crop System Levels. Agric. Syst. 2019, 171, 155–170. [Google Scholar] [CrossRef]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life Cycle Assessment of Swiss Farming Systems: I. Integrated and Organic Farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Carozzi, M.; Bregaglio, S.; Scaglia, B.; Bernardoni, E.; Acutis, M.; Confalonieri, R. The Development of a Methodology Using Fuzzy Logic to Assess the Performance of Cropping Systems Based on a Case Study of Maize in the Po Valley. Soil Use Manag. 2013, 29, 576–585. [Google Scholar] [CrossRef]
- Noya, I.; González-García, S.; Bacenetti, J.; Arroja, L.; Moreira, M.T. Comparative Life Cycle Assessment of Three Representative Feed Cereals Production in the Po Valley (Italy). J. Clean. Prod. 2015, 99, 250–265. [Google Scholar] [CrossRef]
- Bacenetti, J.; Fusi, A.; Negri, M.; Fiala, M. Impact of Cropping System and Soil Tillage on Environmental Performance of Cereal Silage Productions. J. Clean. Prod. 2015, 86, 49–59. [Google Scholar] [CrossRef]
- Houshyar, E.; Grundmann, P. Environmental Impacts of Energy Use in Wheat Tillage Systems: A Comparative Life Cycle Assessment (LCA) Study in Iran. Energy 2017, 122, 11–24. [Google Scholar] [CrossRef]
- Vatsanidou, A.; Kavalaris, C.; Fountas, S.; Katsoulas, N.; Gemtos, T. A Life Cycle Assessment of Biomass Production from Energy Crops in Crop Rotation Using Different Tillage System. Sustainability 2020, 12, 6978. [Google Scholar] [CrossRef]
- Holka, M.; Bieńkowski, J. Carbon Footprint and Life-Cycle Costs of Maize Production in Conventional and Non-Inversion Tillage Systems. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Stoessel, F.; Sonderegger, T.; Bayer, P.; Hellweg, S. Assessing the Environmental Impacts of Soil Compaction in Life Cycle Assessment. Sci. Total Environ. 2018, 630, 913–921. [Google Scholar] [CrossRef]
- Keshavarz Afshar, R.; Dekamin, M. Sustainability Assessment of Corn Production in Conventional and Conservation Tillage Systems. J. Clean. Prod. 2022, 351, 131508. [Google Scholar] [CrossRef]
- Avadí, A. Screening LCA of French Organic Amendments and Fertilisers. Int. J. Life Cycle Assess. 2020, 25, 698–718. [Google Scholar] [CrossRef]
- Doyeni, M.O.; Stulpinaite, U.; Baksinskaite, A.; Suproniene, S.; Tilvikiene, V. The Effectiveness of Digestate Use for Fertilization in an Agricultural Cropping System. Plants 2021, 10, 1734. [Google Scholar] [CrossRef]
- Lamolinara, B.; Pérez-Martínez, A.; Guardado-Yordi, E.; Fiallos, C.G.; Diéguez-Santana, K.; Ruiz-Mercado, G.J. Anaerobic Digestate Management, Environmental Impacts, and Techno-Economic Challenges. Waste Manag. 2022, 140, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of Anaerobic Digestion: Emission Allocation for Energy and Digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Rehl, T.; Lansche, J.; Müller, J. Life Cycle Assessment of Energy Generation from Biogas—Attributional vs. Consequential Approach. Renew. Sustain. Energy Rev. 2012, 16, 3766–3775. [Google Scholar] [CrossRef]







| Data | Tractor (New Holland 105 cv) | Pneumatic Seeder |
|---|---|---|
| Reference database process | Tractor, LT 12,000 h production | agricultural machinery, tillage, production |
| Weight (kg) | 4020 | 1260 |
| End of life (h) | 12,000 | 131,490 |
| Working time (h/ha) | 1 | 1 |
| Fuel consumed (L/h) | 7 | 7 |
| Maintenance (lubricating oil) | ND | 1 kg per 16 h |
| Conversion factor | 17,777.78 | 194,800 |
| Impact Category | Unit | Scenario 1 (Conventional) | Scenario 2 (Minimum Tillage) | Scenario 3 (No Tillage) | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Mean | SD 2 | CV 3 (%) | Mean | SD | CV (%) | Mean | SD | CV (%) | ||
| Climate Change | kg CO2 eq | 10,938.10 | 307.60 | 2.8% | 10,547.97 | 314.10 | 3.0% | 6075.02 | 157.85 | 2.6% |
| Freshwater Eutrophication | kg P eq | 2.46 | 0.32 | 12.9% | 2.44 | 0.32 | 13.3% | 1.33 | 0.16 | 11.9% |
| Human Toxicity | kg 1,4-DB eq 1 | 1771.33 | 128.30 | 7.2% | 1738.21 | 172.10 | 9.9% | 1029.93 | 172.40 | 16.7% |
| Marine Eutrophication | kg N eq | 76.43 | 14.21 | 18.6% | 76.25 | 14.84 | 19.5% | 38.98 | 7.17 | 18.4% |
| Water Depletion | m3 | 713.23 | 111.50 | 15.6% | 623.64 | 102.60 | 16.5% | 431.53 | 71.81 | 16.6% |
| Scenario | Conventional | Minimum Tillage | No Tillage |
|---|---|---|---|
| Amount organic fertiliser | digestate = 45 ton/ha | digestate = 45 ton/ha | digestate = 23 ton/ha |
| Amount inorganic fertiliser | urea = 0.81 ton/ha | urea = 0.81 ton/ha | urea = 0.5 ton/ha |
| Total impact on climate change | 10,938.10 | 10,547.97 | 6075.02 |
| 1. ORGANIC FERTILISATION | 8083.87 | 8083.87 | 4091.16 |
| 1.1 Digestate from maize silage production | 7871.81 | 7871.81 | 3936.7 |
| 1.1.1 (Direct contribution digestate) | 850.29 | 850.29 | 425.24 |
| 1.1.2 Maize silage shredded | 5651.34 | 5705.34 | 2739.52 |
| 1.1.2a Silage maize cultivation | 5477.82 | 5477.83 | 689.16 |
| 1.1.2a * LUC silage maize cultivation | 1378.01 | 1378.01 | 276.99 |
| 1.1.3 Other digestate (from manure) | 553.87 | 553.87 | 221.65 |
| 1.1.3a (Direct contribution other digestate) | 546.29 | 546.29 | 273.20 |
| 1.1.4 Heat (digestion plant) | 443.21 | 443.21 | 221.65 |
| 1.2 Digestate transport and distribution | 212.06 | 212.06 | 154.46 |
| 2. INORGANIC FERTILISATION | 941.64 | 941.64 | 606.20 |
| 2.1 Urea production (with 46% N) | 872.94 | 872.94 | 560.40 |
| 2.2 Urea transport and distribution | 68.7 | 68.7 | 45.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamisari, E.; Summa, D.; Vincenzi, F.; Massolin, M.; Rivaroli, M.; Castaldelli, G.; Tamburini, E. Comparative Life Cycle Assessment (LCA) of Conventional and Conservation Tillage Systems for Energy Crop Cultivation in Northern Italy. Resources 2025, 14, 180. https://doi.org/10.3390/resources14120180
Tamisari E, Summa D, Vincenzi F, Massolin M, Rivaroli M, Castaldelli G, Tamburini E. Comparative Life Cycle Assessment (LCA) of Conventional and Conservation Tillage Systems for Energy Crop Cultivation in Northern Italy. Resources. 2025; 14(12):180. https://doi.org/10.3390/resources14120180
Chicago/Turabian StyleTamisari, Elena, Daniela Summa, Fabio Vincenzi, Marta Massolin, Marco Rivaroli, Giuseppe Castaldelli, and Elena Tamburini. 2025. "Comparative Life Cycle Assessment (LCA) of Conventional and Conservation Tillage Systems for Energy Crop Cultivation in Northern Italy" Resources 14, no. 12: 180. https://doi.org/10.3390/resources14120180
APA StyleTamisari, E., Summa, D., Vincenzi, F., Massolin, M., Rivaroli, M., Castaldelli, G., & Tamburini, E. (2025). Comparative Life Cycle Assessment (LCA) of Conventional and Conservation Tillage Systems for Energy Crop Cultivation in Northern Italy. Resources, 14(12), 180. https://doi.org/10.3390/resources14120180

