Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms
Abstract
:1. Introduction
- -
- Economic efficiency is defined as an attempt to maximize profits per hectare (expressed in EUR/ha) at a given input level. Economic efficiency is investigated here, including and excluding subsidies.
- -
- Energy efficiency is defined as an attempt to obtain a maximum amount of energy per hectare (Mcal/ha) at a given input level. In other studies, energy efficiency is most frequently understood as the ratio of obtained energy to energy input [14,15]. The proposed approach is novel, facilitating energy and economic efficiency incorporation within one analysis.
- -
- Economic energy efficiency is determined assuming that the explained variables include the value of generated profit per hectare and the value of energy obtained per hectare at the same time. It is understood as an attempt to maximize the value of profit and energy per hectare at a given input level.
2. Materials and Methods
2.1. The DEA Method
2.2. Stepwise Regression
3. Data
4. Results
4.1. Economic Efficiency, Energy Efficiency, and Mixed Efficiency
4.2. The Structure of Production Costs and Attained Efficiencies
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. List of Cost Variables from Agri Benchmark Cash Crop Database
Categories of Variables | Cost Variables (EUR/1 ha) |
Direct costs | DC_Seeds; DC_Nitrogen; DC_Phosphorus; DC_Potash; DC_Lime; DC_Other fertilizer cost; DC_Herbicides; DC_Fungicides; DC_Insecticides; DC_Other pesticides; DC_Dry energy cost; DC_Irrigation cost (var.); DC_Crop Insurance net cost; DC_Other di-rect cost; DC_Finance cost equity field inventory; DC_Finance cost debt field inventory |
Operating costs | OC_Hired labor; OC_Family labor; OC_Contractor; OC_machinery depreciation cost; OC_machinery finance equity; OC_machinery finance debt; OC_machinery repairs; OC_Diesel; OC_Other energy cost |
Building costs | BC_buildings depreciation; BC_Buildings finance equity; BC_Buildings finance debt; BC_buildings repairs |
Land | LC_land cost; LC_land improvement |
Miscellaneous | MC_Overhead water cost; MC_Farm tax (related to inventory); MC_Farm insurance (related to inventory); MC_Farm insurance (re-lated to activities); MC_Farm advisory cost; MC_Farm accounting cost; MC_Farm office cost; MC_Other farm cost |
References
- Smil, V. World History and Energy. Encycl. Energy 2004, 6, 549–561. [Google Scholar] [CrossRef]
- OECD. Energy. 2011. Available online: https://www.oecd.org/greengrowth/greening-energy/49157219.pdf (accessed on 20 May 2024).
- Ahmad, T.; Zhang, D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020, 6, 1973–1991. [Google Scholar] [CrossRef]
- Hauschild, M.Z.; Rosenbaum, R.K.; Olsen, S.I. Life Cycle Assessment: Theory and Practice; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Owjimehr, S.; Emami Meybodi, M.; Jamshidi, N. Can geopolitical risk improve energy efficiency in European countries? Energy Strategy. Rev. 2023, 49, 101145. [Google Scholar] [CrossRef]
- Russell, M. Energy Security in the EU’s External Policy In-Depth Analysis; European Parliamentary Research Service; European Union: Brussels, Belgium, 2020. [Google Scholar] [CrossRef]
- Román, A.A. Food Security in 2023: EU Response to an Evolving Crisis. European Parliamentary Research Service. 2023. Available online: https://epthinktank.eu/2023/03/02/food-security-in-2023-eu-response-to-an-evolving-crisis/ (accessed on 23 May 2024).
- Tutar, H.; Sarkhanov, N.; Guliyeva, T. Eastern Mediterranean area in energy security of the European Union: From sea border issues to economic conflicts of interest. Int. J. Energy Econ. Policy 2022, 12, 332–341. [Google Scholar] [CrossRef]
- Louhichi, K.; Ciaian, P.; Espinosa, M.; Perni, A.; Gomezy Paloma, S. Economic impacts of CAP greening: Application of an EU-wide individual farm model for CAP analysis (IFM-CAP). Eur. Rev. Agric. Econ. 2018, 45, 205–238. [Google Scholar] [CrossRef]
- Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources (recast) (Text with EEA relevance.). Off. J. Eur. Union 2018, 328, 82–210.
- Fischer Boel, M. Common Agricultural Policy and Lisbon Strategy (Meeting with FIPs, Paris). European Commission, Press Corner. 2005. Available online: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_05_198 (accessed on 23 May 2024).
- Swinnen, J.F.M. The Perfect Storm: The Political Economy of the Fischler Reforms of the Common Agricultural Policy; Centre for European Policy Studies: Brussels, Belgium, 2008. [Google Scholar]
- Błażejczyk-Majka, L. CAP After 2004: Policy to Promote Development or to Elimination Differences Between Regions? Non-parametric Approach Based on Farm Efficiency in the Old and New EU Regions. Agris Online Pap. Econ. Inform. 2022, 14, 31–47. [Google Scholar] [CrossRef]
- Firrisa, M.T.; van Duren, I.; Voinov, A. Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Effic. 2014, 7, 79–95. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy use in open-field agriculture in the EU: A critical review recommending energy efficiency measures and renewable energy sources adoption. Renew. Sustain. Energy Rev. 2022, 158, 112098. [Google Scholar] [CrossRef]
- Wysokiński, M.; Domagała, J.; Gromada, A.; Golonko, M.; Trębska, P. Economic and energy efficiency of agriculture. Agric. Econ. 2020, 66, 355–364. [Google Scholar] [CrossRef]
- Halecki, W.; Bedla, D. Global Wheat Production and Threats to Supply Chains in a Volatile Climate Change and Energy Crisis. Resources 2022, 11, 118. [Google Scholar] [CrossRef]
- Food Balance Sheets. A Handbook; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001.
- Atici, K.B.; Podinovski, V.V. Using data envelopment analysis for the assessment of technical efficiency of units with different specializations: An application to agriculture. Omega 2015, 54, 72–83. [Google Scholar] [CrossRef]
- Cecchini, L.; Romagnoli, F.; Chiorri, M.; Torquati, B. Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector. Agriculture 2023, 13, 1107. [Google Scholar] [CrossRef]
- Koopmans, T.C. An analysis of production as an efficient combination of activities. In Activity Analysis of Production and Allocation: Proceedings of a Conference, Cowles Com; Wiley: New York, NY, USA, 1951; pp. 33–98. [Google Scholar]
- Debreu, G. The Coefficient of Resource Utilization. Econometrica 1951, 19, 273–292. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Coelli, T.J.; Battese, G.E.; Donnell, C.J.O.; Rao, P.D.S. An Introduction to Efficiency and Productivity Analysis; Springer: New York, NY, USA, 2005. [Google Scholar]
- Thanassoulis, E.; Portela, M.C.S.; Despić, O. Data Envelopment Analysis: The Mathematical Programming Approach to Efficiency Analysis. In The Measurement of Productive Efficiency and Productivity Growth; Fried, H.O., Lovell, C.A.K., Schmidt, S.S., Eds.; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Coelli, T.J. A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program. 1996. Available online: https://www.owlnet.rice.edu/~econ380/DEAP.PDF (accessed on 23 May 2024).
- Centre for Efficiency and Productivity Analysis. Software. DEAP Version 2.1. Available online: https://economics.uq.edu.au/cepa/software (accessed on 28 September 2023).
- GRM Introductory Overview—The Forward Stepwise Method. In Data Science Textbook; TIBCO: Santa Clara, CA, USA, 2023.
- Hill, T.; Lewicki, P. Statistics: Methods and Applications. A Comprehensive Reference for Science, Industry, and Data Mining; StatSoft: Tulsa, OK, USA, 2006. [Google Scholar]
- Castillo-Díaz, F.J.; Belmonte-Ureña, L.J.; López-Serrano, M.J.; Camacho-Ferre, F. Assessment of the sustainability of the European agri-food sector in the context of the circular economy. Sust. Prod. Consum. 2023, 40, 398–411. [Google Scholar] [CrossRef]
- agri benchmark, Cash Crop (Database). Available online: http://www.agribenchmark.org/cash-crop.html (accessed on 10 January 2023).
- Agri Benchmark Cash Crop Report 2011; Thünen Institute: Braunschweig, Germany, 2011.
- Błażejczyk-Majka, L.; Kala, R.; Maciejewski, K. Productivity and efficiency of large and small field crop farms and mixed farms of the old and new EU regions. Agric. Econ. 2011, 58, 61–71. [Google Scholar] [CrossRef]
- Zimmer, Y.; Deblitz, C. Agri Benschmark Cash Crop: A Standard Operating Procedure to Define Typical Farms; Thünen Institute: Braunschweig, Germany, 2005; Available online: https://literatur.thuenen.de/digbib_extern/dk038513.pdf (accessed on 23 May 2024).
- Regulation (EU) No 1307/2013 of the European Parliament and of the Council of 17 December 2013 establishing rules for direct payments to farmers under support schemes within the framework of the common agricultural policy and repealing Council Regulation. Off. J. Eur. Union 2013, 347, 608–670.
- Swinnen, J.F.M.; Rozelle, S. From Marx and Mao to the Market: The Economics and Politics of Agricultural Transition; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Moutinho, V.; Madaleno, M.; Macedo, P.; Robaina, M.; Marques, C. Efficiency in the European agricultural sector: Environment and resources. Environ. Sci. Pollut. Res. 2018, 25, 17927–17941. [Google Scholar] [CrossRef]
- Czyżewski, B.; Matuszczak, A.; Grzelak, A.; Guth, M.; Majchrzak, A. Environmental sustainable value in agriculture revisited: How does Common Agricultural Policy contribute to eco-efficiency? Sustain. Sci. 2021, 16, 137–152. [Google Scholar] [CrossRef]
- Vach, M.; Strašil, Z.; Javůrek, M. Economic efficiency of selected crops cultivated under different technology of soil tillage. Sci. Agric. Bohem. 2016, 47, 40–46. [Google Scholar] [CrossRef]
- Strašil, Z.; Vach, M.; Smutný, V. The Energy Effectiveness of Crops in Crop Rotation Under Different Soil Tillage Systems. Agriculture 2015, 61, 77–87. [Google Scholar] [CrossRef]
- Strzelecka, A.; Zawadzka, D. Does Production Specialization Have an Impact on the Financial Efficiency of Very Small Farms. In Proceedings of the 36th International Business Information Management Association Conference (IBIMA), Granada, Spain, 4–5 November 2020; Soliman, K.S., Ed.; International Business Information Management Association (IBIMA): King of Prussia, PA, USA, 2020; pp. 4–5. [Google Scholar]
- Wojcieszak, D.; Przybył, J.; Czajkowski, Ł.; Majka, J.; Pawłowski, A. Effects of Harvest Maturity on the Chemical and Energetic Properties of Corn Stover Biomass Combustion. Materials 2022, 15, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Forleo, M.B.; Palmieri, N.; Suardi, A.; Coaloa, D.; Pari, L. The eco-efficiency of rapeseed and sunflower cultivation in Italy. Joining environmental and economic assessment. J. Clean. Prod. 2018, 172, 3138–3153. [Google Scholar] [CrossRef]
- Crop Production in EU Standard Humidity; Eurostat: Brussels, Belgium. 2023. Available online: https://ec.europa.eu/eurostat/databrowser/view/apro_cpsh1/default/table?lang=en (accessed on 23 May 2024).
- Zentková, I.; Cvengrošová, E. The Utilization of Rapeseed for Biofuels Production in the EU. Visegr. J. Bioeconomy Sustain. Dev. 2013, 2, 11–14. [Google Scholar] [CrossRef]
- Ji, I.; Vitale, J.D.; Vitale, P.P.; Adam, B.D. Technical efficiency of U.S. Western Great Plains wheat farms using stochastic frontier analysis. J. Appl. Econ. 2023, 26, 2178798. [Google Scholar] [CrossRef]
- Tozer, P.R. Measuring the Efficiency of Wheat Production of Western Australian Growers. Agron. J. 2010, 102, 642–648. [Google Scholar] [CrossRef]
- Giannakas, K.; Schoney, R.; Tzouvelekas, V. Technical Efficiency, Technological Change and Output Growth of Wheat Farms in Saskatchewan. Can. J. Agric. Econ. 2001, 49, 135–152. [Google Scholar] [CrossRef]
- Boczar, P.; Błażejczyk-Majka, L. Efficiency of European Union wheat producers on the world market and analysis of its determinants based on the data envelopment analysis method. Agric. Econ. 2022, 68, 455–463. [Google Scholar] [CrossRef]
- Jarosz-Angowska, A. Zmiana znaczenia rolnictwa Unii Europejskiej na tle gospodarki światowej w latach 2000–2012. Ann. Univ. Mariae Curie-Skłodowska Sect. H Oeconomia 2015, 49, 61. [Google Scholar] [CrossRef]
- Vasile, J.A.; Panait, M.; Alecu, A. Transformations of European Agricultural Sector, Market and Model under the Influence of Common Agricultural Policy; MPRA Paper 69556; University Library of Munich: Munich, Germany, 2016. [Google Scholar]
- Błażejczyk-Majka, L.; Kala, R. On the combined estimation of technical efficiency and its application to agriculture. Agric. Econ. 2015, 61, 441–449. [Google Scholar] [CrossRef]
Var. | Mean | Stand. Dev. | Correlation Coefficients | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EC | ODC | TLC | CC | MC | FC | BC | LC | MiC | |||
EC | 453.11 | 263.08 | 1.00 | 0.58 * | 0.57 * | 0.50 * | 0.55 * | 0.53 * | 0.52 * | 0.21 * | 0.47 * |
ODC | 66.91 | 179.46 | 0.58 * | 1.00 | 0.36 * | 0.47 * | 0.33 * | 0.09 | 0.21 * | 0.17 | 0.31 * |
TLC | 210.05 | 126.86 | 0.57 * | 0.36 * | 1.00 | 0.14 | 0.68 * | 0.32 * | 0.53 * | 0.34 * | 0.49 * |
CC | 74.05 | 114.23 | 0.50 * | 0.47 * | 0.14 | 1.00 | 0.10 | −0.05 | 0.28 * | 0.23 * | 0.32 * |
MC | 258.71 | 158.10 | 0.55 * | 0.33 * | 0.68 * | 0.10 | 1.00 | 0.40 * | 0.36 * | 0.14 | 0.51 * |
FC | 93.01 | 46.60 | 0.53 * | 0.09 | 0.32 * | −0.05 | 0.40 * | 1.00 | 0.47 * | 0.00 | 0.17 |
BC | 48.11 | 46.03 | 0.52 * | 0.21 * | 0.53 * | 0.28 * | 0.36 * | 0.47 * | 1.00 | 0.38 * | 0.48 * |
LC | 322.07 | 188.50 | 0.21 * | 0.17 | 0.34 * | 0.23 * | 0.14 | 0.00 | 0.38 * | 1.00 | 0.26 * |
MiC | 66.78 | 50.32 | 0.47 * | 0.31 * | 0.49 * | 0.32 * | 0.51 * | 0.17 | 0.48 * | 0.26 * | 1.00 |
Categories | θ(P) | θ(PS) | θ(E) | θ(P&E) | θ(PS&E) |
---|---|---|---|---|---|
Profit (P) | 0.585 | 0.589 | 0.072 | 0.367 | 0.373 |
Profit + subsidies (PS) | 0.535 | 0.560 | 0.031 | 0.345 | 0.357 |
Energy (E) | −0.342 | −0.302 | 0.320 | 0.253 | 0.248 |
EC | −0.221 | −0.203 | −0.216 | −0.101 | −0.101 |
ODC | −0.123 | −0.122 | −0.130 | −0.102 | −0.096 |
TLC | −0.566 | −0.549 | −0.266 | −0.325 | −0.330 |
CC | −0.191 | −0.154 | −0.117 | −0.115 | −0.093 |
MC | −0.411 | −0.399 | −0.247 | −0.225 | −0.222 |
FC | −0.081 | −0.092 | −0.165 | −0.054 | −0.063 |
BC | −0.391 | −0.356 | −0.207 | −0.210 | −0.208 |
LC | −0.557 | −0.525 | −0.136 | −0.225 | −0.214 |
MiC | −0.421 | −0.375 | −0.287 | −0.227 | −0.204 |
θ(P) | 1.000 | 0.989 | 0.404 | 0.605 | 0.610 |
θ(PS) | 0.989 | 1.000 | 0.403 | 0.610 | 0.621 |
θ(E) | 0.404 | 0.403 | 1.000 | 0.870 | 0.854 |
θ(P&E) | 0.605 | 0.610 | 0.870 | 1.000 | 0.996 |
θ(PS&E) | 0.610 | 0.621 | 0.854 | 0.996 | 1.000 |
Grown Crops | Number of Farms 1 | Mean DEA Efficiencies | Mean Ranking Positions | ||||||
---|---|---|---|---|---|---|---|---|---|
θ(P) | θ(PS) | θ(E) | θ(PS&E) | θ(P) | θ(PS) | θ(E) | θ(PS&E) | ||
oats | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
peas | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
winter rye | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
sunflower | 7 | 0.96 | 0.96 | 0.92 | 0.97 | 10 | 11 | 18 | 15 |
soybeans | 7 | 0.85 | 0.88 | 0.69 | 0.89 | 33 | 31 | 79 | 46 |
spelt | 1 | 0.85 | 0.91 | 0.82 | 0.93 | 59 | 55 | 87 | 92 |
corn | 13 | 0.82 | 0.81 | 0.99 | 0.99 | 44 | 46 | 13 | 14 |
fava beans | 3 | 0.81 | 0.83 | 0.96 | 0.96 | 35 | 32 | 28 | 32 |
chickpeas | 2 | 0.78 | 0.79 | 0.62 | 0.79 | 44 | 43 | 62 | 59 |
winter barley | 11 | 0.77 | 0.78 | 0.97 | 0.97 | 37 | 37 | 10 | 11 |
winter wheat | 27 | 0.75 | 0.75 | 0.95 | 0.95 | 54 | 54 | 28 | 31 |
potato | 4 | 0.67 | 0.68 | 0.64 | 0.84 | 55 | 54 | 104 | 56 |
winter rapeseed | 18 | 0.65 | 0.65 | 0.67 | 0.76 | 67 | 68 | 88 | 82 |
durum | 3 | 0.64 | 0.62 | 0.68 | 0.74 | 62 | 64 | 99 | 75 |
winter triticale | 3 | 0.59 | 0.57 | 0.82 | 0.82 | 68 | 71 | 62 | 69 |
summer wheat | 1 | 0.58 | 0.46 | 0.99 | 0.99 | 85 | 99 | 73 | 79 |
sugar beet | 11 | 0.48 | 0.54 | 0.99 | 0.99 | 93 | 90 | 8 | 9 |
fresh peas | 1 | 0.47 | 0.57 | 0.13 | 0.57 | 97 | 86 | 123 | 122 |
summer barley | 5 | 0.46 | 0.46 | 0.90 | 0.90 | 96 | 97 | 52 | 58 |
Number of pairs (θi = 1) | 48 | 48 | 72 | 78 | 48 | 48 | 72 | 78 | |
min | 0.001 | 0.001 | 0.132 | 0.422 | 1.000 | 1.000 | 1.000 | 1.000 | |
mean | 0.729 | 0.735 | 0.871 | 0.913 | 52.821 | 52.805 | 41.203 | 37.577 | |
max | 1 | 1 | 1 | 1 | 123 | 123 | 123 | 123 |
Explained Variable | θ(PS) | θ(E) | θ(PS&E) |
---|---|---|---|
R2 | 0.7772 | 0.7049 | 0.6589 |
Explanatory variables | bn | bn | bn |
Absolute term | 1.052546 * | 1.108250 * | 1.050565 * |
BC_Building depreciation | −0.000454 | ||
BC_Building finance debt | −0.009917 | −0.008200 | |
BC_Building finance equity | 0.009178 | −0.007763 * | |
Crop price | 0.000658 * | −0.000090 | 0.000141 |
Crop yield | 0.039470 * | 0.054857 * | 0.046495 * |
DC_Crop Insurance net cost | −0.003423 * | −0.001787 | |
DC_Dry energy cost | −0.001460 * | ||
DC_Finance cost debt field inventory | −0.014362 * | −0.008890 * | |
DC_Fungicides | −0.000526 | −0.000306 | |
DC_Herbicides | 0.000819 * | 0.000659 * | |
DC_Irrigation cost (var.) | 0.000903 * | 0.000450 | |
DC_Lime | −0.001365 | ||
DC_Nitrogen | −0.000777 | −0.000557 | −0.000781 * |
DC_Other direct costs | −0.003473 * | −0.000362 * | −0.000382 * |
DC_Other fertilizer costs | −0.003281 * | −0.001168 | −0.001079 |
DC_Phosphorus | 0.001210 | ||
DC_Potash | −0.001719 * | 0.001893 * | 0.000775 |
DC_Seeds | −0.000535 | −0.001271 * | −0.000929 * |
LC_Land cost | −0.000381 * | −0.000225 * | −0.000175 * |
LC_Land improvement | −0.007769 * | ||
MC_Farm accounting cost | −0.007461 * | 0.008664 * | 0.004722 * |
MC_Farm advisory cost | 0.014145 * | −0.014721 * | |
MC_Farm insurance (related to activities) | −0.005514 | −0.006588 * | −0.005666 * |
MC_Farm insurance (related to inventory) | −0.002744 * | −0.002103 * | |
MC_Farm office cost | −0.000774 | ||
MC_Farm tax (related to inventory) | −0.001768 * | −0.000525 | |
MC_Other farm costs | −0.001492 | ||
OC_Machinery finance equity | −0.006388 * | −0.003686 * | −0.001738 |
OC_Machinery repairs | −0.000147 | ||
OC_Contractor | −0.000155 | −0.000593 * | −0.000467 * |
OC_Family labor | −0.001928 * | −0.000537 * | −0.000882 * |
OC_Hired labor | −0.001092 * | −0.000554 * | −0.000693 * |
OC_Machinery depreciation cost | 0.000678 | ||
OC_Other energy costs | −0.001561 | −0.000383 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boczar, P.; Błażejczyk-Majka, L. Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms. Resources 2024, 13, 123. https://doi.org/10.3390/resources13090123
Boczar P, Błażejczyk-Majka L. Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms. Resources. 2024; 13(9):123. https://doi.org/10.3390/resources13090123
Chicago/Turabian StyleBoczar, Paweł, and Lucyna Błażejczyk-Majka. 2024. "Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms" Resources 13, no. 9: 123. https://doi.org/10.3390/resources13090123
APA StyleBoczar, P., & Błażejczyk-Majka, L. (2024). Economic Efficiency versus Energy Efficiency of Selected Crops in EU Farms. Resources, 13(9), 123. https://doi.org/10.3390/resources13090123