Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Maize Measurements
2.4. Statistical Analyses
3. Results
3.1. Zai Pit Effectiveness
3.2. Depth Experiment
3.3. Manure Experiment
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ssozi, J.; Asongu, S.; Amavilah, V.H. The effectiveness of development aid for agriculture in sub-Saharan Africa. J. Econ. Stud. 2019, 46, 284–305. [Google Scholar] [CrossRef]
- Calzadilla, A.; Zhu, T.; Rehdanz, K.; Tol, R.S.J.; Ringler, C. Economywide impacts of climate change on agriculture in Sub-Saharan Africa. Ecol. Econ. 2013, 93, 150–165. [Google Scholar] [CrossRef]
- Jayne, T.S.; Mather, D.; Mghenyi, E. Principal challenges confronting smallholder agriculture in Sub-Saharan Africa. World Dev. 2010, 38, 1384–1398. [Google Scholar] [CrossRef]
- FAO; AUC; ECA; WFP. Africa—Regional Overview of Food Security and Nutrition 2023: Statistics and Trends; FAO: Accra, Ghana, 2023. [Google Scholar] [CrossRef]
- Kaba, A.J. Explaining Africa’s rapid population growth, 1950 to 2020: Trends, factors, implications, and recommendations. Sociol. Mind 2020, 10, 226–268. [Google Scholar] [CrossRef]
- Hall, C.; Dawson, T.P.; Macdiarmid, J.I.; Matthews, R.B.; Smith, P. The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. Int. J. Agric. Sustain. 2017, 15, 124–135. [Google Scholar] [CrossRef]
- Nhemachena, C.; Nhamo, L.; Matchaya, G.; Nhemachena, C.R.; Muchara, B.; Karuaihe, S.T.; Mpandeli, S. Climate change impacts on water and agriculture sectors in southern Africa: Threats and opportunities for sustainable development. Water 2020, 12, 2673. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G.; Temesgen, M.; Abdulkedir, A.; Stroosnijder, L. Rainwater harvesting and management in rainfed agricultural systems in sub-Saharan Africa—A review. Phys. Chem. Earth Pt. A/B/C 2012, 47, 139–151. [Google Scholar] [CrossRef]
- Kipkulei, H.K.; Bellingrath-Kimura, S.D.; Lana, M.; Ghazaryan, G.; Baatz, R.; Boitt, M.; Chisanga, C.B.; Rotich, B.; Sieber, S. Assessment of maize yield response to agricultural management strategies using the DSSAT–CERES-Maize model in trans Nzoia County in Kenya. Int. J. Plant Prod. 2022, 16, 557–577. [Google Scholar] [CrossRef]
- Makoti, A.; Waswa, F. Rural community coping strategies with drought-driven food insecurity in Kwale County, Kenya. J. Food Secur. 2015, 3, 87–93. [Google Scholar] [CrossRef]
- Marigi, S.N.; Njogu, A.K.; Githungo, W.N. Trends of extreme temperature and rainfall indices for arid and semi-arid lands of South Eastern Kenya. J. Geosci. Environ. Prot. 2016, 4, 158–171. [Google Scholar] [CrossRef]
- Ochieng, P.O.; Nyandega, I.; Wambua, B.; Ongoma, V. Linkages between Madden–Julian oscillation and drought events over Kenya. Meteorol. Atmos. Phys. 2023, 135, 9. [Google Scholar] [CrossRef]
- PBS. Kenya’s Worst Drought in Decades Creates Humanitarian Crisis. Available online: https://www.pbs.org/newshour/show/kenyas-worst-drought-in-decades-creates-humanitarian-crisis (accessed on 16 May 2024).
- Ogallo, L.A.; Otengi, S.B.; Ambenje, P.; Nyakwada, W.; Githui, F. Monitoring agricultural drought: The case of Kenya. In Monitoring and Predicting Agricultural Drought: A Global Study; Boken, V.K., Craknell, A.P., Heathcote, R.L., Eds.; Oxford University Press, Inc.: New York, NY, USA, 2005; pp. 238–251. [Google Scholar]
- USAID. Agriculture and Food Security: Kenya. Available online: https://www.usaid.gov/kenya/agriculture-and-food-security#:~:text=The%20agricultural%20sector%20is%20the,percent%20of%20the%20rural%20population (accessed on 16 May 2024).
- FAO. Climate-Smart Agriculture Sourcebook. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/b21f2087-f398-4718-8461-b92afc82e617/content (accessed on 16 May 2024).
- The World Bank. Climate-Smart Agriculture. Available online: https://www.worldbank.org/en/topic/climate-smart-agriculture (accessed on 16 May 2024).
- USDA NRCS. NRCS Climate-Smart Mitigation Activities. Available online: https://www.nrcs.usda.gov/conservation-basics/natural-resource-concerns/climate/climate-smart-mitigation-activities (accessed on 16 May 2024).
- Shimeles, A.; Verdier-Chouchane, A.; Boly, A. Introduction: Understanding the challenges of the agricultural sector in Sub-Saharan Africa. In Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Springer Nature: Basingstoke, UK, 2018; pp. 1–11. [Google Scholar] [CrossRef]
- Getare, E.K.; Mucheru-Muna, M.; Muriu-Ng’ang’a, F.; Ndung’u, C.K. Utilisation of zai pits and soil fertility management options for improved crop production in the dry ecosystem of Kitui, Eastern Kenya. Afr. J. Agric. Res. 2021, 17, 1547–1558. [Google Scholar] [CrossRef]
- Kogo, B.K.; Kumar, L.; Koech, R. Climate change and variability in Kenya: A review of impacts on agriculture and food security. Environ. Dev. Sustain. 2021, 23, 23–43. [Google Scholar] [CrossRef]
- Ouiminga, I. Profitability in a sustainable agricultural production system: An approach by the soil and water conservation. In Building a Resilient and Sustainable Agriculture in Sub-Saharan Africa; Shimeles, A., Verdier-Chouchane, A., Boly, A., Eds.; Springer Nature: Basingstoke, UK, 2018; pp. 123–145. [Google Scholar] [CrossRef]
- Speranza, C.I.; Kiteme, B.; Wiesmann, U. Droughts and famines: The underlying factors and the causal links among agro-pastoral households in semi-arid Makueni district, Kenya. Glob. Environ. Chang. 2008, 18, 220–233. [Google Scholar] [CrossRef]
- Danjuma, M.N.; Mohammed, S. Zai pits system: A catalyst for restoration in the dry lands. J. Agric. Vet. Sci. 2015, 8, 2319–2372. [Google Scholar] [CrossRef]
- Motis, T.; D’Aiuto, C.; Lingbeek, B. Zai pit system. ECHO Tech. Note 2013, 78, 1–11. [Google Scholar]
- Muchiri, P.M.; Ogara, W.O.; Karanja, F.K.; Maweu, J.M. A climate-smart agriculture approach using double digging, zai pits and aquacrop model in rain-fed sorghum cultivation at Wiyumiririe location of Laikipia County, Kenya. Afr. J. Phys. Sci. 2020, 4, 23–53. [Google Scholar]
- Kathuli, P.; Itabari, J.K. In-situ soil moisture conservation: Utilisation and management of rainwater for crop production. Int. J. Agric. Resour. Gov. Ecol. 2014, 10, 295–310. [Google Scholar] [CrossRef]
- Kimaru-Muchai, S.W.; Ngetich, F.K.; Baaru, M.; Mucheru-Muna, M.W. Adoption and utilisation of zai pits for improved farm productivity in drier upper eastern Kenya. J. Agric. Rural Dev. Trop. 2020, 121, 13–22. [Google Scholar] [CrossRef]
- Kebenei, M.C.; Mucheru-Muna, M.; Muriu-Ng’ang’a, F.; Ndung’u, C.K. Zai technology and integrated nutrient management for improved soil fertility and increased sorghum yields in Kitui county, Kenya. Front. Sustain. Food Syst. 2021, 5, 714212. [Google Scholar] [CrossRef]
- Mustapha, Y.K.; Mani, F.A.; Bunu, A. Effects of zai (pit planting) and different manure rates on the growth and yield of sorghum. Int. J. Res. Appl. Sci. Eng. Technol. 2021, 9, 21–25. [Google Scholar] [CrossRef]
- Oduor, S.O.; Mungai, N.W.; Owido, S.F. Zai pit effects on selected soil properties and cowpea (Vigna unguiculata) growth and grain yield in two selected dryland regions of Kenya. Open J. Soil Sci. 2021, 11, 39–57. [Google Scholar] [CrossRef]
- Kugedera, A.T. The use of zai pits and integrated nutrient management as a strategy in improving maize grain yield: A case of Zvipani Area in Hurungwe. Amity J. Manag. Res. 2022, 5, 537–549. [Google Scholar]
- Amede, T.; Menza, M.; Awlachew, S.B. Zai improves nutrient and water productivity in the Ethiopian highlands. Exp. Agric. 2011, 47, 7–20. [Google Scholar] [CrossRef]
- Kimaru-Muchai, S.W.; Ngetich, F.K.; Mucheru-Muna, M.W.; Baaru, M. Zai pits for heightened sorghum production in drier parts of Upper Eastern Kenya. Heliyon 2021, 7, e08005. [Google Scholar] [CrossRef]
- Kaboré, D.; Reij, C. The Emergence and Spreading of an Improved Traditional Soil and Water Conservation Practice in Burkina Faso; International Food Policy Research Institute: Washington, DC, USA, 2004; Volume 114, pp. 1–28. [Google Scholar]
- Mumah, E.; Chen, Y.; Hong, Y.; Okello, D. Machinery adoption and its effect on maize productivity among smallholder farmers in western Kenya: Evidence from the chisel harrow tillage practice. Res. World Agric. Econ. 2024, 5, 1–18. [Google Scholar] [CrossRef]
- Pingali, P. Agricultural mechanization: Adoption patterns and economic impact. Handb. Agric. Econ. 2007, 3, 2779–2805. [Google Scholar] [CrossRef]
- Wawire, N.W.; Bett, C.; Ruttoh, R.C.; Wambua, J.; Omari, F.G.; Kisilu, R.; Kavoi, J.; Omari, J.; Wanyonyi, N.W.; Ketiem, P. The Status of Agricultural Mechanization in Kenya; Kenya Agricultural & Livestock Research Organization: Nairobi, Kenya, 2016; pp. 1–14. [Google Scholar]
- Wildlife Works Carbon. Sustainable Development Verified Impact Standard: The Kasigau Corridor REDD+ Project Phase I—Rukinga Sanctuary. Available online: https://registry.verra.org/mymodule/ProjectDoc/Project_ViewFile.asp?FileID=72451&IDKEY=s097809fdslkjf09rndasfufd098asodfjlkduf09nm23mrn87s99909929 (accessed on 16 May 2024).
- Wildlife Works Carbon. Sustainable Development Verified Impact Standard: The Kasigau Corridor REDD+ Project Phase II—The Community Ranches. Available online: https://registry.verra.org/mymodule/ProjectDoc/Project_ViewFile.asp?FileID=72454&IDKEY=s8723kjnf7kjandsaslmdv09887vaksmrmnwqkjoiuanfnfuq0r99914066 (accessed on 16 May 2024).
- Githiru, M.; Kasaine, S.; Mdamu, D.M.; Amakobe, B. Recent records and conservation issues affecting the African wild dogs in the Kasigau Corridor, south-east Kenya. Canid Biol. Conserv. 2014, 17, 1478–2677. [Google Scholar]
- Vacarro, D.; Schulte, B.A. Mammalian and avian community response to African elephant (Loxodonta africana) habitat disturbance in southeastern Kenya. Afr. J. Zool, 2024; in review. [Google Scholar]
- Von Hagen, L.; LaDue, C.A.; Schulte, B.A. Elephant scar prevalence in the Kasigau Wildlife Corridor, Kenya: Echoes of human-elephant conflict. Animals 2023, 13, 605. [Google Scholar] [CrossRef]
- Seed, Co. Kenya. SC Duma 43. Available online: https://seedcogroup.com/ke/fieldcrops/sc-partners/sc-duma-43/ (accessed on 16 May 2024).
- Kadioglu, A.; Terzi, R. A dehydration avoidance mechanism: Leaf rolling. Bot. Rev. 2007, 73, 290–302. [Google Scholar] [CrossRef]
- Province of Manitoba. Are You Staging Corn Correctly? Available online: https://www.gov.mb.ca/agriculture/crops/seasonal-reports/Pubs/staging-corn-correctly.pdf (accessed on 16 May 2024).
- Nielsen, R.L. Determining corn leaf stages. Corny News Netw. Artic. 2003, 237, 1–2. [Google Scholar]
- Nleya, T.; Chungu, C.; Kleinjan, J. Corn growth and development. In iGrow Corn: Best Management Practices; Clay, D.E., Carlson, C.G., Clay, S.A., Byamukama, E., Eds.; South Dakota State University: Brookings, SD, USA, 2016; pp. 1–10. [Google Scholar]
- Abendroth, L.J.; Elmore, R.W.; Boyer, M.J.; Marlay, S.K. Corn Growth and Development; Iowa State University of Science and Technology, Cooperative Extension Service: Ames, IA, USA, 2011; pp. 1–50. [Google Scholar]
- Nielsen, R.L. Silk development and emergence in corn. Corny News Netw. 2016, 7, 1–5. [Google Scholar]
- Mi, G.; Chen, F.; Yuan, L.; Zhang, F. Ideotype root system architecture for maize to achieve high yield and resource use efficiency in intensive cropping systems. Adv. Agron. 2016, 139, 73–97. [Google Scholar] [CrossRef]
- Githongo, M.W.; Kiboi, M.N.; Ngetich, F.K.; Musafiri, C.M.; Muriuki, A.; Fliessbach, A. The effect of minimum tillage and animal manure on maize yields and soil organic carbon in sub-Saharan Africa: A meta-analysis. Environ. Challeng. 2021, 5, 100340. [Google Scholar] [CrossRef]
- Fatondji, D.; Martius, C.; Bielders, C.L.; Vlek, P.L.; Bationo, A.; Gerard, B. Effect of planting technique and amendment type on pearl millet yield, nutrient uptake, and water use on degraded land in Niger. Nutr. Cycl. Agroecosyst. 2006, 76, 203–217. [Google Scholar] [CrossRef]
- Muchai, S.W.K.; Mucheru-Muna, M.W.; Ngetich, F.K.; Gitari, H.I.; Nungula, E.Z.; Baaru, M. Interactive effects of zai pits and convectional practices with soil amendments on soil physico-chemical properties. Int. J. Biores. Sci. 2023, 10, 185–196. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Hergert, G.W.; Nielsen, R.A. Cattle manure application reduces soil compactibility and increases water retention after 71 years. Soil Sci. Soc. Am. J. 2015, 79, 212–223. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock manure and the impacts on soil health: A review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Fatondji, D.; Martius, C.; Zougmore, R.; Vlek, P.L.; Bielders, C.L.; Koala, S. Decomposition of organic amendment and nutrient release under the zai technique in the Sahel. Nutr. Cycl. Agroecosys. 2009, 85, 225–239. [Google Scholar] [CrossRef]
- Bello, O.B.; Abdulmaliq, S.Y.; Ige, S.; Mahamood, J.; Oluleye, F.; Azeez, M.A.; Afolabi, M.S. Evaluation of early and late/intermediate maize varieties for grain yield potential and adaptation to a southern guinea savanna agro-ecology of Nigeria. Int. J. Plant Res. 2012, 2, 14–21. [Google Scholar] [CrossRef]
- Mukeka, J.M.; Ogutu, J.O.; Kanga, E.; Røskaft, E. Human-wildlife conflicts and their correlates in Narok County, Kenya. Glob. Ecol. Conserv. 2019, 18, e00620. [Google Scholar] [CrossRef]
- Von Hagen, R.L.; Kasaine, S.; Githiru, M.; Amakobe, B.; Mutwiwa, U.N.; Schulte, B.A. Metal strip fences for preventing African elephant (Loxodonta africana) crop foraging in the Kasigau Wildlife Corridor, Kenya. Afr. J. Ecol. 2021, 59, 293–298. [Google Scholar] [CrossRef]
- Corde, S.C.; Von Hagen, R.L.; Kasaine, S.; Mutwiwa, U.N.; Amakobe, B.; Githiru, M.; Schulte, B.A. A comparison of deterrent fence types as a means of human-elephant conflict mitigation in southeastern Kenya. J. Nat. Conserv, 2024; in review. [Google Scholar]
- Mumo, L.; Yu, J.; Fang, K. Assessing impacts of seasonal climate variability on maize yield in Kenya. Int. J. Plant. Prod. 2018, 12, 297–307. [Google Scholar] [CrossRef]
- Lynch, J.P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 2013, 112, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.M.; Lor, V.S.N.; Hanlon, M.T.; Perkins, A.; Kaeppler, S.M.; Borkar, A.N.; Bhosale, R.; Zhang, X.; Rodriguez, J.; Bucksch, A.; et al. Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15). Plant Cell Environ. 2022, 45, 837–853. [Google Scholar] [CrossRef] [PubMed]
- Dathe, A.; Postma, J.A.; Postma-Blaauw, M.B.; Lynch, J.P. Impact of axial root growth angles on nitrogen acquisition in maize depends on environmental conditions. Ann. Bot. 2016, 118, 401–414. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef]
- Mati, B.M. Overview of Water and Soil Nutrient Management under Smallholder Rain-Fed Agriculture in East Africa; Working Paper 105; International Water Management Institute: Colombo, Sri Lanka, 2006; pp. 1–85. [Google Scholar]
- Dumas, S.E.; Maranga, A.; Mbullo, P.; Collins, S.; Wekesa, P.; Onono, M.; Young, S.L. “Men are in front at eating time, but not when it comes to rearing the chicken”: Unpacking the gendered benefits and costs of livestock ownership in Kenya. Food Nutr. Bull. 2018, 39, 3–27. [Google Scholar] [CrossRef]
- Njarui, D.M.G.; Gichangi, E.M.; Gatheru, M.; Nyambati, E.M.; Ondiko, C.N.; Njunie, M.N.; Ndungu-Magiroi, K.W.; Kiiya, W.W.; Kute, C.A.O.; Ayako, W. A comparative analysis of livestock farming in smallholder mixed crop-livestock systems in Kenya: 2. Feed utilization, availability and mitigation strategies to feed scarcity. Livest. Res. Rural Dev. 2016, 28, 66. [Google Scholar]
- Mangale, N.; Muriuki, A.; Kathuku-Gitonga, A.N.; Kibunja, C.N.; Mutegi, J.K.; Esilaba, A.O.; Ayuke, F.O.; Nguluu, S.N.; Gikonyo, E.W. Field and Laboratory Research Manual for Integrated Soil Fertility Management in Kenya; Kenya Soil Health Consortium KALRO Kabete: Nairobi, Kenya, 2016; pp. 1–96. [Google Scholar]
- Mafouasson, H.N.A.; Kenga, R.; Gracen, V.; Ntsomboh-Ntsefong, G.; Tandzi, L.N.; Ngome, P.I.T. Production constraints, farmers’ preferred characteristics of maize varieties in the bimodal humid forest zone of Cameroon and their implications for plant breeding. Agric. Res. 2020, 9, 497–507. [Google Scholar] [CrossRef]
- Agbor, R.E.; Elangwe, W. Indigenous peoples and agrobiodiversity in Africa. In Environmental Resilience and Food Law; Steier, G., Cianci, A.G., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 77–106. [Google Scholar]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-smart agriculture for food security. Nat. Clim. Chang. 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
Row | Variable | Deep GP1 | Shallow GP1 | Control GP1 | Deep GP2 | Shallow GP2 | Control GP2 |
---|---|---|---|---|---|---|---|
1 | Height Growth Rate (cm/day) | 1.46 a (±0.04) | 1.41 a (±0.04) | 0.56 b (±0.04) | 1.25 a (±0.05) | 1.24 a (±0.05) | 0.73 b (±0.05) |
2 | Stage Growth Rate | 0.21 a (±0.01) | 0.21 a (±0.01) | 0.15 b (±0.01) | 0.17 a (±0.01) | 0.17 a (±0.01) | 0.15 b (±0.01) |
3 | Mean Height Week 8 (cm) | 77.2 a (±1.5) | 74.2 a (±2.2) | 33.7 b (±1.1) | 68.6 a (±2.2) | 66.8 a (±1.8) | 40.3 b (±2.1) |
4 | Mean Stage Week 5 | 6.9 a (±0.1) | 6.7 a (±0.1) | 4.9 b (±0.1) | 7.1 a (±0.1) | 6.9 a (±0.1) | 5.5 b (±0.1) |
5 | Mean Days to Reach Stage R1 | 70.3 a (±0.4) | 70.4 a (±0.3) | 76.3 b (±0.8) | |||
6 | Mean Root Depth (cm) | 22.20 a (±0.66) | 18.78 b (±0.46) | 7.84 c (±0.25) | 22.68 a (±0.79) | 18.84 b (±0.75) | 11.18 c (±0.44) |
7 | Mean Root Ball Diameter (cm) | 8.99 a (±0.23) | 8.91 a (±0.31) | 4.78 b (±0.18) | 8.81 a (±0.38) | 7.97 a (±0.41) | 5.83 b (±0.29) |
8 | Mean RSA Ratio | 2.5 a (±0.1) | 2.2 b (±0.1) | 1.7 c (±0.1) | 2.7 a (±0.1) | 2.4 a (±0.1) | 2.0 b (±0.1) |
9 | Mean Stem Diameter (cm) | 1.64 a (±0.05) | 1.47 b (±0.04) | 0.98 c (±0.05) | |||
10 | Mean # Kernels Per Ear | 112.0 a (±13.7) | 85.1 a (±7.9) | 60.1 b (±10.3) | |||
11 | Mean Kernel Weight (g) | 0.23 a (±0.01) | 0.22 a (±0.01) | 0.17 b (±0.01) | |||
12 | Mean Yield Per Ear (g) | 26.5 a (±3.0) | 20.1 a (±2.1) | 10.7 b (±1.7) | |||
13 | Mean # Viable Ears Per Plant | 0.88 a (±0.06) | 0.81 a (±0.06) | 0.62 a (±0.09) |
Row | Variable | Manure | No Manure | Control |
---|---|---|---|---|
1 | Height Growth Rate (cm/day) | 1.25 a (±0.05) | 0.76 b (±0.06) | 0.73 b (±0.05) |
2 | Stage Growth Rate | 0.17 a (±0.01) | 0.15 b (±0.01) | 0.15 b (±0.01) |
3 | Mean Height Week 8 (cm) | 68.6 a (±2.2) | 43.4 b (±1.8) | 40.3 b (±2.1) |
4 | Mean Stage Week 5 | 7.1 a (±0.1) | 5.9 b (±0.1) | 5.5 c (±0.1) |
5 | Mean Days to Reach Stage R1 | 70.3 a (±0.4) | 76.7 b (±1.4) | 76.3 b (±0.8) |
6 | Mean Root Depth (cm) | 22.68 a (±0.79) | 15.83 b (±0.38) | 11.18 c (±0.44) |
7 | Mean Root Ball Diameter (cm) | 8.81 a (±0.38) | 5.80 b (±0.42) | 5.83 b (±0.29) |
8 | Mean RSA Ratio | 2.7 a (±0.1) | 2.8 a (±0.1) | 2.0 b (±0.1) |
9 | Mean Stem Diameter (cm) | 1.64 a (±0.05) | 1.02 b (±0.03) | 0.98 b (±0.05) |
10 | Mean # Kernels Per Ear | 112.0 a (±13.7) | 68.5 b (±7.6) | 60.1 b (±10.3) |
11 | Mean Kernel Weight (g) | 0.23 a (±0.01) | 0.15 b (±0.01) | 0.17 b (±0.01) |
12 | Mean Yield Per Ear (g) | 26.5 a (±3.0) | 11.0 b (±1.5) | 10.7 b (±1.7) |
13 | Mean # Viable Ears Per Plant | 0.88 a (±0.06) | 0.80 a (±0.06) | 0.62 a (±0.09) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bowers, M.J.; Kasaine, S.; Schulte, B.A. Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth. Resources 2024, 13, 120. https://doi.org/10.3390/resources13090120
Bowers MJ, Kasaine S, Schulte BA. Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth. Resources. 2024; 13(9):120. https://doi.org/10.3390/resources13090120
Chicago/Turabian StyleBowers, Matthew J., Simon Kasaine, and Bruce A. Schulte. 2024. "Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth" Resources 13, no. 9: 120. https://doi.org/10.3390/resources13090120
APA StyleBowers, M. J., Kasaine, S., & Schulte, B. A. (2024). Zai Pits as a Climate-Smart Agriculture Technique in Southern Kenya: Maize Success Is Influenced More by Manure Than Depth. Resources, 13(9), 120. https://doi.org/10.3390/resources13090120