Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Pozzolanic Activity Method
2.2.2. Characterization Techniques
2.2.3. Mathematical Model
2.2.4. Mechanical Assessment of Blended Mortars
3. Results and Discussion
3.1. Characterization of the Starting Materials
3.2. Pozzolanic Activity: Qualitative Evaluation
3.3. Quantitative Analysis of the Pozzolanic Activity: Determination of the Kinetic Parameters
3.4. Compressive Strength
4. Conclusions
- For the first time, the pozzolanic synergy between two industrial wastes of different nature has been analyzed. The combination of CDW with BLAsh allows obtaining a binary mixture of active additions with a good pozzolanic reactivity, for the manufacture of future sustainable ternary eco-cements with a lower carbon footprint.
- This good pozzolanic synergy allows the use of CDW more efficiently and with better results, which is very important given the priority and the impetus that is being given to its use worldwide, given its increasingly increasing availability.
- A mineralogical study of the starting residues reveals that in the case of CDW, the principal compounds are quartz and calcite. Other minerals such as alite, belite and albite were also detected. The amorphicity in the sample is practically not appreciated. For BLAsh, a broad band located around 15°–30° = 2θ is seen in the XRD pattern, which demonstrates its highly amorphous nature. The crystalline phases sylvite, calcite and cristobalite are detected.
- The qualitative characterization of the pozzolanic activity of CDW and BLAsh using the electrical conductivity method indicates that BLAsh100 has a higher activity compared to CDW. For the binary mixtures, CDW50 + BLAsh50 shows the highest reactivity, followed closely by CDW60 + BLASh40 and (with a minor consumption of CH) the mixture CDW70 + BLAsh30. All the mixtures showed good reactivity in comparison with CDW100 (lower reactivity). In the SEM analysis, calcium silicate hydrate (C-S-H) gels (rough areas with a sponge-like morphology) were observed in all samples as the main product of the pozzolanic reaction.
- The values of the kinetic parameter (reaction rate constant principally) allow the conclusion that BLAsh100 has a very high reactivity and CDW100 has a low reactivity. However, there is an important synergy between agricultural residue (BLAsh) and CDW when these wastes are mixed, even though each of these materials separately showed different levels of pozzolanic activity. Mixing bamboo leaf ash with fine-fraction CDW significantly increases pozzolanic reactivity compared to CDW100. The binary mixture with the highest reactivity is CDW50 + BLAsh50, followed by CDW60 + BLAsh40 and CDW70 + BLAsh30. This shows that increasing the % of bamboo ash in the mixture increases its reactivity. Of the dosages chosen in this work, the one with the highest reactivity is the one that uses 50% of each residue (CDW50 + BLAsh50).
- The ternary cements (50CDW + 50BLAsh + OPC, 60CDW + 40BLAsh + OPC and 70CDW + 30BLAsh + OPC) showed compressive strength values of 45.4, 45.8 and 41.07 MPa, respectively, which are higher than the mechanical strength values achieved by the OPC + CDW binary cements, demonstrating the positive synergy originating between CDW and BLAsh.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Becker, N.; Kimhi, A.; Argaman, E. Costs and benefits of waste soils removal. Land Use Policy 2020, 99, 104877. [Google Scholar] [CrossRef]
- Chandrasekhar, S.; Pramada, P.N.; Majeed, J. Effect of calcination temperature and heating rate on the optical properties and reactivity of rice husk ash. Mater. Sci. 2006, 41, 7926–7933. [Google Scholar] [CrossRef]
- Cordeiro, G.C.; Toledo, R.D.; Tavares, L.M.; Fairbairn, E.; Hempel, S. Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem. Concr. Compos. 2011, 33, 529–534. [Google Scholar] [CrossRef]
- Frías, M.; Villar-Cociña, E.; Valencia-Morales, E. Characterization of sugar cane straw waste as pozzolanic material for construction: Calcining temperature and kinetic parameters. Waste Manag. 2007, 27, 533–538. [Google Scholar] [CrossRef]
- Nakanishi, E.Y.; Villar-Cociña, E.; Santos, S.F.; Rodrigues, S.F.; Pinto, P.S.; Savastano, H. Tratamentos térmico e químico para remoção de óxidos alcalinos de cinzas de capim Elefante. Quim. Nova. 2014, 37, 766–769. [Google Scholar] [CrossRef]
- Singh, N.B.; Singh, V.D.; Rai, S. Hydration of bagasse ash-blended portland cement. Cem. Concr. Res. 2000, 30, 1485–1488. [Google Scholar] [CrossRef]
- Karellas, S.; Leontaritis, A.D.; Panousis, G.; Bellos, E.; Kakaras, E. Energetic and exergetic analysis of waste heat recovery systems in the cement industry. Energy 2013, 58, 147–156. [Google Scholar] [CrossRef]
- Kumar-Mehta, P.; Monteiro, P.J.M. Concrete: Microstructe, Properties, and Materials, 4th ed.; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Frías, M.; Savastano, H.; Villar-Cociña, E.; Sánchez de Rojas, M.I.; Santos, S.F. Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem. Concr. Compos. 2012, 34, 1019–1023. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Valencia-Morales, E.; Santos, S.F.; Savastano, H.; Frías, M. Pozzolanic behavior of bamboo leaf ash: Characterization and determination of the kinetic parameters. Cem. Concr. Compos. 2011, 33, 68–73. [Google Scholar] [CrossRef]
- Wijesekara, D.A.; Sargent, P.; Hughes, D.J.; Ennis, C.J. Sintered Bottom and Vitrified Silica Ashes Derived from Incinerated Municipal Solid Waste as Circular Economy-Friendly Partial Replacements for Cement in Mortars. Waste Biomass Valorization 2024, 15, 2735–2756. [Google Scholar] [CrossRef]
- Shanmugasundaram, N.; Praveenkumar, S. Pozzolanic evaluation of Portland cement blended with agro-industrial by-products: An experimental and thermodynamic modeling technique. Constr. Build. Mater. 2024, 433, 136644. [Google Scholar] [CrossRef]
- Massazza, F. Chemistry of pozzolanic additions and mixed cement. Il Cem. 1976, 73, 3–39. [Google Scholar]
- Metha, P.K. Role of cementitious material in sustainable development of the concrete industry. In Proceedings of the Sixth CANMET/ACI International Conference on the Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, Bangkok, Thailand, 31 May–6 July 1998; Volume 1, pp. 1–20. [Google Scholar]
- Suárez-Silgado, S.S.; Betancourt, C.; Molina, J.; Mahecha, L. La gestión de los residuos de construcción y demolición en Villavicencio: Estado actual, barreras e instrumentos de gestión. Entramado 2019, 15, 224–244. [Google Scholar] [CrossRef]
- Frías, M.; Martínez-Ramírez, S.; Vigil de la Villar, R.; Fernández-Carrasco, L.; García, R. Reactivity in cement pastes bearing fine fraction concrete and glass from construction and demolition waste: Microstructural analysis of viability. Cem. Concr. Res. 2021, 148, 106531. [Google Scholar] [CrossRef]
- Maciel, T.; Stumpf, M.; Kern, A. Management system proposal for planning and controlling construction waste. Rev. Ing. Const. 2016, 31, 105–116. [Google Scholar] [CrossRef]
- Zou, G.; Zhang, J.; Liu, X.; Lin, Y.; Yu, H. Design and performance of emulsified asphalt mixtures containing construction and demolition waste. Constr. Build. Mater. 2020, 239, 117846. [Google Scholar] [CrossRef]
- Šljivic-Ivanovic, M.; Smiciklas, I. Utilization of C&D waste in radioactive waste treatment—Current knowledge and perspectives. In Advances in Construction and Demolition Waste Recycling; Pacheco-Torgal, F., Ding, Y., Koutamanis, A., Eds.; Woodhead Publishing: Cambridge, UK, 2020; Chapter 23; pp. 475–500. [Google Scholar]
- Asensio, E.A.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. Clay-based construction and demolition waste as a pozzolanic addition in blended cements. Effect on sulfate resistance. Constr. Build. Mater. 2016, 127, 950–958. [Google Scholar] [CrossRef]
- Asensio, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. Characterization of Ceramic-Based Construction and Demolition Waste: Use as Pozzolan in Cements. J. Am. Ceram. Soc. 2016, 99, 4121–4127. [Google Scholar] [CrossRef]
- Asensio, E.; Medina, C.; Frías, M.; Sánchez de Rojas, M.I. Use of clay-based construction and demolition waste as additions in the design of new low and very low heat of hydration cements. Mater. Struct. 2018, 51, 101–111. [Google Scholar] [CrossRef]
- Medina, C.; Banfill, P.F.G.; Sánchez de Rojas, M.I.; Frías, M. Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr. Build. Mater. 2013, 40, 822–831. [Google Scholar] [CrossRef]
- Krour, H.; Trauchessec, R.; Lecomte, A.; Diliberto, C.; Barnes-Davin, L.; Bolze, B.; Delhay, A. Incorporation rate of recycled aggregates in cement raw meals. Constr. Build. Mater. 2020, 248, 118217. [Google Scholar] [CrossRef]
- Contreras, M.; Teixeira, S.R.; Lucas, M.C.; Lima, L.C.N.; Cardoso, D.S.L.; da Silva, G.A.C.; Gregório, G.C.; de Souza, A.E.; dos Santos, A. Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr. Build. Mater. 2016, 123, 594–600. [Google Scholar] [CrossRef]
- Frías, M.; Vigil de la Villa, R.; Martínez-Ramírez, S.; Fernández-Carrasco, L.; Villar-Cociña, E.; García-Giménez, R. Multi-Technique characterization of a fine fraction of CDW and assessment of reactivity in a CDW/Lime system. Minerals 2020, 10, 590. [Google Scholar] [CrossRef]
- Caneda-Martínez, L.; Monasterio, M.; Moreno-Juez, J.; Martínez-Ramírez, S.; García, R.; Frías, M. Behaviour and properties of eco-cement pastes elaborated with recycled concrete powder from construction and demolition wastes. Materials 2021, 14, 1299. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Juez, J.; Vegas, I.J.; Frías, M.; Vigil de la Villa, R.; Guede-Vázquez, E. Laboratory scale study and semi-industrial validation of viability of inorganic CDW fine fractions as SCMs in blended cements. Constr. Build. Mater. 2021, 271, 121823. [Google Scholar] [CrossRef]
- Wenting, M.; Hao, J.L.; Zhang, C.; Guo, F.; Di Sarno, L. System Dynamics-Life Cycle Assessment Causal Loop Model for Evaluating the Carbon Emissions of Building Refurbishment Construction and Demolition Waste. Waste Biomass Valorization 2022, 13, 4099–4113. [Google Scholar] [CrossRef]
- Snellings, R.; Mertens, G.; Elsen, J. Supplementary cementitious Materials. Rev. Mineral. Geochem. 2012, 74, 211–278. [Google Scholar] [CrossRef]
- Goñi, S.; Frías, M.; Vegas, I.; García, R.; Vigil, R. Quantitative correlations among textural characteristics of C-S-H gel and mechanical properties: Case of ternary Portland cements containing activated paper sludge and Fly ash. Cem. Concr. Compos. 2012, 34, 911–916. [Google Scholar] [CrossRef]
- Maier, M.; Beuntner, N.; Thienel, K.C. Mineralogical characterization and reactivity test of common clays suitable as supplementary cementitious material. Appl. Clay Sci. 2021, 202, 105990. [Google Scholar] [CrossRef]
- Monasterio, M.; Caneda-Martínez, L.; Vegas, I.; Frías, M. Progress in the influence of recycled construction and demolition mineral-based blends on the physical–mechanical behaviour of ternary cementitious matrices. Constr. Build. Mater. 2022, 344, 128169. [Google Scholar] [CrossRef]
- Oliveira, D.; Sadalla, D.; Frías, M.; Savastano, H. Assessment of the potential use of construction and demolition waste (CDW) fines as eco-pozzolan in binary and ternary cements. Constr. Build. Mater. 2024, 411, 134320. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Savastano, H.; Rodier, L.; Lefran, M.; Frías, M. Pozzolanic Characterization of Cuban Bamboo Leaf Ash: Calcining Temperature and Kinetic Parameters. Waste Biomass Valorization 2018, 9, 691–699. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Rodier, L.; Savastano, H.; Lefran, M.; Frías, M. A Comparative Study on the Pozzolanic Activity between Bamboo Leaves Ash and Silica Fume: Kinetic Parameters. Waste Biomass Valorization 2019, 11, 1627–1634. [Google Scholar] [CrossRef]
- Dwivedi, V.N.; Singh, N.P.; Dasa, S.S.; Singh, N.B. A new pozzolanic material for cement industry: Bamboo leaf ash. Int. J. Phys. Sci. 2006, 1, 106–111. [Google Scholar]
- Lee, S.H.; Md Tahir, P.; Osman Al-Edrus, S.S.; Uyup, M.K.A. Bamboo Resources, Trade, and Utilisation. In Multifaceted Bamboo; Md Tahir, P., Lee, S.H., Osman Al-Edrus, S.S., Uyup, M.K.A., Eds.; Springer: Singapore, 2023; pp. 1–14. [Google Scholar] [CrossRef]
- Scurlock, J.M.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource. Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Frías, M.; Savastano, H.; Rodier, L.; Sánches de Rojas, M.I.; Del Bosque, I.F.S.; Medina, C. Quantitative comparison of binary mix of agro-industrial pozzolanic additions for elaborating ternary cements: Kinetic parameters. Materials 2021, 14, 2944. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Valencia-Morales, E.; Gonzalez-Rodríguez, R.; Hernández-Ruíz, J. Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model. Cem. Concr. Res. 2003, 33, 517–524. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Frías, M.; Morales, E.V. Sugar cane wastes as pozzolanic materials: Application of mathematical model. ACI Mater. J. 2008, 105, 258–264. [Google Scholar] [CrossRef]
- Quintana-Crespo, E.; Villar-Cociña, E. A kinetic study about the pozzolanic reactivity of loessic soils by conductometric methods: Kinetic parameters. Adv. Cem. Res. 2011, 23, 3–10. [Google Scholar] [CrossRef]
- Rosell-Lam, M.; Villar-Cociña, E.; Frías, M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conductometric method: Kinetic parameters. Constr. Build. Mater. 2011, 25, 644–650. [Google Scholar] [CrossRef]
- Rodier, L.; Villar-Cociña, E.; Mejia, J.; Savastano, H. Potential use of sugarcane bagasse and bamboo leaf ashes for elaboration of green cementitious materials. J. Cleaner Prod. 2019, 231, 54–63. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, Z.; Yi, C.; Bindiganavile, V.; Li, S.; Li, T. Strength and chloride resistance of mortars blended with SCBA: The effect of calcination and particle sizing on its pozzolanic activity. J. Mater. Res. Technol. 2023, 22, 1423–1435. [Google Scholar] [CrossRef]
- Standard ABNT NBR 5733; Cimento Portland de alta Resistência Inicial. Associação Brasilera de Normas Técnicas: Rio de Janeiro, Brazil, 1991.
- Standard ASTM C311-05; Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete. ASTM International: West Conshohocken, PA, USA, 2005.
- Standard BS EN 196; Methods of Testing Cement. Part 5: Pozzolanicity Test for Pozzolanic Cement. European Committee for Standarization: Brussels, Belgium, 2011. Available online: https://www.academia.edu/43087674/BSI_Standards_Publication_Methods_of_testing_cement_Part_5_Pozzolanicity_test_for_pozzolanic_cement (accessed on 10 May 2024).
- Villar-Cociña, E.; Frías, M.; Valencia-Morales, E.; Savastano, H. Study of the pozzolanic reaction kinetics in sugar cane bagasse–clay ash/calcium hydroxide system: Kinetic parameters and pozzolanic activity. Adv. Cem. Res. 2009, 21, 23–30. [Google Scholar] [CrossRef]
- Rassk, E.; Bhaskar, M.C. Pozzolanic activity of pulverized fuel ash. Cem. Concr. Res. 1975, 5, 363–376. [Google Scholar] [CrossRef]
- Luxán, M.P.; Madruga, F.; Saavedra, J. Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem. Concr. Res. 1989, 19, 63–68. [Google Scholar] [CrossRef]
- Payá, J.; Borrachero, M.V.; Monzó, J.; Peris-Mora, E.; Amahjour, F. Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem. Concr. Res. 2001, 31, 41–49. [Google Scholar] [CrossRef]
- Tashima, M.M.; Soriano, L.; Monzó, J.; Borrachero, M.V.; Akasaki, J.L.; Payá, J. New method to assess the pozzolanic reactivity of mineral admixtures by means of pH and electrical conductivity measurements in lime: Pozzolan suspensions. Mater. Const. 2014, 64, 316. [Google Scholar] [CrossRef]
- Villar-Cociña, E.; Frías, M.; Valencia-Morales, E.; Sánchez de Rojas, M.I. An evaluation of different kinetic models for determining the kinetic coefficients in sugar cane straw–clay ash/lime system. Adv. Cem. Res. 2006, 18, 17–26. [Google Scholar] [CrossRef]
- Standard ABNT NBR 16606; Cimento Portland—Determinação da Pasta de Consistência Normal. Associação Brasilera de Normas Técnicas: Rio de Janeiro, Brazil, 2018.
- Standard ABNT NBR 7215; Cimento Portland—Determinação da Resistência à Compressão de Corpos de Prova Cilíndricos. Associação Brasilera de Normas Técnicas: Rio de Janeiro, Brazil, 2019.
- Rocha, J.H.A.; Tinoco, M.P.; Toledo, R.D. The effect of recycled concrete powder (RCP) from precast concrete plant on fresh and mechanical properties of cementitious pastes. Mater. Constr. 2023, 73, e325. [Google Scholar] [CrossRef]
- Velardo, P.; Sáez del Bosque, I.F.; Sánchez de Rojas, M.I.; de Belie, N.; Medina, C. Effect of incorporating biomass bottom ash and construction and demolition waste powder on the physical-mechanical properties and micro-structure of ternary-blended mortars. Constr. Build. Mater. 2024, 432, 136628. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Rudzionis, Z. A review on sustainable use of agricultural straw and husk biomassashes: Transitioning towards low carbon economy. Sci. Total Environ. 2022, 838, 156407. [Google Scholar] [CrossRef]
- Nakanishi, E.Y.; Frías, M.; Santos, S.F.; Rodrigues, M.S.; Vigil, R.; Rodriguez, O.; Savastano, H. Investigating the possible usage of elephant grass ash to manufacture the eco-friently binary cements. J. Cleaner Production. 2016, 116, 236–243. [Google Scholar] [CrossRef]
- Navarrete, I.; Valdes, J.; Lopez, M.; Vargas, F. Replacement of pozzolanic blended cement by supplementary cementitious materials: Mechanical and environmental approach. Constr. Build. Mater. 2023, 394, 132263. [Google Scholar] [CrossRef]
- García, R.; Vigil, R.; Rodriguez, O.; Frías, M. Mineral phases formation on the pozzolan/lime/water system. Appl. Clay Sci. 2009, 43, 331–335. [Google Scholar] [CrossRef]
- Li, J.; Geng, G.; Myers, R.; Yu, Y.S.; Shapiro, D.; Carraro, C.; Maboudian, R.; Monteiro, P. The chemistry and structure of calcium (alumino) silicate hydrate: A study by XANES, ptychographic imaging, and wide- and small-angle scattering. Cem. Concr. Res. 2018, 115, 367–368. [Google Scholar] [CrossRef]
- Geng, G.; Myers, R.; Maboudian, R.; Carraro, C.; Shapiro, D.; Monteiro, P. Aluminum-induced dreierketten chain cross-links increase the mechanical properties of nanocrystalline calcium aluminosilicate hydrate. Sci. Rep. 2017, 7, 44032. [Google Scholar] [CrossRef]
- Vigil de la Villa, R.; Fernández, R.; Rodríguez, O.; García, R.; Villar-Cociña, E.; Frías, M. Evolution of the pozzolanic activity of a thermally treated zeolite. J. Mater. Sci. 2013, 48, 3213–3224. [Google Scholar] [CrossRef]
- Eyring, H.; Polanyi, M. On simple gas reaction. Z. Phys. Chem. Abt. B. 1967, 12, 279–311. [Google Scholar]
- Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 1935, 3, 107–115. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Q. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Vigil de la Villa, R.; Frias, M.; Martínez, S.; Fernández -Carrasco, L.; Villar-Cociña, E.; García, R. Reactivity of Binary Construction and Demolition Waste Mix as Supplementary Cementitious Materials. Materials 2021, 14, 6481. [Google Scholar] [CrossRef] [PubMed]
- Standard EN 197-6; Cement with Recycled Building Materials. European Committee for Standarization: Brussels, Belgium, 2022.
Pozzolanic Material | Designations and Dosages (%) | ||||
---|---|---|---|---|---|
CDW100 | BLAsh100 | CDW50 + BLAsh50 | CDW60 + BLAsh40 | CDW70 + BLAsh30 | |
CDW | 100 | - | 50 | 60 | 70 |
BLAsh | - | 100 | 50 | 40 | 30 |
Cements | Nomenclature | OPC (%) | CDW (%) | BLAsh (%) | W/C (%) | Normal Consistency Test (mm) |
---|---|---|---|---|---|---|
Reference | REF | 100 | 0 | 0 | 34 | 5.2 |
Binary | 5CDW + OPC | 95 | 5 | 0 | 35.7 | 6.5 |
10CDW + OPC | 90 | 10 | 0 | 38.7 | 5 | |
15CDW + OPC | 85 | 15 | 0 | 42.9 | 6.8 | |
20CDW + OPC | 80 | 20 | 0 | 46.8 | 6.1 | |
Ternary | CDW50 + BLAsh50 + OPC | 90 | 5 | 5 | 40.2 | 5.5 |
CDW60 + BLAsh40 + OPC | 85 | 9 | 6 | 45.5 | 4.8 | |
CDW70 + BLAsh30 + OPC | 80 | 14 | 6 | 50.62 | 4.9 |
Material | Chemical Composition (% by Mass) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | SO3 | Cl | P2O5 | LOI | |
CDW | 26.81 | 9.21 | 3.26 | 2.76 | 38.96 | 0.50 | 1.21 | 1.98 | 0.04 | 0.15 | 14.2 |
BLAsh | 73.90 | 0.44 | 0.34 | 2.40 | 5.99 | 0.09 | 5.41 | 1.99 | 3.46 | 2.71 | 3.0 |
OPC | 15.80 | 3.12 | 3.20 | - | 66.80 | - | 0.74 | 6.23 | - | - | 3.5 |
Pozzolanic Binary Systems | Material (Ash) | τ (h) | Reaction Rate Constant K (h−1) | Diffusion Coefficient De (mm2/h) | Free Activation Energy ∆G# (kJ/mol) | Ccorr. | Coefficient of Multiple Determination (R2) |
---|---|---|---|---|---|---|---|
CDW + BLAsh | BLAsh100 | 2.98 ± 0.003 | 1.45 ± 0.003 | (8.72 ± 0.04) × 10−2 | 97.12 | 0.18 ± 0.0001 | 0.9920 |
CDW50 + BLAsh50 | 3.79 ± 0.008 | (7.88 ± 0.019) × 10−1 | - | 98.712 | 0.22 ± 0.0002 | 0.9869 | |
CDW60 + BLAsh40 | 14.72 ± 0.019 | (1.27 ± 0.024) × 10−1 | - | 103.46 | 0.13 ± 0.0001 | 0.9934 | |
CDW70 + BLAsh30 | 20.5 ± 0.007 | (2.09 ± 0.004) × 10−2 | - | 108.15 | 0.11 ± 0.0006 | 0.9955 | |
CDW100 | 52.05 ± 0.53 | (3.32 ± 0.6) × 10−3 | - | 112.94 | 0.47 ± 0.0004 | 0.9386 | |
HsT + Glass | HsT + Glass 1:1 | 74.1 ± 5.2 | (3.32 ± 0.13) × 10−3 | n.r. | n.r. | 1.40 ± 0.52 | 0.9781 |
HsT + Glass 1:2 | 66.8 ± 1.0 | (4.38 ± 0.70) × 10−3 | n.r. | n.r. | 1.26 ± 0.56 | 0.9743 | |
HcG + Glass | HcG + Glass 1:1 | 89.2 ± 3.3 | (1.72 ± 0.47) × 10−3 | n.r. | n.r. | 1.96 ± 0.14 | 0.9849 |
HcG + Glass 1:2 | 74.0 ± 1.8 | (3.46 ± 0.24) × 10−3 | n.r. | n.r. | 1.33 ± 0.27 | 0.9827 | |
SCBA + BLA | 50SCBA + 50BLA | 5.6 ± 0.2 | (3.83 ± 0.02) × 10−1 | n.r. | n.r. | n.r. | 0.9863 |
70SCBA + 30BLA | 4.5 ± 0.2 | (2.89 ± 0.03) × 10−1 | n.r. | n.r. | n.r. | 0.9810 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villar-Hernández, J.; Villar-Cociña, E.; Savastano, H., Jr.; Rojas, M.F. Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement. Resources 2024, 13, 100. https://doi.org/10.3390/resources13070100
Villar-Hernández J, Villar-Cociña E, Savastano H Jr., Rojas MF. Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement. Resources. 2024; 13(7):100. https://doi.org/10.3390/resources13070100
Chicago/Turabian StyleVillar-Hernández, Javier, Ernesto Villar-Cociña, Holmer Savastano, Jr., and Moisés Frías Rojas. 2024. "Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement" Resources 13, no. 7: 100. https://doi.org/10.3390/resources13070100
APA StyleVillar-Hernández, J., Villar-Cociña, E., Savastano, H., Jr., & Rojas, M. F. (2024). Valorization of Fine-Fraction CDW in Binary Pozzolanic CDW/Bamboo Leaf Ash Mixtures for the Elaboration of New Ternary Low-Carbon Cement. Resources, 13(7), 100. https://doi.org/10.3390/resources13070100