Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Hydrothermal Carbonization Experiment
2.3. Hydrochar Analysis Methods
2.3.1. Mass Yield
2.3.2. Higher Heating Value
2.3.3. Proximate Composition
2.3.4. Ultimate Composition
2.3.5. Surface Morphology
3. Results and Discussion
3.1. Distribution of Mass and Energy Yields
3.2. Organic Composition of Solid Fuel
3.3. Inorganic Composition of Solid Fuel
3.4. Heating Value and Its Correlation to Chemical Composition
3.5. Fuel Applications Compared with Coal Standards
4. Conclusions
- SB and MA biomasses processed via HTC undergo dehydration as O/C and H/C atomic ratios intensely decrease, in addition to the noticeable decarboxylation of MA in the presence of H/C spike at SF 6.63;
- HTC of MA prompts a phase transition to emulsion at SF 6.63, thereby limiting the development of MA to produce solids upon a higher HTC severity;
- SB hydrochar recovers more solids, as indicated by MYs in the ranges of 79.5–46.2% (SB) and 71.6–30.2% (MA), whereas MA hydrochar releases higher heat, as indicated by HHVs in the ranges of 26.7–36.2 MJ·kg−1 (MA) and 19.7–28.0 MJ·kg−1 (SB);
- The conflation of MY and HHV considers the HTC of SB to be more techno-commercially viable since it dissipates less original energy as SF progresses to 6.63 (EY = 82.1–67.8% (SB) and 77.7–44.3% (MA));
- Stable hydrocarbons or FC are formed 1.1–2.6 times more in SB hydrochars, compared with MA hydrochars, which develop 1.1–1.6 times more labile hydrocarbons or VM. Furthermore, the inorganic matter or AC of both hydrochars gradually increase to 1.3 (SB) and 1.9 times (MA) greater than the AC after the immediate drops at SF 4.08;
- The conflation of FC and VM assumes that SB hydrochar at SF 6.63 exhibits more stable combustion and more decent ignition than MA hydrochars, as indicated by FR of 0.83, approaching the balanced FR of 0.9–1.5;
- The Pearson correlation reveals that FC, VM, and AC depend on the constituents C and O and other unexplained compensating parameters in affecting HHVs.
- SB hydrochar (SF = 6.63) potentially replaces steam coal, whereas MA hydrochar is widely attractive to utilize as both steam (SFs = 4.08–5.90) and coking coal (SF = 6.63).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Parameter | p-Value | R-Value (95% Confidence Interval) | ||||
---|---|---|---|---|---|---|
SB | MA | |||||
SB | MA | Lower | Upper | Lower | Upper | |
HHV–FC | 0.00 * | 0.68 | 0.92 | 0.99 | −0.55 | 0.38 |
HHV–VM | 0.00 * | 0.78 | −0.99 | −0.91 | −0.41 | 0.52 |
HHV–AC | 0.20 | 0.88 | −0.18 | 0.68 | −0.44 | 0.50 |
HHV–C | 0.00 * | 0.00 * | 0.97 | 1.00 | 0.98 | 1.00 |
HHV–H | 0.00 * | 0.00 * | −0.99 | −0.91 | 0.46 | 0.91 |
HHV–O | 0.00 * | 0.00 * | −1.00 | −0.99 | −0.99 | −0.95 |
HHV–N | 0.00 * | 0.00 * | 0.84 | 0.98 | −0.99 | −0.91 |
Classification 1 | AC (%) | |||
---|---|---|---|---|
Utilization | Type | Ranking | Caking Property | |
Coking coal | A | Bituminous | Strong caking | <8.0 |
B | >8.0 | |||
C | Other for coke | <8.0 | ||
D | >8.0 | |||
Steam coal | A | Bituminous | Other for steam | >8.0 |
B | Lignite and sub-bituminous | <8.0 | ||
C | >8.0 |
Classification | HHV (MJ·kg−1) | FR | Application | |
---|---|---|---|---|
Ranking | Type | |||
Anthracite | A1 | Indistinctive | >4.0 | (1) Domestic/industrial including smokeless fuel |
A2 | Indistinctive | >4.0 | ||
Bituminous | B1 | >35.16 | >1.5 | (1) Manufacture of iron and steel (coking coal) |
B2 | >35.16 | <1.5 | (2) Power generation (steam coal) | |
C | 33.91–35.16 | Indistinctive | (3) Cement manufacture, industrial uses, and so on (steam coal) | |
Sub-bituminous | D | 32.65–33.91 | Indistinctive | (1) Power generation (steam coal) |
E | 30.56–32.65 | Indistinctive | (2) Cement manufacture, industrial uses, and so on (steam coal) | |
Lignite | F1 | 29.47–30.56 | Indistinctive | (1) Largely domestic power generation (steam coal) |
F2 | 24.28–29.47 | Indistinctive |
References
- Shen, Y. A review on hydrothermal carbonization of biomass and plastic waste to energy products. Biomass Bioenergy 2020, 134, 105479. [Google Scholar] [CrossRef]
- Kannan, S.; Gariepy, Y.; Raghavan, G.S.V. Optimization and characterization of hydrochar produced from microwave hydrothermal carbonization of fish waste. Waste Manag. 2017, 65, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Boutaieb, M.; Guiza, M.; Roman, S.; Cano, B.L.; Nogales, S.; Ouderni, A. Hydrothermal carbonization as a preliminary step to pine cone pyrolysis for bioenergy production. Comptes Rendus Chim. 2020, 23, 607–621. [Google Scholar] [CrossRef]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Kambo, H.S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 2015, 45, 359–378. [Google Scholar] [CrossRef]
- Nzediegwu, C.; Naeth, M.A.; Chang, S.X. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars. Bioresour. Technol. 2021, 330, 124976. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.; Li, Y.; Tong, Y.W.; Ok, Y.S.; Wang, X. Multi-task prediction and optimization of hydrochar properties from high-moisture municipal solid waste: Application of machine learning on waste-to-resource. J. Clean. Prod. 2021, 278, 123928. [Google Scholar] [CrossRef]
- Wilk, M.; Magdziarz, A.; Jayaraman, K.; Chargot, M.S.; Gokalp, I. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study. Biomass Bioenergy 2019, 120, 166–175. [Google Scholar] [CrossRef]
- Lee, J.; Lee, K.; Sohn, D.; Kim, Y.M.; Park, K.Y. Hydrothermal carbonization of lipid extracted algae for hydrochar production and feasibility of using hydrochar as a solid fuel. Energy 2018, 153, 913–920. [Google Scholar] [CrossRef]
- Gianfrancesco, D.A. 13–Worldwide overview and trend for clean and efficient use of coal. In Materials for Ultra-Supercritical and Advance Ultra-Supercritical Power Plants; Gianfrancesco, A.D., Ed.; Woodhead Publishing: Duxford, UK, 2017; pp. 643–687. [Google Scholar]
- Nanda, S.; Rana, R.; Sarangi, P.K.; Dalai, A.K.; Kozinski, J.A. A broad introduction to first-, second-, and third-generation biofuels. In Recent Advancements in Biofuels and Bioenergy Utilization; Sarangi, P., Nanda, S., Mohanty, P., Eds.; Springer: Singapore, 2018; pp. 1–25. [Google Scholar]
- Arif, A.B.; Budiyanto, A.; Diyono, W.; Hayuningtyas, M.; Marwati, T.; Sasmitaloka, K.S.; Richana, N. Bioethanol production from sweet sorghum bagasse through enzymatic process. IOP Conf. Ser. Earth Env. Environ. Sci. 2019, 309, 012033. [Google Scholar] [CrossRef]
- Wahyono, T.; Firsoni, F. The changes of nutrient composition and in vitro evaluation on gamma irradiated sweet sorghum bagasse. A Sci. J. Appl. Isot. Radiat. 2016, 12, 69–77. [Google Scholar] [CrossRef]
- Cabrita, A.R.J.; Fernandes, J.G.; Valente, I.M.; Almeida, A.; Lima, S.A.C.; Fonseca, A.J.M.; Maia, M.R.G. Nutritional composition and untargeted metabolomics reveal the potential of Tetradesmus obliquus, Chlorella vulgaris and Nannochloropsis oceanica as valuable nutrient sources for dogs. Animals 2022, 12, 2643. [Google Scholar] [CrossRef] [PubMed]
- Coelho, D.; Pestana, J.; Almeida, J.M.; Alfaia, C.M.; Fontes, C.M.G.A.; Moreira, O.; Prates, J.A.M. A high dietary incorporation level of Chlorella vulgaris improves the nutritional value of pork fat without impairing the performance of finishing pigs. Animals 2020, 10, 2384. [Google Scholar] [CrossRef]
- Sutiawan, J.; Hartono, R.; Hermawan, D.; Hadi, Y.S.; Nawawi, D.S.; Abdillah, I.B.; Syahfitri, A.; Kusumah, S.S.; Adi, D.S.; Kusumaningrum, W.B.; et al. Properties of table tennis blade from sorghum bagasse particleboard bonded with maleic acid adhesive at different pressing temperatures and times. Polymers 2023, 15, 166. [Google Scholar] [CrossRef]
- Safi, C.; Zebib, B.; Merah, O.; Pontalier, P.Y.; Garcia, C.V. Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renew. Sustain. Energy Rev. 2014, 35, 265–278. [Google Scholar] [CrossRef]
- Hossain, M.S.; Islam, M.N.; Rahman, M.M.; Mostofa, M.G.; Khan, M.A.R. Sorghum: A prospective crop for climatic vulnerability, food and nutritional security. J. Agric. Food Res. 2022, 8, 100300. [Google Scholar] [CrossRef]
- Changi, S.M.; Faeth, J.L.; Mo, N.; Savage, P.E. Hydrothermal reactions of biomolecules relevant for microalgae liquefaction. Ind. Eng. Chem. Res. 2015, 54, 11733–11758. [Google Scholar] [CrossRef]
- Lange, I. Steam versus coking coal and the acid rain program. Energy Policy 2010, 38, 1251–1254. [Google Scholar] [CrossRef]
- JIS M 1002:1978; Calculation of Coal Reserves. Japanese Standards Association: Tokyo, Japan, 2016. Available online: https://webdesk.jsa.or.jp/books/W11M0090 (accessed on 4 September 2023).
- Shui, H.; Zhao, W.; Shan, C.; Shui, T.; Pan, C.; Wang, Z.; Lei, Z.; Ren, S.; Kang, S. Caking and coking properties of the thermal dissolution soluble fraction of a fat coal. Fuel Process Technol. 2014, 118, 64–68. [Google Scholar] [CrossRef]
- Luthfi, N.; Fukushima, T.; Wang, X.; Takisawa, K. Significance and optimization of operating parameters in hydrothermal carbonization using RSM–CCD. Thermo 2024, 4, 82–99. [Google Scholar] [CrossRef]
- Jeder, A.; Sanchez, A.S.; Gadonneix, P.; Masson, E.; Quederni, A.; Celzard, A.; Fierro, V. The severity factor as a useful tool for producing hydrochars and derive carbon materials. Env. Environ. Sci. Pollut. Res. 2018, 25, 1497–1507. [Google Scholar] [CrossRef]
- Overend, R.P.; Chornet, E. Fractionation of lignocellulosic by steam-aqueous pretreatments. Philos. Trans. R. Soc. Lond. A 1987, 321, 523–536. [Google Scholar]
- Czajka, K.M. Proximate analysis of coal by micro-TG method. J. Anal. Appl. Pyrolysis 2018, 133, 89–90. [Google Scholar] [CrossRef]
- ASTM D 1762-84; Standard Test Method for Chemical Analysis of Wood Charcoal. ASTM International: West Conshohocken, PA, USA, 2007. Available online: https://www.astm.org/d1762-84r07.html (accessed on 22 September 2022).
- Zhang, J.; Wang, C.; Jia, X.; Wang, P.; Che, D. Experimental study on combustion and NO formation characteristics of semi-coke. Fuel 2019, 258, 116108. [Google Scholar] [CrossRef]
- Moller, M.; Nilges, P.; Harnisch, F.; Schroder, U. Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem 2011, 4, 566–579. [Google Scholar] [CrossRef]
- Luthfi, N.; Fukushima, T.; Takisawa, K. A comparative study of solid fuels from lignocellulosic and non-lignocellulosic biomass via hydrothermal carbonization. Doctoral Dissertation, Mie University, Tsu, Japan, 2024. To be submitted. [Google Scholar]
- Xiao, K.; Liu, H.; Li, Y.; Yi, L.; Zhang, X.; Hu, H.; Yao, H. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization. Bioresour. Technol. 2018, 265, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, H.; Xiao, K.; Liu, X.; Hu, H.; Li, X.; Yao, H. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins, and lipids. Bioresour. Technol. 2019, 272, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Prabir, B. Biomass Gasification, Pyrolysis and Torrefaction, 2nd ed.; Academic Press: London, UK, 2013. [Google Scholar]
- Dirgantara, M.; Karelius; Cahyana, B.T.; Suastika, K.G.; Akbar, A.R.M. Effect of temperature and residence time torrefaction palm kernel shell on the calorific value and energy yield. J. Phys. Conf. Ser. 2020, 1428, 012010. [Google Scholar] [CrossRef]
- Saha, S.; Islam, M.T.; Calhoun, J.; Reza, T. Effect of hydrothermal carbonization on fuel and combustion properties of shrimp shell waste. Energies 2023, 16, 5534. [Google Scholar] [CrossRef]
- Smith, A.M.; Singh, S.; Ross, A.B. Fate of inorganic material during hydrothermal carbonisation of biomass: Influence of feedstock on combustion behaviour of hydrochar. Fuel 2016, 169, 135–145. [Google Scholar] [CrossRef]
- Zhuang, X.; Huang, Y.; Song, Y.; Zhan, H.; Yin, X.; Wu, C. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment. Bioresour. Technol. 2017, 245, 463–470. [Google Scholar] [CrossRef]
- Leng, L.; Yang, L.; Leng, S.; Zhang, W.; Zhou, Y.; Peng, H.; Li, H.; Hu, Y.; Jiang, S.; Li, H. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Sci. Total Env. Environ. 2021, 756, 143679. [Google Scholar] [CrossRef]
- Gai, C.; Zhang, Y.; Chen, W.T.; Zhang, P.; Dong, Y. An investigation of reaction pathways of hydrothermal liquefaction using Chlorella pyrenoidosa and Spirulina platensis. Energy Convers. Manag. 2015, 96, 330–339. [Google Scholar] [CrossRef]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016, 283, 789–805. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhan, H.; Song, Y.; He, C.; Huang, Y.; Yin, X.; Wu, C. Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC). Fuel 2019, 236, 960–974. [Google Scholar] [CrossRef]
- Barreiro, D.L.; Beck, M.; Hornung, U.; Ronsse, F.; Kruse, A.; Prins, W. Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal Res. 2015, 11, 234–241. [Google Scholar] [CrossRef]
- Song, E.; Kim, H.; Kim, K.W.; Yoon, Y.M. Characteristic evaluation of different carbonization process for hydrochar, torrefied char, and biochar produced from cattle manure. Energies 2023, 16, 3265. [Google Scholar] [CrossRef]
- Miao, M.; Deng, B.; Kong, H.; Yang, H.; Lyu, J.; Jiang, X.; Zhang, M. Effects of volatile matter and oxygen concentration on combustion characteristics of coal in an oxygen-enriched fluidized bed. Energy 2021, 220, 119778. [Google Scholar] [CrossRef]
- Michaletz, S.T.; Johnson, E.A. How forest fires kill trees: A review of the fundamental biophysical processes. Scand. J. For. Res. 2007, 22, 500–515. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Li, Y.; Gao, S.; Yang, C.; Shi, X. Oxidation characteristics of functional groups in relation to coal spontaneous combustion. ACS Omega 2021, 6, 7669–7679. [Google Scholar] [CrossRef]
- Atallah, E.; Zeaiter, J.; Ahmad, M.N.; Kwapinska, M.; Leahy, J.J.; Kwapinski, W. The effect of temperature, residence time, and water-sludge ratio on hydrothermal carbonization of DAF dairy sludge. J. Environ. Chem. Eng. 2020, 8, 103599. [Google Scholar] [CrossRef]
- Reza, M.T.; Lynam, J.G.; Uddin, M.H.; Coronella, C.J. Hydrothermal carbonization: Fate of inorganics. Biomass Bioenergy 2013, 49, 86–94. [Google Scholar] [CrossRef]
- Evans, L.; Harrison, P.; Lawrence, J.; Casell, J.; Thiemann, D.; Kim, J. Coal Ash Primer; Earthjustice: San Francisco, CA, USA, 2023. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L. Correlation coefficients: Appropriate use and interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Toscano, G.; Riva, G.; Pedretti, E.F.; Duca, D. Effect of the carbon oxidation state of biomass compounds on the relationship between GCV and carbon content. Biomass Bioenergy 2013, 48, 231–238. [Google Scholar] [CrossRef]
- Sarikoc, S. Fuels of the diesel-gasoline engines and their properties. In Diesel and Gasoline Engines; Viskup, R., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Demirbas, A.; Al-Ghamdi, K. Relationships between specific gravities and higher heating values of petroleum components. Pet. Sci. Technol. 2015, 33, 732–740. [Google Scholar] [CrossRef]
- Gong, C.; Huang, J.; Feng, C.; Wang, G.; Tabil, L.; Wang, D. Effects and mechanism of ball milling on torrefaction of pine sawdust. Bioresour. Technol. 2016, 214, 242–247. [Google Scholar] [CrossRef]
- JCOAL. Clean Coal Technologies in Japan; Japan Coal Energy Center (JCOAL): Tokyo, Japan, 2007. [Google Scholar]
Temperature (°C) | - | 175 | 175 | 225 | 225 | 250 |
Residence Time (h) | - | 1.25 | 1.25 | 2.75 | 2.75 | 2.75 |
SF | Raw | 4.08 | 4.43 | 5.56 | 5.90 | 6.63 |
Sample | Atomic Ratio | Ratio Value | |||||
---|---|---|---|---|---|---|---|
Raw | SF 4.08 | SF 4.43 | SF 5.56 | SF 5.90 | SF 6.63 | ||
SB | H/C | 1.75 | 1.66 | 1.59 | 1.43 | 1.31 | 1.06 |
O/C | 0.78 | 0.73 | 0.67 | 0.57 | 0.49 | 0.28 | |
MA | H/C | 1.74 | 1.69 | 1.62 | 1.51 | 1.35 | 1.42 |
O/C | 0.46 | 0.40 | 0.35 | 0.26 | 0.19 | 0.14 |
Classification | SB Hydrochar | MA Hydrochar | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ranking | Type | SF 4.08 | SF 4.43 | SF 5.56 | SF 5.90 | SF 6.63 | SF 4.08 | SF 4.43 | SF 5.56 | SF 5.90 | SF 6.63 |
Anthracite | A1 | ||||||||||
A2 | |||||||||||
Bituminous | B1 | ||||||||||
B2 | CCA/C | ||||||||||
C | |||||||||||
Sub-bituminous | D | ||||||||||
E | SCB | SCB | |||||||||
Lignite | F1 | ||||||||||
F2 | SCB 1 | SCB | SCB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luthfi, N.; Fukushima, T.; Wang, X.; Takisawa, K. Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass. Resources 2024, 13, 49. https://doi.org/10.3390/resources13040049
Luthfi N, Fukushima T, Wang X, Takisawa K. Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass. Resources. 2024; 13(4):49. https://doi.org/10.3390/resources13040049
Chicago/Turabian StyleLuthfi, Numan, Takashi Fukushima, Xiulun Wang, and Kenji Takisawa. 2024. "Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass" Resources 13, no. 4: 49. https://doi.org/10.3390/resources13040049
APA StyleLuthfi, N., Fukushima, T., Wang, X., & Takisawa, K. (2024). Hydrochar as an Alternative to Coal: A Comparative Study of Lignocellulosic and Nonlignocellulosic Biomass. Resources, 13(4), 49. https://doi.org/10.3390/resources13040049