Nutritive Valorisation of Banana Tree (Musa acuminata) By-Products with Different Levels of Sodium Hydroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forage Collection and Preparation
2.2. Chemical Analysis
2.3. In Vitro Gas Production
2.4. Determination of Gross Energy
2.5. Statistical Analysis
3. Results
3.1. Chemical Composition, Nutritional Value and Energy Contents
3.2. In Vitro Gas Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giovanni, M.; Antonello, C.; Pablo, G. A review on the effects of part-time grazing herbaceous pastures on feeding behaviour and intake of cattle, sheep and horses. Livest. Sci. 2022, 263, 104982. [Google Scholar] [CrossRef]
- Singh, A.K. Non-Conventional Feed Resources for Small Ruminants. J. Anim. Health Behav. Sci. 2018, 2, 115. [Google Scholar]
- Salem, H.B.; Nefzaoui, A.; Ben Salem, L. Spineless cactus (Opuntia ficus indica f. inermis) and oldman saltbush (Atriplexn ummularia L.) as alternative supplements for growing Barbarine lambs given straw-based diets. Small Rumin. Res. 2004, 51, 65–73. [Google Scholar] [CrossRef]
- Alzate Acevedo, S.; Díaz Carrillo, Á.J.; Flórez-López, E.; Grande-Tovar, C.D. Recovery of Banana Waste-Loss from Production and Processing: A Contribution to a Circular Economy. Molecules 2021, 26, 5282. [Google Scholar] [CrossRef]
- Bertipaglia, L.M.A.; Luca, S.; Melo, G.M.P. Avaliação de Fontes de Urease na Amonização de Fenos de Brachiaria brizantha com Dois Teores de Umidade. Rev. Bras. Zootec. 2005, 34, 378–386. [Google Scholar] [CrossRef]
- Chaudhry, A.S. Nutrient composition, digestion and rumen fermentation in sheep of wheat straw treated with calcium oxide, sodium hydroxide and alkaline hydrogen peroxide. Anim. Feed. Sci. Technol. 1998, 74, 315–328. [Google Scholar] [CrossRef]
- Arisoy, M. The effect of sodium hydroxide treatment on chemical composition and digestibility of straw. Turk. J. Vet. Anim. Sci. 1998, 22, 165–170. [Google Scholar]
- Pereira Filho, J.M.; Vieira, E.L.; Silva, A.M.A.; Cezar, M.F.; Amorim, F.U. Effect of sodium hydroxide treatment on fiber fraction, digestibility, and tannin of Jurema-preta hay (Mimosa tenuiflora. Wild). Rural. Bras. Zootec. 2003, 32, 70–76. [Google Scholar] [CrossRef]
- Reis, R.A.; Rodrigues, L.R.A.; Pedroso, P. Avaliações de fontes de amônia para o tratamento de volumosos. Rev. Bras. Zootec. 1995, 24, 486–493. [Google Scholar] [CrossRef]
- Pires, A.J.V.; Reis, R.A.; Carvalho, G.G.P.; Siqueira, G.R.; Bernardes, T.F. Bagaço de cana-de-açúcar tratado com hidróxido de sódio. Rev. Bras. Zootec. 2006, 35, 953–957. [Google Scholar] [CrossRef]
- Reed, J.D. Nutritional toxicology of tannins and related polyphenols and forage legumes. J. Anim. Sci. 1995, 73, 1516–1528. [Google Scholar] [CrossRef]
- Wanapat, M.; SundstØl, F.; Garmo, T.H. A comparison of alkali treatment methods to improve the nutritive value of straw. I. Digestibility and Metabolizability. Anim. Feed. Sci. Technol. 1985, 12, 295–309. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock Publishing Associates: Ithaca, NY, USA, 1994; p. 476. [Google Scholar]
- Ahmadi, F.; Zamiri, M.J.; Khorvash, M.; Ziaee, E.; Polikarpov, I. Pre-treatment of sugarcane bagasse with a combination of sodium hydroxide and lime for improving the ruminal degradability: Optimization of process parameters using response surface methodology. J. Appl. Anim. Res. 2015, 44, 287–296. [Google Scholar] [CrossRef]
- Fiallos-Cárdenas, M.; Ramirez, A.D.; Pérez-Martínez, S.; Romero Bonilla, H.; Ordoñez-Viñan, M.; Ruiz-Barzola, O.; Reinoso, M.A. Bacterial Nanocellulose Derived from Banana Leaf Extract: Yield and Variation Factors. Resources 2021, 10, 121. [Google Scholar] [CrossRef]
- Teixeira, S.M.P.; Maduro Dias, C.S.A.M.; Vouzela, C.F.M.; Madruga, J.S.; Borba, A.E.S. Nutritive characterization of Musa spp. and its effects on in vitro Rumen fermentation characteristics (a). Agron. Res. 2021, 19, 2050–2056. [Google Scholar] [CrossRef]
- IPMA—Instituto Português do Mar e da Atmosfera. Boletins Climatológicos 2022–2023. Available online: https://www.ipma.pt/resources.www/docs/im.publicacoes/edicoes.online/20230208/lcyKQcLJztijILnBwxvu/cli_20221201_20221231_pcl_mm_az_pt.pdf (accessed on 28 September 2024).
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 1995. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage fibre analyses. In Agricultural Handbook; Routledge: Washington, DC, USA, 1970; Volume 379, pp. 8–9. [Google Scholar]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Alexander, R.H.; McGowan, M. The routine determination of in vitro digestibility of organic matter in forages. Na investigation of the problems associated with continuous large- scale operation. J. Brit. Grassl. Soc. 1966, 21, 140–147. [Google Scholar] [CrossRef]
- Borba, A.E.S.; Correia, P.J.A.; Fernandes, J.M.M.; Borba, A.F.R.S. Comparison of three sources of inocula for predicting apparent digestibility of ruminant feedstuffs. Anim. Res. 2001, 50, 265–273. [Google Scholar] [CrossRef]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- McDonald, I. A revised model for the estimation of protein degradability in the rumen. J. Agric. Sci. 1981, 96, 251–252. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, P. The estimation of protein degradability in the rumen from incubation measurements weighed according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Chen, X.B. Neway Excel: A Utility for Processing Data of Feed Degradability and In-Vitro Gas Production (Version 5.0); Rowett Research Institute: London, UK, 1997. [Google Scholar]
- Salehizadeh, P.; Bucknall, M.P.; Driscoll, R.; Arcot, J.; Srzednicki, G. Effects of Drying and Extraction Techniques on the Profile of Volatile Compounds in Banana Pseudostem; Karger: Basel, Switzerland, 2017; Volume 11, p. 3. [Google Scholar]
- Tuan, B.Q.; Hai, N.V. Research on using banana stem as feed for crossbred milking calves. J. Agric. Sci. 2004, 2, 1. [Google Scholar]
- Rusdy, M. Nutritional value of bananas (Musaceae) wastes for ruminants. CAB Rev. 2019, 14, 44. [Google Scholar] [CrossRef]
- Pires, A.J.V.; de Carvalho, G.G.P.; Ribeiro, L.S.O. Chemical treatment of roughage. R. Bras. Zootec. 2010, 39, 192–203. [Google Scholar] [CrossRef]
- Tarkov, H.; Feist, W.C. A mechanism for improving the digestibility of lignocelulosic materials with dilute alkali and liquid ammonia. Adv. Chem. Ser. 1969, 95, 197–218. [Google Scholar] [CrossRef]
- Chaudhry, A.S. Rumen degradation in sacco in sheep of wheat straw treated wich calcium oxide, sodium hydroxide and sodium hydroxide plus hydrogen peroxide. Anim. Feed. Sci. Technol. 2000, 83, 313–323. [Google Scholar] [CrossRef]
- Kerley, M.S.; Fahey, J.R.; Berger, L.L. Effects of treating wheat straw with pH-regulated solutions of alkaline hydrogen peroxide on nutrient digestion by sheep. J. Dairy Sci. 1987, 70, 2078–2084. [Google Scholar] [CrossRef]
- Manzano, R.P.; Fukushima, R.S.; Gomes, J.D.F. Digestibilidade do bagaço de cana-de-açúcar tratado com reagentes químicos e pressão de vapor. Rev. Bras. Zootec. 2000, 29, 1196–1204. [Google Scholar] [CrossRef]
- Chaudhry, A.S. Washing and filtration of wheat straw treated wich sodium hydroxide alone or wich hydrogen peroxide to modify cell wall composition and in vitro digestibility. Aust. J. Exp. Agric. 1997, 37, 617–621. [Google Scholar] [CrossRef]
- Nolte, M.E.; Cline, J.H.; Dehority, B.A. Treatment of wheat straw with alkaline solutions prepared from wood ashes to improve fiber utilization by ruminants. J. Anim. Sci. 1987, 64, 1516–1528. [Google Scholar] [CrossRef]
- Sundstøl, F.; Coxworth, E.M. Ammonia treatment. In Straw and Other Fibrous By-Products as Feed: Developments in Animal Veterinary Sciences; Sundstøl, F., Owen, E., Eds.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 14, pp. 196–247. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of Ruminants; Cornel University Press: Ithaca, NY, USA; London, UK,, 1998. [Google Scholar]
- Carmo, T.D.; Barbosa, P.M.; Gerassev, L.C.; Costa, D.S.; Seles, G.M.; Duarte, E.R. Intake and digestibility of lamb fed diets containing banana crop residues. Pesqui. Agropecuária Bras. Brasilia 2018, 53, 197–205. [Google Scholar] [CrossRef]
- Moss, A.R.; Givens, D.I.; Furniss, S. A comparison of farm scale methods of application of sodium hydroxide on the nutritive value of a winter wheat straw. Anim. Feed. Sci. Technol. 1993, 41, 199–212. [Google Scholar] [CrossRef]
- Pereira Filho, J.M.; Amorim, O.S.; Vieira, E.L. Efeito do tratamento químico com hidróxido de sódio sobre a degradabilidade “in situ” da FDN e da PB do feno de jurema preta (Mimosa tenuiflora Wild). In Reunión da Associación Latino Américana de Producción Animal; Asociación Latinoamericana de Producción Animal: Toronto, ON, Canada, 2001; p. 17. [Google Scholar] [CrossRef]
- Akin, D.E.; Rigsby, L.L.; Theodorou, M.K. Population changes of fibrolytic bacterium in the presence of phenolic acids and plant extracts. Anim. Feed. Sci. Technol. 1988, 19, 261–275. [Google Scholar] [CrossRef]
- Okoli, I.C. Banana and plantain wastes 3: Use of pseudo-stem and leaves as animal feed. In Research Tropic; FAO: Rome, Italy, 2020; Available online: https://researchtropica.com/banana-and-plantain-wastes-3/ (accessed on 26 August 2024).
- Shibata, M.; Terada, F. Factors affecting methane production and mitigation in ruminants. Anim. Sci. J. 2010, 81, 2–10. [Google Scholar] [CrossRef]
- Koyama, M.; Yamamoto, S.; Ishikawa, K.; Ban, S.; Toda, T. Inhibition of anaerobic digestion by dissolved lignin derived from alkaline pre-treatment of an aquatic macrophyte. Chem. Eng. J. 2017, 311, 55–62. [Google Scholar] [CrossRef]
- Meeske, R.; Meissner, H.; Pienaar, J.P. The upgrading of wheat straw by alkaline hydrogen peroxide treatment: The effect of NaOH and H2O2 on the site and extent of digestion in sheep. Anim. Feed. Sci. Technol. 1993, 40, 121–133. [Google Scholar] [CrossRef]
- Shetty, D.J.; Kshirsagar, P.; Tapadia-Maheshwari, S.; Lanjekar, V.; Singh, S.K.; Dhakephalkar, P.K. Alkali pretreatment at ambient temperature: A promising method to enhance biomethanation of rice straw. Bioresour. Technol. 2017, 226, 80–88. [Google Scholar] [CrossRef]
- Hierholtzer, A.; Akunna, J.C. Modelling sodium inhibition on the anaerobic digestion process. Water Sci. Technol. 2012, 66, 1565–1573. [Google Scholar] [CrossRef]
- Teixeira, S.M.P.; Maduro Dias, C.S.A.M.; Vouzela, C.F.M.; Madruga, J.S.; Borba, A.E.S. Nutritional valorisation of cane (Arundo donax) by treatment with sodium hydroxide. S. Afr. J. Anim. Sci. 2021, 51, 4. [Google Scholar] [CrossRef]
- Oliveira, L.N. Composição Química, Degradabilidade e Potencial de Emissão de Metano de Resíduos da Bananicultura para Ruminantes. Master’s Thesis, Faculty of Agronomy and Veterinary Medicine, Brasília, Brazil, 2012; 47p. [Google Scholar]
Treatment | DM | 100 g DM | DMD | GE | |||||
---|---|---|---|---|---|---|---|---|---|
(%) | CP | NDF | ADF | ADL | Ash | (%) | MJ/Kg DM | ||
Control | Leaves | 24.21 a | 14.17 a | 77.9 a | 40.4 a | 12.9 a | 18.28 | 21.0 a | 15.4 |
(±4.42) | (±1.56) | (±4.3) | (±4.7) | (±2.9) | (±3.34) | (±3.3) | |||
Pseudostem | 6.38 b | 7.52 b | 55.3 b | 30.6 b | 4.6 b | 21.48 | 46.7 b | 13.1 | |
(±0.31) | (±0.84) | (±3.0) | (±3.3) | (±0.6) | (±3.04) | (±3.4) | |||
2% NaOH | Leaves | 24.84 a | 12.16 a | 66.3 a | 41.8 a | 12.3 a | 20 | 20.0 a | 16.5 |
(±1.1) | (±0.12) | (±0.7) | (±2.3) | (±0.5) | (±0.99) | (±1.2) | |||
Pseudostem | 6.99 b | 7.68 b | 49.2 b | 30.1 b | 4.7 b | 24.54 | 44.1 b | 12.6 | |
(±0.97) | (±2.84) | (±4.3) | (±1.8) | (±1.2) | (±3.46) | (±4.8) | |||
4% NaOH | Leaves | 22.88 a | 12.49 a | 62.2 a | 39 a | 10.6 a | 22.62 | 24.8 a | 15.3 |
(±1.96) | (±0.86) | (±3.5) | (±1.0) | (±0.7) | (±1.30) | (±0.8) | |||
Pseudostem | 6.78 b | 6.02 b | 48.8 b | 29.7 b | 4.6 b | 26.11 | 46.4 b | 12.4 | |
(±0.51) | (±0.63) | (±3.5) | (±3.0) | (±1.0) | (±1.19) | (±3.2) | |||
6% NaOH | Leaves | 23.92 a | 13.84 a | 62 a | 40.0 a | 12.1 a | 23.61 | 31.1 a | 15.2 |
(±1.45) | (±1.98) | (±0.4) | (±2.2) | (±0.2) | (±1.27) | (±2.2) | |||
Pseudostem | 7.36 b | 5.43 b | 44.2 b | 27.2 b | 3.2 b | 26.83 | 58.8 b | 12.65 | |
(±0.48) | (±0.96) | (±3.3) | (±3.8) | (±1.4) | (±2.05) | (±1.8) | |||
8% NaOH | Leaves | 26.13 a | 12.46 a | 56.27 | 37.6 a | 10.1 a | 25.71 | 33.4 a | 14.5 |
(±0.83) | (±1.07) | (±1.17) | (±0.8) | (±0.8) | (±1.03) | (±2.6) | |||
Pseudostem | 7.69 b | 5.90 b | 48.57 | 29.9 b | 3.5 b | 30.99 | 50.9 b | 11.95 | |
(±0.63) | (±0.68) | (±3.4) | (±1.8) | (±0.6) | (±2.69) | (±4.3) |
Treatment | Incubation Time (h) | Gas Kinetic Parameters | Lag Time (h) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
4 | 8 | 12 | 24 | 48 | 72 | 96 | a | b | c | |||
Control | Leaves | 1.28 | 1.68 | 2.07 | 3.18 | 5.21 | 6.98 | 8.53 | 0.87 | 18.62 | 0.0055 | 0.0 |
Pseudostems | −0.16 | 1.67 | 3.42 | 8.20 | 15.99 | 21.95 | 26.52 | 0.00 | 44.18 | 0.0111 | 4.4 | |
2% NaOH | Leaves | 1.27 | 1.63 | 1.99 | 3.03 | 5.02 | 6.89 | 8.66 | 0.91 | 37.26 | 0.0025 | 0.0 |
Pseudostems | 0.58 | 2.10 | 3.51 | 7.20 | 12.78 | 16.79 | 19.87 | 0.18 | 45.94 | 0.0114 | 2.7 | |
4% NaOH | Leaves | 0.82 | 1.54 | 2.23 | 4.15 | 7.38 | 9.95 | 12.02 | 0.13 | 24.59 | 0.0087 | 0.2 |
Pseudostems | 0.55 | 4.80 | 8.44 | 16.50 | 24.75 | 28.01 | 29.32 | 0.00 | 30.20 | 0.0397 | 3.6 | |
6% NaOH | Leaves | 1.61 | 2.75 | 3.84 | 6.76 | 11.38 | 14.73 | 17.17 | 0.43 | 23.27 | 0.0133 | 0.1 |
Pseudostems | 0.54 | 4.76 | 8.32 | 15.98 | 23.41 | 26.19 | 27.26 | 0.00 | 28.00 | 0.0419 | 3.6 | |
8% NaOH | Leaves | 1.65 | 2.63 | 3.53 | 5.88 | 9.26 | 11.44 | 12.86 | 0.60 | 14.98 | 0.0186 | 0.0 |
Pseudostems | −0.08 | 2.86 | 5.51 | 12.02 | 20.52 | 25.42 | 28.43 | 0.00 | 37.21 | 0.0247 | 4.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, S.M.P.; Nunes, H.P.B.; Vouzela, C.F.M.; Madruga, J.d.S.; Borba, A.E.S. Nutritive Valorisation of Banana Tree (Musa acuminata) By-Products with Different Levels of Sodium Hydroxide. Resources 2024, 13, 143. https://doi.org/10.3390/resources13100143
Teixeira SMP, Nunes HPB, Vouzela CFM, Madruga JdS, Borba AES. Nutritive Valorisation of Banana Tree (Musa acuminata) By-Products with Different Levels of Sodium Hydroxide. Resources. 2024; 13(10):143. https://doi.org/10.3390/resources13100143
Chicago/Turabian StyleTeixeira, Sofia Margarida Pontes, Helder Patrício Barcelos Nunes, Carlos Fernando Mimoso Vouzela, João da Silva Madruga, and Alfredo Emílio Silveira Borba. 2024. "Nutritive Valorisation of Banana Tree (Musa acuminata) By-Products with Different Levels of Sodium Hydroxide" Resources 13, no. 10: 143. https://doi.org/10.3390/resources13100143
APA StyleTeixeira, S. M. P., Nunes, H. P. B., Vouzela, C. F. M., Madruga, J. d. S., & Borba, A. E. S. (2024). Nutritive Valorisation of Banana Tree (Musa acuminata) By-Products with Different Levels of Sodium Hydroxide. Resources, 13(10), 143. https://doi.org/10.3390/resources13100143