Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability
Abstract
:1. Introduction
2. Potential Sources of Microplastic Pollution in Soil
2.1. Microplastics as a Driver of Land Pollution
2.2. Impacts of Microplastics on Physiochemical Properties of Soil
2.3. Microplastic Effects on Soil Microbial Community
Microplastic Type | Size | Species | Effects | Country of Study | References |
---|---|---|---|---|---|
LDPE | <150 μm, <50 μm, | Lumbricus terrestris | L. terrestris propagates microplastics from the soil surface into their burrows. | Netherlands | [40] |
LDPE | <5 mm, 5–150 mm | Earthworm, chicken (Manure) | Conc. of plastic increases from soil to L. terrestris casts and then Chicken feces. | Netherlands | [41] |
PE | <50–100 μm, >100 μm | Lumbricus terrestris | Higher conc. of MPs may influence the rate of growth in L. terrestris. | Netherlands | [41] |
PVC | 250–80 μm | Hypoaspis aculeifer, Folsomia candida, | Trophic predator-prey relationships promote the passage of MPs by 40%. | China | [42] |
PE, PS | <250 μm–<300 μm, | Eisenia fetida | Conc. of HOC (hydrophobic organic compound) in E. fetida was minimized in the presence of MPs by above 1%. | China | [37] |
PE | 2800–710 μm | Lumbricus terrestris | The presence of earthworms greatly maximizes the existence of microplastic particles at the bottom of the soil. | Berlin | [16] |
PE | <500 μm | Folsomia candida | Inhibited breeding and lower bacterial diversity in the springtail gut. | China | [43] |
PE | 250–1000 μm | Lumbricus terrestris | No substantial conclusions were documented on the survival, number, and L. terrestris weight. | Spain | [44] |
LDPE | 0.25 μm, 1–5 mm | Lumbricus terrestris | Microplastics cannot be the carriers of organic pollutants to earthworms. | Spain | [44] |
Urea-formaldehyde | 200–400 μm | Folsomia candida, Proisotoma minuta | Movement and distribution of MPs by microarthropods. | Berlin | [45] |
Polystyrene | 0.1–0.05 μm | Enchytraeus crypticus | Reduction of biomass in the animals fed 10% PS and an increase in the breeding of those fed 0.025%. | China | [42] |
PVC | 80–250 μm | Folsomia candida | Alteration and inhibition of the microbiota in the gut of the collembolan. | China | [42] |
LDPE | <150 μm | Lumbricus terrestris | Earthworm weight was adversely affected by the amalgamation of glyphosate and MPs | China | [46] |
PA, PET, PEHD, PES, PS, PP | 20–15 μm | Spring onions (Allium istulosum) | MPs can affect leaf attributes, roots of plants, and entire biomass. | Berlin | [27] |
LDPE | 1 mm–50 μm | Wheat (Triticum aestivum) | Remains of plastics affected the upper/lower parts of the wheat plant. | Netherlands | [39] |
2.4. Impact of Microplastics on Existing Soil Pollutants
Microplastic Types | Size | Soil Pollutants | Effects | Geographic Zones | References |
---|---|---|---|---|---|
LDPE | 25–100 μm | Deltamethrin | More pesticides accumulated on the mulch films | Netherland (WUR) | [52] |
PVC | NA | Heavy metal (As) | Lowers toxicity in the Lumbricus terrestris. L (earthworm) | China | [37] |
Polyurethane foam | <75 μm | PBDE (POP) | Accumulation of worms 3740 mg/kg PBDE burdens | Virginia, US | [53] |
HDPE | <5 mm | Heavy metal (Zn) | Bioavailability of zinc increases | United Kingdom | [54] |
LDPE | <150 μm | Glyphosate | Combined negative effects on earthworm weight | China | [55] |
LDPE | 5 mm, 0.25–1 mm | Chlorpyrifos | The more chlorpyrifos transfer to the soil base | Spain | [56] |
PE, PS | 250 μm, 300 μm | PAHs, PCBs | After MPs invasion, the conc. of PAHs and PCBs in the tissue reduced | China | [37] |
PS, PE, PP | 100 –150 μm | Nitroanthracene (9-Nant): NPAH:9- | NA | China | [57] |
PV, PS, PE | 200 ± 10 μm | 17β-estradiol (E2) | NA | China | [58] |
PS, PP | spherical shape 3–5 mm: PP, cylindrical shape 3.5 mm length and 2.2 mm thickness: PS | Aromatics: benzene, toluene, ethyl benzene, and xylene; BTEX fuel ethers: Methyl tert-butyl ether: MTBE, tert-amyl ethyl ether: TAME | NA | Berlin | [59] |
PS, PVC, PE | <75 μm | (DEP); Dibutyl phthalate (DBP), PAEs: Diethyl phthalate. | NA | Korea | [60] |
HDPE, PS, PS-COOH | 3–16 μm, 10 μm, 10 μm | PFAS | NA | Spain | [61] |
PVC-S, PVC-L | <1 μm, 74 μm | Triclosan | NA | China | [62] |
PVC, PE, PP | <0.15 mm | PHCs: 3,6-dibromocarbazole (3,6-BCZ); 3,6-dichlorocarbazole (3,6-CCZ); 2,7-dibromocarbazole (2,7-BCZ); 3-bromocarbazole (3-BCZ):3,6-diiodocarbazole (3,6-ICZ). | NA | China | [63] |
PE, PS, PVC, PA | 152.53 ± 57.92 μm, 57.64 ± 26.50 μm, 109.44 ± 44.53 μm, 168.55 ± 57.50 μm. | Chlorobenzene, Naphthalene n-Hexane, Toluene, Cyclohexane, Benzene, | NA | Austria | [64] |
PE | 0.85–0.71 mm | Difenoconazole, Imidacloprid, Buprofezin, | NA | China | [50] |
PVC, PE | 1–5, 0.425–1, 0.125–0.425, and 0.045–0.125 mm. | TCEP—Tris(2-chloroethyl) phosphate; TBP—Tri-n-butyl phosphate | NA | China | [65] |
PE, PVC | <125 μm | Simazine | Induction of MPs decreases density and a shift in soil microbial communities. | China | [66] |
PP powder | NA | Glyphosate | Respiration of soil and enzymatic actions related to P4, N2, and C cycles altered during the incubation. | China | [55] |
LDPE and biodegradables | 0.85–2.00 mm | Prothioconazole | Prothioconazole impacts the desorption/adsorption of heavy metals on both MPs. | China | [67] |
PE fiber, PE beads, and tire fragments | <5 mm, 250–300 μm, <5 mm | 2,4-D Atrazine DDT Glyphosate | The mixture of (pesticides + MPs) with sediments, changes the pesticide assimilation, neither in river water nor in deionized, in contrast with the sediments. | Canada | [68] |
PE powder | 40–48 μm, | Epoxiconazole Myclobutanil Tebuconazole Simazine Azoxystrobin Metolachlor Terbutylazine Atrazine | Floating of PE in water, its interaction with the sediment is inadequate and does not change the pesticide half-life that persists in the deposits. | China | [26] |
LDPE | 0.60–2850 cm2 | Chlorpyrifos Endosulfan Deltamethrin Procymidone Trifluralin | Applied pesticides on the mulches contacted the soil later 24 h. Migration of pesticides to the inside the plastic, more for thicker plastics, and then partially released in the soil and to the environment. | Argentina | [52] |
PE | 125–250 μm | Atrazine 2,4-DB | The MPs lowered the adsorption of herbicides due to the low mol. interaction with the PE (aliphatic). Likely condensed the mobility of components due to a decreased soil holding capacity. | Austria | [69] |
PS-50, PVC-42000 and PVC-10 | 2–110 μm, 100–290 μm, 0.5–1.4 μm | Thiacloprid | Irrelevant effect of various microplastics compositions and size on the assimilation. | China | [33] |
Pristine, PBAT, and aged PE (bio-MPs) | NA | Flumioxazin Imidacloprid | The deterioration of pesticides was enhanced with pristine MPs and overdue with aged, bio-MPs and above at greater MPs conc. | China | [70] |
PE powder | 180 and 120 μm: powder, 3000–2000 μm: pellets | o,p’-DDT, p,p’-DDT, p,p’-DDE, p,p’-DDD, β-HCH, γ-HCH, α-HCH, δ-HCH | MPs assimilate more pesticides. This MP could enhance the strength of non-polar pesticides in soil. | China | [71] |
3. Microplastic Pollution as a Threat to Soil Ecosystem Sustainability and the UNSDGs
4. Way forward for Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, V.; Fraceto, L.F.; Abhilash, P.C. Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecol. Eng. 2015, 82, 330–335. [Google Scholar] [CrossRef]
- Henry, B.; Laitala, K.; Klepp, G.I. Microfibrils from apparel and home textiles: Prospects for including microplastics in environmental sustainability assessment. Sci. Total Environ. 2018, 652, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Coban, O.; De Deyn, G.B.; van der Ploeg, M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022, 375, abe0725. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics: Missing link in the era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef]
- Huang, W.; Deng, J.; Liang, J.; Xia, X. Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles. Chem. Eng. J. 2023, 460, 141838. [Google Scholar] [CrossRef]
- He, D.; Luo, Y.; Lu, S.; Liu, M. Microplastics in soil: Analytical methods, pollution characteristics and ecological risks. Trend. Anal. Chem. 2018, 109, 163–172. [Google Scholar] [CrossRef]
- Plastic Europe 2017. Plastics-The Facts 2017: An Analysis of European Plastics Production, Demand and Waste Data. Available online: https://plasticseurope.org/wp-content/uploads/2021/10/2017-Plastics-the-facts.pdf (accessed on 7 March 2023).
- United Nations. The Sustainable Development Goal Reports 2022, 54. Available online: https://unstats.un.org/sdgs/report/2022/ (accessed on 7 March 2023).
- Guo, J.J.; Huang, X.P.; Xiang, L.; Wang, Y.Z.; Li, Y.W.; Li, H.; Cai, Q.Y.; Mo, C.H.; Wong, M.H. Source, migration and toxicology of microplastics in soil. Environ. Int. 2020, 137, 105263. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lngraffia, R.; de Souza Machado, A.A. Microplastics incorporation into soil in Agroecosystem. Front. Plant Sci. 2017, 8, 1805. [Google Scholar] [CrossRef]
- Auta, H.S.; Emenike, C.U.; Fauziah, S.H. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions. Environ. Int. 2017, 102, 165–176. [Google Scholar] [CrossRef]
- Austen, K.; MacLean, J.; Balanzategui, D.; Hölker, F. Microplastic inclusion in birch tree roots. Sci. Total Environ. 2022, 808, 152085. [Google Scholar] [CrossRef] [PubMed]
- Mariano, S.; Tacconi, S.; Fidaleo, M.; Rossi, M.; Dini, L. Micro and Nanoplastics Identification: Classic method and Innovative detection techniques. Front. Toxicol. 2021, 3, 636640. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Liu, F.; Cryder, Z.; Huang, D.; Lu, Z.; He, Y. Microplastics in the soil environment: Occurrence, risks, interactions and fate- A review. Critic. Rev. Environ. Sci. Technol. 2019, 50, 2175–2222. [Google Scholar] [CrossRef]
- Rillig, M.C.; Ziersch, L.; Hempel, S. Microplastic transport in soil by earthworm. Sci. Rep. 2017, 7, 1362. [Google Scholar] [CrossRef]
- Fu, L.; Li, J.; Wang, G.; Luan, Y.; Dai, W. Adsorption behavior of organic pollutants on microplastics. Ecotox. Environ. Safe 2021, 217, 112207. [Google Scholar] [CrossRef]
- Prokic, M.D.; Radovanovic, T.B.; Gavric, J.P.; Faggio, C. Ecotoxicological effect of Microplastics: Examination of biomarkers, current status and future perspective. Trend. Anal. Chem. 2018, 111, 37–46. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Tehrani-Bagha, A. A review of microplastic emission from textile materials and its reduction techniques. Polym. Degrad. Stab. 2022, 199, 109901. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Fileman, E.; Halsband, C.; Goodhead, R.; Moger, J.; Galloway, T.S. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 2013, 47, 6646–6655. [Google Scholar] [CrossRef]
- Ding, J.; Lv, M.; Zhu, D.; Leifheit, E.F.; Chen, Q.L.; Wang, Y.Q.; Chen, L.X.; Rillig, M.C.; Zhu, Y.G. Tire wear partcles: An emerging threat to soil health. Critic. Rev. Environ. Sci. Technol. 2023, 53, 239–257. [Google Scholar] [CrossRef]
- He, S.; Wei, Y.; Yang, C.; He, Z. Interaction of microplastics and soil pollutants in soil-plant systems. Environ. Pollut. 2022, 315, 120357. [Google Scholar] [CrossRef]
- de Souza Machado, A.A.; Kloas, W.; Zarfl, C.; Hempel, S.; Rillig, M.C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Chang. Biol. 2018, 24, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Rogers, K.L.; Carreres-Calabuig, J.A.; Gorokhova, E.; Posth, N.R. Micro-by-micro interactions: How microorganisms influence the fate of marine microplastics. Limnol. Oceanogr. Lett. 2020, 5, 18–36. [Google Scholar] [CrossRef]
- Hurley, R.R.; Nizzetto, L. Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Curr. Opin. Environ. Sci. Health 2018, 1, 6–11. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zhai, W.; Liu, D.; Zhou, Z.; Wang, P. The influence of polyethylene microplastics on pesticide residue and degradation in the aquatic environment. J. Hazard. Mater. 2020, 394, 122517. [Google Scholar] [CrossRef]
- Machado, A.; Lau, C.W.; Kloas, W.; Bermann, J.; Bachelier, J.B.; Faltin, E. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 2019, 53, 6044–6052. [Google Scholar] [CrossRef]
- Sajjad, M.; Huang, Q.; Khan, S.; Khan, M.A.; Yin, L.; Wang, J.; Lian, F.; Wang, Q.; Guo, G. Microplastics in the soil environment: A critical review. Environ. Technol. Innov. 2022, 12, 102408. [Google Scholar] [CrossRef]
- Qi, Y.; Beriot, N.; Gort, G.; Lwanga, E.H.; Gooren, H.; Yang, X.; Geissen, V. Impact of plastic mulch film debris on soil physicochemical and hydrological properties. Environ. Pollut. 2020, 266, 115097. [Google Scholar] [CrossRef] [PubMed]
- de Souza Machado, A.A.; Lau, C.W.; Till, J.; Kloas, W.; Lehmann, A.; Becker, R.; Rillig, M.C. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 2018, 52, 9656–9665. [Google Scholar] [CrossRef]
- Miltner, A.; Bombach, P.; Schmidt-Brucken, B.; Kastner, M. Som genesis: Microbial biomass as a significant source. Biochemistry 2012, 111, 41–55. [Google Scholar] [CrossRef]
- Xu, X.F.; Thornton, P.E.; Post, W.M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorous in terrestrial ecosystem. Global Ecol. Biogeogr. 2012, 22, 737–749. [Google Scholar] [CrossRef]
- Xu, Z.L.; Qian, X.; Wang, C.; Zhang, C.; Tang, T.; Zhao, X. Environmentally relevant concentrations of microplastic exhibits negligible impacts on thiacloprid dissipation and enzyme activity in soil. Environ. Res. 2020, 189, 109892. [Google Scholar] [CrossRef] [PubMed]
- Rong, L.; Zhao, L.; Zhao, L.; Cheng, Z.; Yao, Y.; Yuan, C.; Wang, L. LDPE microplastics affect soil microbial communities and nitrogen cycling. Sci. Total Environ. 2021, 773, 145640. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A. Microplastics in Terrestrial ecosystem. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C.; Lehmann, A.; de Souza Machado, A.A.; Yang, G. Microplastics Effects on plants. New Phytol. 2019, 223, 1066–1070. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.T.; Ding, J.; Xiong, C.; Zhu, D.; Li, G.; Jia, X.Y.; Zhu, Y.G. Exposure to microplastics lowers arsenic accumulation and alters gut bacterial communities of earthworm Metaphire california. Environ. Pollut. 2019, 251, 110–116. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Ouyang, D.; Lei, J.; Tan, Q.; Xie, L.; Li, Z.; Liu, T. Systematical review of interaction between microplastics and microorganism in the soil environment. J. Hazard. Mater. 2021, 418, 126288. [Google Scholar] [CrossRef]
- Qi, Y.; Yang, X.; Pelaez, A.M.; Lwanga, E.H.; Beriot, N.; Gertsen, H. Macro- and micro- plastics in soil-plant system: Effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci. Total Environ. 2018, 645, 1048–1056. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; Ploeg, M.V.D. Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ. Pollut. 2017, 220 Pt A, 523–531. [Google Scholar] [CrossRef]
- Lwanga, E.H.; Gertsen, H.; Gooren, H.; Peters, P.; Salanki, T.; Ploeg, M.V.D. Microplastics in the terrestrial ecosystem: Implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 2016, 50, 2685–2691. [Google Scholar] [CrossRef]
- Zhu, B.K.; Fang, Y.M.; Zhu, D.; Christie, P.; Ke, X. Exposure to nano plastics disturbs the gut microbiome in the soil oligochaete Enchytraeus crypticus. Environ. Pollut. 2018, 239, 408–415. [Google Scholar] [CrossRef]
- Ju, H.; Zhu, D.; Qiao, M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail, Folsomia candida. Environ. Pollut. 2019, 247, 890–897. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Seijo, A.; Lourenco, J.; Rocha-Santos, T.A.P.; Duarte, A.C.; Vala, H. Histopathological and molecular effects of microplastics in Eisenia andrei Bouche. Environ. Pollut. 2016, 220 Pt A, 495–503. [Google Scholar] [CrossRef]
- Maaß, S.; Daphi, D.; Lehmann, A.; Rillig, M.C. Transport of microplastics by two collembolan species. Environ. Pollut. 2017, 225, 456–459. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Lwanga, E.H.; Bemani, A.; Gertsen, H.; Salanki, T.; Guo, X.; Fu, H. Biogenic transport of glyphosate in the presence of LDPE microplastics: A mesocosm experiment. Environ. Pollut. 2018, 245, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Pan, S.; Shan, Y.; Ma, Y.; Wang, D.; Song, X.; Hu, H. Microplastics mulch films affects the environmental behaviour of adsorption of pesticides residues in soil. Environ. Res. 2022, 214, 114133. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Q.; Adams, C.A.; Sun, Y.; Zhang, S. Effects of microplastics on soil properties: Current knowledge and future perspectives. J. Hazard. Mater. 2022, 424, 127531. [Google Scholar] [CrossRef]
- Wang, T.; Yu, C.; Chu, Q.; Wang, F.; Lan, T.; Wang, J. Adsorption behavior and mechanism of five pesticides on microplastics from agricultural polyethylene films. Chemosphere 2020, 244, 125491. [Google Scholar] [CrossRef]
- Li, Y.; Wang, F.; Li, J.; Deng, S.; Zhang, S. Adsorption of three pesticides on polyethylene microplastics in aqueous solutions: Kinetics, isotherms, thermodynamics, and molecular dynamics simulation. Chemosphere 2021, 264, 128556. [Google Scholar] [CrossRef]
- Mohana, A.A.; Rahman, M.; Sarker, S.K.; Haque, N.; Gao, L. Nano/microplastics: Fragmentation, in teraction with co-existing pollutants and their removal from wastewater using membrane processes. Chemosphere 2022, 309, 136682. [Google Scholar] [CrossRef]
- Ramos, L.; Berenstein, G.; Hughes, E.A.; Zalts, A.; Montserrat, J.M. Polyethylene film incorporation into the horticultural soil of small periurban production units in Argentina. Sci. Total Environ. 2015, 523, 74–81. [Google Scholar] [CrossRef]
- Gaylor, M.O.; Harvey, E.; Hale, R.C. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils. Environ. Sci. Technol. 2013, 47, 13831–13839. [Google Scholar] [CrossRef] [PubMed]
- Hodson, M.E.; Duffus-Hodson, C.A.; Prendergast-Miller, M.T.; Thorpe, K.L. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environ. Sci. Technol. 2017, 51, 4714–4721. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Bento, C.P.M.; Chen, H.; Zhang, H.; Xue, S.; Lwanga, E.H. Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environ. Pollut. 2018, 242 Pt A, 338–347. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Santos, B.; da Silva, E.F.; Cachada, A.; Pereira, R. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ. Chem. 2018, 16, 8. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, H.; He, H.; Cheng, X.; Ma, T.; Hu, J.; Yang, S. Adsorption behavior and mechanism of 9-Nitroanthracene on typical microplastics in aqueous solutions. Chemosphere 2020, 245, 125628. [Google Scholar] [CrossRef]
- Hu, B.; Li, Y.; Jiang, L.; Chen, X.; Wang, L.; An, S.; Zhang, F. Influence of microplastics occurrence on the adsorption of 17β-estradiol in soil. J. Hazard. Mater. 2020, 400, 123325. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Becker, R.; Dorgerloh, U.; Simon, F.G.; Braun, U. The effect of polymer aging on the uptake of fuel aromatics and ethers by microplastics. Environ. Pollut. 2018, 240, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.F.; Liu, G.Z.; Wang, S.C.; Zhao, F.F. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 2018, 214, 688–694. [Google Scholar] [CrossRef]
- Llorca, M.; Schirinzi, G.; Martínez, M.; Barceló, D.; Farre, M. Adsorption of perfluoroalkyl substances on microplastics under environmental conditions. Environ. Pollut. 2018, 235, 680–691. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, J.; Zhu, Z.; Li, L.; Yu, F. Effect of microplastic size on the adsorption behavior and mechanism of triclosan on polyvinyl chloride. Environ. Pollut. 2019, 254, 113104. [Google Scholar] [CrossRef]
- Qiu, Y.; Zheng, M.; Wang, L.; Zhao, Q.; Lou, Y.; Shi, L. Sorption of polyhalogenated carbazoles (PHCs) to microplastics. Mar. Pollut. Bull. 2019, 146, 718–728. [Google Scholar] [CrossRef]
- Huffer, T.; Hofmann, T. Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environ. Pollut. 2016, 214, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Tan, Z.; Qi, Y.; Ouyang, C. Sorption of tri-n-butyl phosphate and tris(2-chloroethyl) phosphate on polyethylene and polyvinyl chloride microplastics in seawater. Mar. Pollut. Bull. 2019, 149, 110490. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Wen, Y.; Cheng, H.; Zang, H.; Jones, D.L. Simazine degradation in agroecosystems: Will it be affected by the type and amount of microplastic pollution? Land. Degrad. Dev. 2022, 33, 1128–1136. [Google Scholar] [CrossRef]
- Li, R.J.; Liu, Y.; Sheng, Y.; Xiang, Q.; Zhou, Y.; Cizdziel, J.V. Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: Apparent change and interaction with heavy metals in soil. Environ. Pollut. 2020, 260, 113988. [Google Scholar] [CrossRef] [PubMed]
- Fatema, M.; Farenhorst, A. Sorption of pesticides by microplastics, charcoal, ash, and river sediments. J. Soil Sediment 2022, 22, 1876–1884. [Google Scholar] [CrossRef]
- Hüffer, T.; Metzelder, F.; Sigmund, G.; Slawek, S.; Schmidt, T.C.; Hofmann, T. Polyethylene microplastics influence the transport of organic contaminants in soil. Sci. Total Environ. 2019, 657, 242–247. [Google Scholar] [CrossRef]
- Zhang, C.L.; Lei, Y.; Qiao, Y.; Liu, J.; Li, S.; Dai, L.; Sun, K. Sorption of organochlorine pesticides on polyethylene microplastics in soil suspension. Ecotoxicol. Environ. Safe 2021, 223, 112591. [Google Scholar] [CrossRef]
- Barboza, L.G.; Vieira, L.R.; Branco, V.; Figueiredo, N.L.; Carvalho, F.; Carvalho, C.; Guilhermino, L. Microplastics cause neurotoxicity, oxidative damage and energy-related changes and interact with the bioaccumulation of mercury in the European seabass, Dicentrarchus labrax (Linnaeus, 1758). Aquat. Toxicol. 2018, 195, 49–57. [Google Scholar] [CrossRef]
- Walker, T.R. (Micro)plastics and the UN Sustainable Development Goals. Curr. Opin. Green Sustain. Chem. 2021, 30, 100497. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A. Plastic wastes inputs from land into oceans. Science 2015, 347, 768–771. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rai, M.; Pant, G.; Pant, K.; Aloo, B.N.; Kumar, G.; Singh, H.B.; Tripathi, V. Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources 2023, 12, 67. https://doi.org/10.3390/resources12060067
Rai M, Pant G, Pant K, Aloo BN, Kumar G, Singh HB, Tripathi V. Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources. 2023; 12(6):67. https://doi.org/10.3390/resources12060067
Chicago/Turabian StyleRai, Meera, Gaurav Pant, Kumud Pant, Becky N. Aloo, Gaurav Kumar, Harikesh Bahadur Singh, and Vishal Tripathi. 2023. "Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability" Resources 12, no. 6: 67. https://doi.org/10.3390/resources12060067
APA StyleRai, M., Pant, G., Pant, K., Aloo, B. N., Kumar, G., Singh, H. B., & Tripathi, V. (2023). Microplastic Pollution in Terrestrial Ecosystems and Its Interaction with Other Soil Pollutants: A Potential Threat to Soil Ecosystem Sustainability. Resources, 12(6), 67. https://doi.org/10.3390/resources12060067