Quantifying Geodiversity at the Continental Scale: Limitations and Prospects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Geodiversity Elements and Data Sources
2.2.1. Geomorphodiversity
2.2.2. Hydrodiversity
2.2.3. Hydrogeological Diversity
2.2.4. Lithological Diversity
2.2.5. Pedodiversity
2.2.6. Topographic Diversity
2.3. Geodiversity Assessment
2.3.1. Data Preprocessing
2.3.2. Centroid Analysis and Spatial Smoothing
- High-resolution maps included in Supplementary Materials S1 (radius of 5 km and cell size set to 1 km to ensure a high resolution of the resulting maps).
2.4. Review of the Literature
- Literature search;
- Selection of relevant papers;
- Data extraction and analysis of results.
2.5. International Geoparks
2.6. Case Study
3. Results
3.1. Geodiversity Evaluation
3.2. Literature Review and Global Geoparks
3.3. Geodiversity of Poland
4. Discussion
4.1. Geodiversity Evaluation
4.2. Geodiversity of Poland
4.3. Data sources and Geodiversity Elements
4.4. Universal Classifications of Geodiversity Elements
4.5. Future Prospects of Large-Scale Geodiversity Estimations
- The availability of high-resolution, global-scale data sets. Although there is a growing database of DEMs and remote sensing images, there is also a significant gap where geological data are concerned. Moreover, the interpretation of the origins and dynamics of geological processes often requires ground surveys and traditional mapping efforts [108].
- Standard data models for geodiversity. In order to ensure future interoperable data sets for geodiversity studies, it is necessary to widely adopt fine-scale mapping product standards for the exchange of geological information, such as vocabularies and ontologies (e.g., GeoSciML and Ontogenous).
- Standard framework for data analysis. There is a plethora of available assessment methods and geodiversity indices [12]. Therefore, it is difficult to compare any two existing examples of geodiversity assessment, even when produced by the same research team, not to mention direct comparison of the evaluation results between administrative units, as shown by the example of Poland.
- Agreement on scales, sampling, and classification. Many geodiversity metrics, such as geodiversity indices, are scale dependent and require classification. In many studies, the Jenks classification methods [109] are employed; however, other optimisation procedures for classifying data on choropleth maps proved to be robust [110]. The types of sampling grid also differ between studies, although the application of kernel density estimation lowers the importance of that issue. Classification of data from microscale studies without reference to landscape-scale study areas also limits the possibilities of comparing various geodiversity assessments.
- The geodiversity evaluation of the selected administrative or protection units should include areas adjacent to the study area, to compare the relative differences in diversity in their wider context. This allows for the detection of possible geodiversity hotspots located outside the study area, significantly improving future conservation strategies and action plans, and allowing easier comparisons among studies [53].
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forte, J.P.; Brilha, J.; Pereira, D.I.; Nolasco, M. Kernel density applied to the quantitative assessment of geodiversity. Geoheritage 2018, 10, 205–217. [Google Scholar] [CrossRef]
- Schrodt, F.; Bailey, J.J.; Kissling, W.D.; Rijsdijk, K.F.; Seijmonsbergen, A.C.; Van Ree, D.; Hjort, J.; Lawley, R.S.; Williams, C.N.; Anderson, M.G.; et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 16155–16158. [Google Scholar] [CrossRef] [PubMed]
- Kuleta, M. Geodiversity research methods in geotourism. Geosciences 2018, 8, 197. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. The role of geodiversity and geoheritage in tourism and local development. Geol. Soc. London Spec. Publ. 2023, 530, SP530-2022-115. [Google Scholar] [CrossRef]
- Serrano, E.; Ruiz-Flaño, P. Geodiversity: A theoretical and applied concept. Geogr. Helv. 2023, 62, 140–147. [Google Scholar] [CrossRef]
- Crisp, J.R.; Ellison, J.C.; Fischer, A. Current trends and future directions in quantitative geodiversity assessment. Progr. Phys. Geogr. 2021, 45, 514–540. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature, 2nd ed; Wiley-Blackwell: Chichester, UK, 2013. [Google Scholar]
- Boothroyd, A.; McHenry, M. Old processes, new movements: The inclusion of geodiversity in biological and ecological discourse. Diversity 2019, 11, 216. [Google Scholar] [CrossRef]
- Polck, M.A.D.R.; de Medeiros, M.A.M.; de Araújo-Júnior, H.I. Geodiversity in urban cultural spaces of Rio de Janeiro city: Revealing the geoscientific knowledge with emphasis on the fossil content. Geoheritage 2020, 12, 47. [Google Scholar] [CrossRef]
- Parks, K.E.; Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 2010, 19, 2751–2766. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Brevik, E.C. Geodiversity research at the crossroads: Two sides of the same coin. Span. J. Soil Sci. 2022, 12, 10456. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Najwer, A.; Giardino, M. Methods for assessing geodiversity. In Geoheritage; Reynard, E., Brilha, J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 27–52. [Google Scholar]
- Zarnetske, P.L.; Read, Q.D.; Record, S.; Gaddis, K.D.; Pau, S.; Hobi, M.L.; Malone, S.L.; Costanza, J.; Dahlin, K.M.; Latimer, A.M.; et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Global Ecol. Biogeogr. 2019, 28, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Hjort, J.; Tukiainen, H.; Salminen, H.; Kemppinen, J.; Kiilunen, P.; Snåre, H.; Alahuhta, J.; Maliniemi, T. A methodological guide to observe local-scale geodiversity for biodiversity research and management. J. Appl. Ecol. 2022, 59, 1756–1768. [Google Scholar] [CrossRef]
- Chrobak, A.; Novotný, J.; Struś, P. Geodiversity assessment as a first step in designating areas of geotourism potential. Case study: Western Carpathians. Front. Earth Sci. 2021, 9, 919. [Google Scholar] [CrossRef]
- Ibáñez, J.J.; Brevik, E.C.; Cerdà, A. Geodiversity and geoheritage: Detecting scientific and geographic biases and gaps through a bibliometric study. Sci. Total Environ. 2019, 659, 1032–1044. [Google Scholar] [CrossRef] [PubMed]
- Rong, T.; Xu, S.; Lu, Y.; Tong, Y.; Yang, Z. Quantitative Assessment of Spatial Pattern of Geodiversity in the Tibetan Plateau. Sustainability 2022, 15, 299. [Google Scholar] [CrossRef]
- Tukiainen, H.; Toivanen, M.; Maliniemi, T. Geodiversity and biodiversity. Geol. Soc. London Spec. Publ. 2023, 530, SP530-2022. [Google Scholar] [CrossRef]
- Seijmonsbergen, H.; Versteegh, H.; Rijsdijk, K. Global geodiversity mapping. Geophys. Res. Abstr. 2019, 21, 1. [Google Scholar]
- Bailey, L.L.; Muths, E. Integrating amphibian movement studies across scales better informs conservation decisions. Biol. Conserv. 2019, 236, 261–268. [Google Scholar] [CrossRef]
- Bétard, F.; Peulvast, J.P. Geodiversity hotspots: Concept, method and cartographic application for geoconservation purposes at a regional scale. Environ. Manag. 2019, 63, 822–834. [Google Scholar] [CrossRef]
- Pellitero, R.; Manosso, F.C.; Serrano, E. Mid-and large-scale geodiversity calculation in Fuentes Carrionas (NW Spain) and Serra do Cadeado (Paraná, Brazil): Methodology and application for land management. Geogr. Ann. A 2019, 97, 219–235. [Google Scholar] [CrossRef]
- Claudino-Sales, V. Geodiversity and geoheritage in the perspective of geography. Bull. Geogr. 2021, 21, 45–52. [Google Scholar] [CrossRef]
- Comer, P.J.; Pressey, R.L.; Hunter Jr, M.L.; Schloss, C.A.; Buttrick, S.C.; Heller, N.E.; Tirpak, J.M.; Faith, D.P.; Cross, M.S.; Shaffer, M.L. Incorporating geodiversity into conservation decisions. Conserv. Biol. 2015, 29, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Beggs, P.J. New Directions: Climatediversity: A new paradigm for climate science. Atmos. Environ. 2013, 68, 112–113. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Stepinski, T.F. Geomorphons—a pattern recognition approach to classification and mapping of landforms. Geomorphology 2013, 182, 147–156. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2015, 339, 940–943. [Google Scholar] [CrossRef]
- Hartmann, J.; Moosdorf, N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophy. Geosy. 2012, 13, 1–37. [Google Scholar] [CrossRef]
- Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G. Terrestrial sediments of the earth: Development of a global unconsolidated sediments map database (GUM). Geochem. Geophy. Geosy. 2018, 19, 997–1024. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Thomas, M. A geomorphological approach to geodiversity-its applications to geoconservation and geotourism. Quaest. Geogr. 2012, 31, 81–89. [Google Scholar] [CrossRef]
- Panizza, M. The geomorphodiversity of the Dolomites (Italy): A key of geoheritage assessment. Geoheritage 2009, 1, 33–42. [Google Scholar] [CrossRef]
- Melelli, L.; Vergari, F.; Liucci, L.; Del Monte, M. Geomorphodiversity index: Quantifying the diversity of landforms and physical landscape. Sci. Total Environ. 2017, 584, 701–714. [Google Scholar] [CrossRef]
- Bailey, J.J.; Boyd, D.S.; Hjort, J.; Lavers, C.P.; Field, R. Modelling native and alien vascular plant species richness: At which scales is geodiversity most relevant? Global Ecol. Biogeogr. 2017, 26, 763–776. [Google Scholar] [CrossRef]
- Stepinski, T.F.; Jasiewicz, J. Geomorphons—a new approach to classification of landforms. Geomorphometry Proc. 2011, 2011, 109–112. [Google Scholar]
- Thomas, M.F. Geodiversity and landscape sensitivity: A geomorphological perspective. Scot. Geogr. J. 2012, 128, 195–210. [Google Scholar] [CrossRef]
- Hjort, J.; Luoto, M. Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 2010, 115, 109–116. [Google Scholar] [CrossRef]
- Hjort, J.; Heikkinen, R.K.; Luoto, M. Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers. Conserv. 2012, 21, 3487–3506. [Google Scholar] [CrossRef]
- Tukiainen, H.; Bailey, J.J.; Field, R.; Kangas, K.; Hjort, J. Combining geodiversity with climate and topography to account for threatened species richness. Conserv. Biol. 2017, 31, 364–375. [Google Scholar] [CrossRef]
- Bailey, J.J.; Boyd, D.S.; Field, R. Models of upland species’ distributions are improved by accounting for geodiversity. Landsc. Ecol. 2018, 33, 2071–2087. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- Şen, Z. Applied Hydrogeology for Scientists and Engineers; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Ruseckas, J.; Grigaliunas, V.; Suchockas, V.; Pliura, A. Influence of ground water table depth, ground vegetation coverage and soil chemical properties on forest regeneration in cutovers on drained fen habitats. Balt. For. 2015, 21, 152–161. [Google Scholar]
- Silva, J.P.; Pereira, D.I.; Aguiar, A.M.; Rodrigues, C. Geodiversity assessment of the Xingu drainage basin. J. Maps 2013, 9, 254–262. [Google Scholar] [CrossRef]
- Wolniewicz, P. Beyond geodiversity sites: Exploring the educational potential of widespread geological features (rocks, minerals and fossils). Geoheritage 2021, 13, 34. [Google Scholar] [CrossRef]
- Prabhu, A.; Morrison, S.M.; Eleish, A.; Zhong, H.; Huang, F.; Golden, J.J.; Perry, S.N.; Hummer, D.R.; Ralph, J.; Runyon, S.E.; et al. Global earth mineral inventory: A data legacy. Geosci. Data J. 2021, 8, 74–89. [Google Scholar] [CrossRef]
- Peters, S.E.; McClennen, M. The Paleobiology Database application programming interface. Paleobiology 2016, 42, 1–7. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Zhu, Q.; Yang, X.; Li, L. Correlating the subsidence pattern and land use in Bandung, Indonesia with both Sentinel-1/2 and ALOS-2 satellite images. Int. J. Appl. Earth Obs. 2018, 67, 54–68. [Google Scholar] [CrossRef]
- da Silva, M.L.N.; do Nascimento, M.A.L.; Mansur, K.L. Quantitative assessments of geodiversity in the area of the Seridó Geopark Project, Northeast Brazil: Grid and centroid analysis. Geoheritage 2019, 11, 1177–1186. [Google Scholar] [CrossRef]
- Stojilković, B. Towards transferable use of terrain ruggedness component in the geodiversity index. Resources 2022, 11, 22. [Google Scholar] [CrossRef]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef]
- Pereira, D.I.; Pereira, P.; Brilha, J.; Santos, L. Geodiversity assessment of Paraná State (Brazil): An innovative approach. Environ. Manag. 2013, 52, 541–552. [Google Scholar] [CrossRef]
- dos Santos, F.M.; de La Corte Bacci, D.; Saad, A.R.; da Silva Ferreira, A.T. Geodiversity index weighted by multivariate statistical analysis. Appl. Geomat. 2020, 12, 361–370. [Google Scholar] [CrossRef]
- Baddeley, A.; Rubak, E.; Turner, R. Spatial Point Patterns: Methodology and Applications with R; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Ose, K. Detection and mapping of clear-cuts with optical satellite images. In QGIS and Applications in Agriculture and Forest; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; pp. 153–180. [Google Scholar]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Chapman and Hall/CRC: London, UK, 1994. [Google Scholar]
- Medrano, J.; Kheddar, A.; Lesne, A.; Ramdani, S. Radius selection using kernel density estimation for the computation of nonlinear measures. Chaos 2021, 31, 083131. [Google Scholar] [CrossRef]
- Denyer, D.; Tranfield, D. Producing a systematic review. In Sage Handbook of Organizational Research Methods; Buchanan, D., Bryman, A., Eds.; Sage Publications Ltd.: London, UK, 2009; pp. 671–689. [Google Scholar]
- Brilha, J. Inventory and quantitative assessment of geosites and geodiversity sites: A review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Carrión-Mero, P.; Montalván-Burbano, N.; Caicedo-Potosí, J.; Berrezueta, E. Geoheritage and geosites: A bibliometric analysis and literature review. Geosciences 2022, 12, 169. [Google Scholar] [CrossRef]
- Catana, M.M.; Brilha, J.B. The role of UNESCO global geoparks in promoting geosciences education for sustainability. Geoheritage 2020, 12, 1. [Google Scholar] [CrossRef]
- Zouros, N. The European Geoparks Network-Geological heritage protection and local development. Episodes 2004, 27, 165–171. [Google Scholar] [CrossRef]
- Herrera-Franco, G.; Montalván-Burbano, N.; Carrión-Mero, P.; Jaya-Montalvo, M.; Gurumendi-Noriega, M. Worldwide re-search on geoparks through bibliometric analysis. Sustainability 2021, 13, 1175. [Google Scholar] [CrossRef]
- Ruban, D.A. Geodiversity as a precious national resource: A note on the role of geoparks. Resour. Policy 2017, 53, 103–108. [Google Scholar] [CrossRef]
- Li, B.X.; Németh, K.; Zakharovskyi, V.; Palmer, J.; Palmer, A.; Proctor, J. Geodiversity estimate of the Arxan–Chaihe Volcanic Field extending across two geoparks in Inner Mongolia, NE China. Geol. Soc. Lond. Spec. Publ. 2023, 530, SP530–2022–130. [Google Scholar] [CrossRef]
- Radwanek-Bąk, B.; Laskowicz, I. Ocena georóżnorodności jako metoda określania potencjału geoturystycznego obszaru. Ann. Univ. Mariae Curie-Sklodowska 2012, 67, 77–95. [Google Scholar]
- Zwoliński, Z.; Stachowiak, J. Geodiversity map of the Tatra National Park for geotourism. Quaest. Geogr. 2012, 31, 99–107. [Google Scholar] [CrossRef]
- Górska-Zabielska, M.; Nowicka, N.; Zawieja, J. Geodiversity of the Drawa National Park, NW Poland. Biul. Państwowego Inst. Geol. 2015, 463, 1–42. [Google Scholar] [CrossRef]
- Najwer, A.; Borysiak, J.; Gudowicz, J.; Mazurek, M.; Zwoliński, Z. Geodiversity and biodiversity of the postglacial landscape (Dębnica River catchment, Poland). Quaest. Geogr. 2016, 35, 5–28. [Google Scholar] [CrossRef]
- Najwer, A.; Jankowski, P.; Niesterowicz, J.; Zwoliński, Z. Geodiversity assessment with global and local spatial multicriteria analysis. Int. J. Appl. Earth Obs. 2022, 107, 102665. [Google Scholar] [CrossRef]
- Jankowski, P.; Najwer, A.; Zwoliński, Z.; Niesterowicz, J. Geodiversity assessment with crowdsourced data and spatial multicriteria analysis. ISPRS Int. J. Geo-Inf. 2020, 9, 716. [Google Scholar] [CrossRef]
- Kot, R.; Leśniak, K. Impact of different roughness coefficients applied to relief diversity evaluation: Chełmno Lakeland (Polish Lowland). Geogr. Ann. A 2017, 99, 102–114. [Google Scholar] [CrossRef]
- Kot, R. A comparison of results from geomorphological diversity evaluation methods in the Polish Lowland (Toruń Basin and Chełmno Lakeland). Geogr. Tidsskr. 2018, 118, 17–35. [Google Scholar] [CrossRef]
- Erikstad, L.; Bakkestuen, V.; Dahl, R.; Arntsen, M.L.; Margreth, A.; Angvik, T.L.; Wickström, L. Multivariate Analysis of Geological Data for Regional Studies of Geodiversity. Resources 2022, 11, 51. [Google Scholar] [CrossRef]
- Bollati, I.M.; Zerboni, A. The Po Plain Loess Basin (Northern Italy): Scientific Values, Threats, and Promotion Opportunities. Geoheritage 2021, 13, 74. [Google Scholar] [CrossRef]
- Filippo, B.; Cremaschi, M.; Manuela, P. Estimating the potential of archaeo-historical data in the definition of geomorphosites and geo-educational itineraries in the central Po plain (N Italy). Geoheritage 2019, 11, 1371–1396. [Google Scholar] [CrossRef]
- Costantini, E.A.; L’Abate, G. The soil cultural heritage of Italy: Geodatabase, maps, and pedodiversity evaluation. Quat. Int. 2009, 209, 142–153. [Google Scholar] [CrossRef]
- Ivanova, L.V.; Sokolov, K.M.; Kharitonova, G.N. Plastic pollution tendencies of the Barents Sea and adjacent waters under the climate change. Arct. N. 2018, 32, 121–145. [Google Scholar] [CrossRef]
- Diyachenko, V.V.; Malykhin, Y.A.; Diyachenko, L.G. The problems of the North Caucasus landscape’s pollution and population’s health. J. Environ. Prot. 2014, 5, 81–86. [Google Scholar] [CrossRef]
- Nikolaishvili, D.; Dvalashvili, G. Anthropogenic changes of Caucasus forest landscapes. Earth Sci. 2015, 4, 54–59. [Google Scholar] [CrossRef]
- Lawler, J.J.; Ackerly, D.D.; Albano, C.M.; Anderson, M.G.; Dobrowski, S.Z.; Gill, J.L.; Heller, N.E.; Pressey, R.L.; Sanderson, E.W.; Weiss, S.B. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 2015, 29, 618–629. [Google Scholar] [CrossRef]
- Beier, P.; Hunter, M.L.; Anderson, M. Conserving nature’s stage. Conserv. Biol. 2015, 29, 613–617. [Google Scholar] [CrossRef]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter Jr, M.L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef]
- Alahuhta, J.; Toivanen, M.; Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 2020, 4, 2–3. [Google Scholar] [CrossRef]
- Wallis, C.I.; Tiede, Y.C.; Beck, E.; Böhning-Gaese, K.; Brandl, R.; Donoso, D.A.; Espinosa, C.I.; Fries, A.; Homeier, J.; Inclan, D.; et al. Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Sci. Rep. 2021, 11, 1–14. [Google Scholar]
- Halvorsen, R.; Skarpaas, O.; Bryn, A.; Bratli, H.; Erikstad, L.; Simensen, T.; Lieungh, E. Towards a systematics of ecodiversity: The EcoSyst framework. Global Ecol. Biogeogr. 2020, 29, 1887–1906. [Google Scholar] [CrossRef]
- Marks, L. Last glacial maximum in Poland. Quat. Sci. Rev. 2002, 21, 103–110. [Google Scholar] [CrossRef]
- Tylmann, K.; Rinterknecht, V.R.; Woźniak, P.P.; Bourles, D.; Schimmelpfennig, I.; Guillou, V.; Aster Team. The Local Last Glacial Maximum of the southern Scandinavian Ice Sheet front: Cosmogenic nuclide dating of erratics in northern Poland. Quat. Sci. Rev. 2019, 219, 36–46. [Google Scholar] [CrossRef]
- Lasota, J.; Błońska, E.; Łyszczarz, S.; Sadowy, A. Forest habitats and forest types on chernozems in south-eastern Poland. Soil Sci. Annu. 2019, 70, 234–243. [Google Scholar] [CrossRef]
- Ferrando, A.; Faccini, F.; Paliaga, G.; Coratza, P. A quantitative GIS and AHP based analysis for geodiversity assessment and mapping. Sustainability 2021, 13, 10376. [Google Scholar] [CrossRef]
- Benito-Calvo, A.; Pérez-González, A.; Magri, O.; Meza, P. Assessing regional geodiversity: The Iberian Peninsula. Earth Surf. Process. Landf. 2009, 34, 1433–1445. [Google Scholar] [CrossRef]
- Malinowska, E.; Szumacher, I. Application of landscape metrics in the evaluation of geodiversity. Misc. Geogr. 2013, 17, 28–33. [Google Scholar] [CrossRef]
- Hesselbarth, M.H.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef]
- Beier, P.; de Albuquerque, F.S. Environmental diversity as a surrogate for species representation. Conserv. Biol. 2015, 29, 1401–1410. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Zinck, J.A. The geomorphic landscape: Criteria for classifying geoforms. In Geopedology: An Integration of Geomorphology and Pedology for Soil and Landscape Studies; Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F., Eds.; Springer: Cham, Switzerland, 2016; pp. 77–99. [Google Scholar]
- Samecka-Cymerman, A.; Garbiec, K.; Kolon, K.; Kempers, A.J. Factor analysis of the elemental composition of Pteridium aquilinum from serpentine and granite soils as a tool in the classification of relations between this composition and the type of parent rock in the Ślęża Massif in Lower Silesia, Poland. Environ. Geol. 2009, 58, 509–514. [Google Scholar] [CrossRef]
- Terlecka, M.; Szczepańska, K. Contemporary state of preservation of the lichen biota in the eastern part of the “Paprocie Serpentynitowe w Masywie Ślęży” ecological area. Acta Mycol. 2021, 56, 5612. [Google Scholar] [CrossRef]
- Mantovani, A.; Piana, F.; Lombardo, V. Ontology-driven representation of knowledge for geological maps. Comput. Geosci. 2020, 139, 104446. [Google Scholar] [CrossRef]
- Lombardo, V.; Piana, F.; Mimmo, D.; Mensa, E.; Radicioni, D.P. Semantic models for the geological mapping process. In Proceedings of the AI*IA 2017 Advances in Artificial Intelligence: XVIth International Conference of the Italian Association for Artificial Intelligence, Bari, Italy, 14–17 November 2017; Esposito, F., Basili, R., Ferilli, S., Lisi, F.A., Eds.; Springer: Cham, Switzerland, 2017; pp. 295–306. [Google Scholar]
- Laxton, J.L. Geological map fusion: OneGeology-Europe and INSPIRE. Spec. Publ. 2017, 408, 147–160. [Google Scholar] [CrossRef]
- Simons, B.A.; Raymond, O.; Jackson, I.; Lee, K. OneGeology—Improving global access to geoscience. In Digital Soil Assessments and Beyond, Proceedings of the 5th GlobalWorkshop on Digital Soil Mapping, Sydney, Australia, 10–13 April 2012; CRC Press: Boca Raton, FL, USA, 2012; pp. 265–275. [Google Scholar]
- Bartha, G.; Kocsis, S. Standardization of geographic data: The European Inspire Directive. Eur. J. Geogr. 2011, 2, 79–89. [Google Scholar]
- Strasky, S.; Morard, A.; Möri, A. Harmonising the lithostratigraphic nomenclature: Towards a uniform geological dataset of Switzerland. Swiss J. Geosci. 2016, 109, 123–136. [Google Scholar] [CrossRef]
- Gray, M. Geodiversity: A significant, multi-faceted and evolving, geoscientific paradigm rather than a redundant term. Proc. Geol. Assoc. 2021, 132, 605–619. [Google Scholar] [CrossRef]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Brewer, C.A.; Pickle, L. Evaluation of methods for classifying epidemiological data on choropleth maps in series. Ann. Assoc. Am. Geogr. 2002, 92, 662–681. [Google Scholar] [CrossRef]
- Lausch, A.; Schaepman, M.E.; Skidmore, A.K.; Catana, E.; Bannehr, L.; Bastian, O.; Borg, E.; Bumberger, J.; Dietrich, P.; Glässer, C.; et al. Remote Sensing of Geomorphodiversity Linked to Biodiversity—Part III: Traits, Processes and Remote Sensing Characteristics. Remote Sens. 2022, 14, 2279. [Google Scholar] [CrossRef]
Geodiversity Feature | Parameter | Resolution/Scale | Sources and Algorithms |
---|---|---|---|
Geomorphodiversity (diversity of landforms) | geomorphons | angular resolution of three seconds | MERIT DEM [26] and r.geomorphon [27] |
Hydrological diversity | number of individual water bodies | angular resolution of three seconds | Global Water Body Map [28] |
Hydrogeological diversity | depth of the groundwater table | angular resolution of 30 s | water table depth data set [29] |
Lithological diversity | diversity of lithological units | 1:3,000,000 | Global Lithological Map [30] and Global Unconsolidated Sediments Map Database [31] |
Soil diversity | soil classes of the World Reference Base classification system | ground resolution of 250 m | SoilGrids250m [32] |
Topographic diversity | terrain ruggedness index (TRI) | angular resolution of three seconds | MERIT DEM [26] and the algorithm by Riley et al. [33] |
Geomorphology | Hydrology | Hydrogeology | Lithology | Soils | Topography | |
---|---|---|---|---|---|---|
Geomorphology | 1 | 0.089891 | 0.025250 | −0.052276 | −0.040580 | 0.095918 |
Hydrology | 0.089891 | 1 | 0.071646 | −0.075945 | 0.038403 | −0.014773 |
Hydrogeology | 0.025250 | 0.071646 | 1 | −0.045082 | −0.042982 | 0.271481 |
Lithology | −0.052276 | −0.075945 | −0.045082 | 1 | 0.058896 | 0.009629 |
Soils | −0.040580 | 0.038403 | −0.042982 | 0.058896 | 1 | −0.102918 |
Topography | 0.095918 | −0.014773 | 0.271481 | 0.009629 | −0.102918 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolniewicz, P. Quantifying Geodiversity at the Continental Scale: Limitations and Prospects. Resources 2023, 12, 59. https://doi.org/10.3390/resources12050059
Wolniewicz P. Quantifying Geodiversity at the Continental Scale: Limitations and Prospects. Resources. 2023; 12(5):59. https://doi.org/10.3390/resources12050059
Chicago/Turabian StyleWolniewicz, Paweł. 2023. "Quantifying Geodiversity at the Continental Scale: Limitations and Prospects" Resources 12, no. 5: 59. https://doi.org/10.3390/resources12050059
APA StyleWolniewicz, P. (2023). Quantifying Geodiversity at the Continental Scale: Limitations and Prospects. Resources, 12(5), 59. https://doi.org/10.3390/resources12050059