Modern Technologies Providing a Full Cycle of Geo-Resources Development
Abstract
:1. Introduction
- Reserves are located outside the open pit side;
- Pinching-out ore body is distributed along the perimeter;
- Low-grade, sub-standard, and thin bed seams;
- Local areas of deposit remote from the main ore body;
- Reserves are located in difficult mining and geological conditions or under protected objects.
- The components have completely dissolved and taken out of the mass;
- The components have passed into insoluble forms, which reduces their mobility;
- The components have formed new safe chemical compounds.
2. Tasks and Methods
- Assessment of the economic-organizational activities of a mining and processing enterprises in the context of a single object;
- Development of conversion principles based on the application of innovative technologies for the comprehensive exploitation of natural and industrial geo-resources;
- Search for an algorithm to assess the risk of using innovative technologies;
- Substantiation of the investment attractiveness of deep processing of geo-resources;
- Comparative analysis of economic efficiency.
- Complex consideration of negative and positive properties of raw materials that characterize the level of business, namely the ability to increase dividends, increase the value of an enterprise, and increase reliability, liquidity, and profitability;
- Implementation by creating an economic and mathematical algorithm describing the relationship between development rates, production volumes, payback time interval, financial costs, total recoverable value, risks of introducing innovative technologies, etc.
3. Results and Discussions
3.1. Analysis of Results
3.2. Full Cycle of Geo-Resources Development as a Way to Maximize the Extraction of a Valuable Component: Purposes and Objectives of Full Cycle of Geo-Resources Development
- To obtain an economic effect from the realization of valuable components extracted from industrial waste;
- To increase the mineral resource base of the enterprise by replacing primary mineral resources through the introduction of industrial waste into the development;
- To increase the life of the enterprise by involving poor, sub-standard ores and industrial waste in processing;
- To reduce the cost of storing industrial waste;
- To make effective use of the territories freed up;
- To prevent the dangerous impact of natural leaching from industrial mass on the environment.
- The involvement of poor, sub-standard ores and industrial waste in the processing;
- Creation and implementation of fundamentally new technologies for raw materials extraction from industrial mass, based on traditional physical–technical methods in conjunction with physical–chemical methods;
- Development of a comprehensive waste-free (low-waste) cycle of a closed system of the main (extraction) and auxiliary (processing and metallurgical redistribution) industries.
3.3. Economic Efficiency Assessment of Implementation of Full Cycle of Geo-Resources Development
- Backfill;
- Construction material;
- Pavement;
- Embankments for dams, roads, railways, and so on.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alamsyah, A.; Ramadhani, D.P.; Kristanti, F.T.; Khairunnisa, K. Transaction Network Structural Shift under Crisis: Macro and Micro Perspectives. Economies 2022, 10, 56. [Google Scholar] [CrossRef]
- Stroykov, G.A.; Babyr, N.V.; Ilin, I.V.; Marchenko, R.S. System of comprehensive assessment of project risks in energy industry. Int. J. Eng. Trans. A Basics 2021, 34, 1778–1784. [Google Scholar] [CrossRef]
- Reinhart, C.M.; Kenneth, S.R. The Aftermath of Financial Crises. Am. Econ. Rev. Am. Econ. Assoc. 2009, 99, 466–472. [Google Scholar] [CrossRef] [Green Version]
- Resniova, E.; Ponomarenko, T. Sustainable Development of the Energy Sector in a Country Deficient in Mineral Resources: The Case of the Republic of Moldova. Sustainability 2021, 13, 3261. [Google Scholar] [CrossRef]
- Bacova, D.; Khairutdinov, A.M.; Gago, F. Cosmic Geodesy Contribution to Geodynamics Monitoring. IOP Conf. Ser. Earth Environ. Sci. 2021, 906, 012074. [Google Scholar] [CrossRef]
- Litvinenko, V. Advancement of geomechanics and geodynamics at the mineral ore mining and underground space development. Geomech. Geodyn. Rock Masses 2018, 1, 3–16. [Google Scholar]
- Blokhin, D.I.; Ivanov, P.N.; Dudchenko, O.L. Experimental study of thermomechanical effects in water-saturatedlimestones during their deformation. J. Min. Inst. 2021, 247, 3–11. [Google Scholar] [CrossRef]
- Ponomarenko, T.; Nevskaya, M.; Jonek-Kowalska, I. Mineral Resource Depletion Assessment: Alternatives. Problems. Results. Sustainability 2021, 13, 862. [Google Scholar] [CrossRef]
- Kazakov, B.P.; Levin, L.Y.; Shalimov, A.V.; Zaitsev, A.V. Development of energy-saving technologies providing comfortable microclimate conditions for mining. J. Min. Inst. 2017, 223, 116–124. [Google Scholar] [CrossRef]
- Du, X.; Zhou, K.; Cui, Y.; Wang, J.; Zhou, S. Mapping Mineral Prospectivity Using a Hybrid Genetic Algorithm–Support Vector Machine (GA–SVM) Model. ISPRS Int. J. Geo-Inf. 2021, 10, 766. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Zhang, J.; Chen, Y.; Duan, C.; Qi, J.; Cheng, Z.; Pan, Z. Comprehensive Evaluation of the Eco-Geological Environment in the Concentrated Mining Area of Mineral Resources. Sustainability 2022, 14, 6808. [Google Scholar] [CrossRef]
- Service, R.F. Industrial waste can turn planet-warming carbon dioxide into stone. Science 2020, 369, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- Khayrutdinov, A.; Paleev, I.; Artemov, S. Replacement of traditional components of the backfill mixture with man-made waste. IOP Conf. Ser. Earth Environ. Sci. 2021, 942, 012005. [Google Scholar] [CrossRef]
- Carmo, F.F.; Lanchotti, A.O.; Kamino, L.H.Y. Mining Waste Challenges: Environmental Risks of Gigatons of Mud, Dust and Sediment in Megadiverse Regions in Brazil. Sustainability 2020, 12, 8466. [Google Scholar] [CrossRef]
- Khayrutdinov, M.M.; Kaung, P.A.; Chzho, Z.Y.; Tyulyaeva, Y.S. Ensuring Environmental Safety in the Implementation of the Resource-renewable Technologies. Bezop. Tr. Promyshlennosti 2022, 2022, 57–62. [Google Scholar] [CrossRef]
- Łupieżowiec, M.; Rybak, J.; Różański, Z.; Dobrzycki, P.; Jędrzejczyk, W. Design and Construction of Foundations for Industrial Facilities in the Areas of Former Post-Mining Waste Dumps. Energies 2022, 15, 5766. [Google Scholar] [CrossRef]
- Tost, M.; Ammerer, G.; Kot-Niewiadomska, A.; Gugerell, K. Mining and Europe’s World Heritage Cultural Landscapes. Resources 2021, 10, 18. [Google Scholar] [CrossRef]
- Lyashenko, V.I.; Golik, V.I.; Klyuev, R.V. Evaluation of the efficiency and environmental impact (on subsoil and groundwater) of underground block leaching (UBL) of metals from ores. Min. Sci. Technol. 2022, 7, 5–17. [Google Scholar] [CrossRef]
- Pashkevich, M.A.; Parshina, M.V. Assessment of the risk of acidic water formation in the areas affected by mining and metallurgical enterprises. J. Min. Inst. 2002, 152, 82–84. [Google Scholar]
- Tcvetkov, P.; Cherepovitsyn, A.; Fedoseev, S. Public perception of carbon capture and storage: A state-of-the-art overview. Heliyon 2019, 5, e02845. [Google Scholar] [CrossRef] [Green Version]
- Sekhohola-Dlamini, L.M.; Keshinro, O.M.; Masudi, W.L.; Cowan, A.K. Elaboration of a Phytoremediation Strategy for Successful and Sustainable Rehabilitation of Disturbed and Degraded Land. Minerals 2022, 12, 111. [Google Scholar] [CrossRef]
- Bac-Bronowicz, J.; Kowalczyk, P.; Bartlewska-Urban, M. Risk Reduction of a Terrorist Attack on a Critical Infrastructure Facility of LGOM Based on the Example of the Żelazny Most Tailings Storage Facility (OUOW Żelazny Most). Stud. Geotech. Mech. 2020, 42, 376–387. [Google Scholar] [CrossRef]
- Blinova, E.; Ponomarenko, T.; Knysh, V. Analyzing the Concept of Corporate Sustainability in the Context of Sustainable Business Development in the Mining Sector with Elements of Circular Economy. Sustainability 2022, 14, 8163. [Google Scholar] [CrossRef]
- Gendler, S.G.; Prokhorova, E.A. Assessment of the cumulative impact of occupational injuries and diseases on the state of labor protection in the coal industry. Min. Inf. Anal. Bull. 2022, 10, 105–106. [Google Scholar] [CrossRef]
- Li, X.; Chertow, M.; Guo, S.; Johnson, E.; Jiang, D. Estimating non-hazardous industrial waste generation by sector, location, and year in the United States: A methodological framework and case example of spent foundry sand. Waste Manag. 2020, 118, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Han, G.; Zhang, J.; Sun, H.; Shen, D.; Wu, Z.; An, X.; Meye, S.M.; Huang, Y. Application of Iron Ore Tailings and Phosphogypsum to Create Artificial Rockfills Used in Rock-Filled Concrete. Buildings 2022, 12, 555. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Zhang, X.; Wang, J.; Jiao, H.; Yu, J. Review on the Art of Roof Contacting in Cemented Waste Backfill Technology in a Metal Mine. Minerals 2022, 12, 721. [Google Scholar] [CrossRef]
- Tcvetkov, P. Engagement of resource-based economies in the fight against rising carbon emissions. Energy Rep. 2022, 8, 874–883. [Google Scholar] [CrossRef]
- De Carvalho, F.A.; Nobre, J.N.P.; Cambraia, R.P.; Silva, A.C.; Fabris, J.D.; dos Reis, A.B.; Prat, B.V. Quartz Mining Waste for Concrete Production: Environment and Public Health. Sustainability 2022, 14, 389. [Google Scholar] [CrossRef]
- Oblitsov, A.Y.; Rogalev, V.A. Prospective ways of diamondiferous rock enrichment wastes utilization at M.V.Lomonosov diamond deposit. J. Min. Inst. 2012, 195, 163–167. [Google Scholar]
- Šajn, R.; Ristović, I.; Čeplak, B. Mining and Metallurgical Waste as Potential Secondary Sources of Metals—A Case Study for the West Balkan Region. Minerals 2022, 12, 547. [Google Scholar] [CrossRef]
- Zglinicki, K.; Małek, R.; Szamałek, K.; Wołkowicz, S. Mining Waste as a Potential Additional Source of HREE and U for the European Green Deal: A Case Study of Bangka Island (Indonesia). Minerals 2022, 12, 44. [Google Scholar] [CrossRef]
- Shaforostova, E.N.; Kosareva-Volod’ko, O.V.; Belyankina, O.V.; Solovykh, D.Y.; Sazankova, E.S.; Sizova, E.I.; Adigamov, D.A. A Tailing Dump as Industrial Deposit; Study of the Mineralogical Composition of Tailing Dump of the Southern Urals and the Possibility of Tailings Re-Development. Resources 2023, 12, 28. [Google Scholar] [CrossRef]
- Gorbatova, E.A.; Kharchenko, S.A.; Ozhogina, E.G.; Yakushina, O.A. Mineralogy of blast furnace gslas. Vestn. IG Komi SC UB RAS 2017, 4, 24–28. [Google Scholar] [CrossRef]
- Golik, V.I.; Klyuev, R.V.; Martyushev, N.V.; Brigida, V.; Efremenkov, E.A.; Sorokova, S.N.; Mengxu, Q. Tailings Utilization and Zinc Extraction Based on Mechanochemical Activation. Materials 2023, 16, 726. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, L.; Krstic, V.; Radonjanin, V.; Jovanovic, V.; Malešev, M.; Ignjatovic, D.; Ðurdevac, V. Application of Cement Paste in Mining Works, Environmental Protection, and the Sustainable Development Goals in the Mining Industry. Sustainability 2022, 14, 7902. [Google Scholar] [CrossRef]
- Chakrawarthi, V.; Raj Jesuarulraj, L.; Avudaiappan, S.; Rajendren, D.; Amran, M.; Guindos, P.; Roy, K.; Fediuk, R.; Vatin, N.I. Effect of Design Parameters on the Flexural Strength of Reinforced Concrete Sandwich Beams. Crystals 2022, 12, 1021. [Google Scholar] [CrossRef]
- Khairutdinov, A.; Ubysz, A.; Adigamov, A. The concept of geotechnology with a backfill is the path of integrated development of the subsoil. IOP Conf. Ser. Earth Environ. Sci. 2021, 684, 012007. [Google Scholar] [CrossRef]
- Khayrutdinov, M.M.; Golik, V.I.; Aleksakhin, A.V.; Trushina, E.V.; Lazareva, N.V.; Aleksakhina, Y.V. Proposal of an Algorithm for Choice of a Development System for Operational and Environmental Safety in Mining. Resources 2022, 11, 88. [Google Scholar] [CrossRef]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-Thinking Mining Waste through an Integrative Approach Led by Circular Economy Aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Golev, A.; Edraki, M. A Review of Tungsten Resources and Potential Extraction from Mine Waste. Minerals 2021, 11, 701. [Google Scholar] [CrossRef]
- Kanwal, Q.; Li, J.; Zeng, X. Mapping Recyclability of Industrial Waste for Anthropogenic Circularity: A Circular Economy Approach. Acs. Sustain. Chem. Eng. 2021, 9, 11927–11936. [Google Scholar] [CrossRef]
- Ermolovich, E.A.; Ermolovich, O.V. Effects of mechanical activation on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation tailings. Int. J. Min. Sci. Technol. 2016, 26, 1043–1049. [Google Scholar] [CrossRef]
- Öhlander, B.; Chatwin, T.; Alakangas, L. Management of Sulfide-Bearing Waste, a Challenge for the Mining Industry. Minerals 2012, 2, 1–10. [Google Scholar] [CrossRef]
- Kozin, V.Z.; Koltunov, L.V.; Morozov, Y.P. Improving the technology of neutralization of mine waters of the Levikhinsky mine. Mining J. 1997, 11, 211–214. [Google Scholar]
- Perelman, V.I. Chemist’s Quick Reference Book; Chemistry: Moscow, Russia, 1955; 560p. [Google Scholar]
- Rubtsov, Y.I. Influence of input parameters of sodium cyanide on the extraction of gold from quartzite ores. Min. Inf. Anal. Bull. 2012, 1, 315–319. [Google Scholar]
- Eliseeva, E. Environmental management as an important element of the concept of sustainable development of the organization. Int. Multidiscip. Sci. GeoConference Surv. Geol. Min. Ecol. Manag. SGEM 2019, 19, 299–306. [Google Scholar]
- Rybak, Y.; Khayrutdinov, M.; Kongar-Syuryun, C.; Tyulyayeva, Y. Resource-saving technologies for development of mineral deposits. Sustain. Dev. Mt. Territ. 2021, 13, 406–415. [Google Scholar] [CrossRef]
- Ismailov, T.T.; Logachyov, A.V.; Luzin, B.S.; Golik, V.I. Substantiation of gold extraction efficiency from enrichment tails. Min. Inf. Anal. Bull. 2009, 11, 153–159. [Google Scholar]
- Tam, V.W.Y.; Tam, C.M. Evaluations of existing waste recycling methods: A Hong Kong study. Build. Environ. 2006, 41, 1649–1660. [Google Scholar] [CrossRef] [Green Version]
- Sobierajewicz, P.; Adamczyk, J.; Dylewski, R. Ecological and Economic Assessment of the Reuse of Steel Halls in Terms of LCA. Appl. Sci. 2023, 13, 1597. [Google Scholar] [CrossRef]
- Sorokin, A.B.; Zheleznyak, L.M.; Suprunenko, D.V.; Kholmogorov, V.V. Designing modules of system dynamics in decision support systems. Russ. Technol. J. 2022, 10, 18–26. [Google Scholar] [CrossRef]
- Mandych, I.A.; Bykova, A.V.; Gaiman, O.B. Features of assessing the investment attractiveness of high-tech projects. Russ. Technol. J. 2022, 10, 75–86. [Google Scholar] [CrossRef]
Concentration of Sodium Hydrosulfide in the Work Solution, % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.0 | 12.0 | 16.0 | 20.0 | |||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Zn | 25.4 | 31.3 | 77.6 | 83.3 | 29.6 | 34.5 | 84.9 | 89.1 | 33.6 | 39.3 | 90.5 | 94.3 | 39.1 | 42.2 | 95.4 | 98.8 |
Fe | 24.6 | 33.8 | 44.1 | 51.9 | 50.1 | 61.4 | 70.5 | 82.7 | 81.3 | 84.5 | 89.2 | 93.8 | 94.9 | 96.0 | 97.2 | 98.5 |
Cu | 42.8 | 55.1 | 58.5 | 77.8 | 47.9 | 62.3 | 64.6 | 85.4 | 52.2 | 69.0 | 71.6 | 96.4 | 53.9 | 70.1 | 73.3 | 97.5 |
Concentration of Hydrochloric Acid in the Work Solution, % | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.0 | 12.0 | 16.0 | 20.0 | |||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Al | 22.7 | 38.6 | 32.1 | 53.4 | 31.8 | 53.0 | 45.5 | 63.9 | 33.0 | 59.8 | 51.5 | 72.7 | 37.4 | 69.7 | 59.2 | 77.8 |
Mg | 20.8 | 28.2 | 22.4 | 34.2 | 28.1 | 35.2 | 30.9 | 42.7 | 33.0 | 39.2 | 35.4 | 46.5 | 37.3 | 46.3 | 41.5 | 52.6 |
Concentration of Sodium Cyanide in the Work Solution, g/L | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
8.0 | 12.0 | 16.0 | 20.0 | |||||||||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Au | 35.8 | 41.2 | 45.5 | 48.3 | 51.4 | 56.3 | 55.7 | 59.5 | 60.2 | 65.1 | 64.6 | 70.7 | 68.7 | 73.7 | 74.1 | 79.3 |
Ag | 59.8 | 62.3 | 64.7 | 66.9 | 63.4 | 64.9 | 67.7 | 70.1 | 80.3 | 83.6 | 85.2 | 88.8 | 77.3 | 78.1 | 79.8 | 81.0 |
Tailing Dumps of the Processing Plant | Copper | Zinc | Iron | Gold | Silver | |||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
Thousand Tons | Tons | |||||||||
Sibay | 34.5 | 33.637 | 90.0 | 88.92 | 5900.0 | 5811.5 | 13.9 | 11.0 | 344.0 | 305.5 |
Uchaly | 90.0 | 87.75 | 257.0 | 253.9 | 8050.0 | 7929.2 | 16.5 | 13.1 | 232.0 | 206.0 |
Buribai | 25.0 | 24.375 | 11.6 | 11.46 | 1280.0 | 1260.8 | 6.60 | 5.24 | 56.8 | 50.5 |
Guy | 120.0 | 117.0 | 92.0 | 90.9 | 5550.0 | 5466.8 | 32.0 | 25.4 | 160.0 | 142.1 |
Work Stages | Quarter | Expenses, Million Rubles | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
Geological and technological mapping of tailings. Contouring, study of raw materials. Development of technical assignment and feasibility study of investments. | X | X | 20 | ||||||
Adaptation of technology, development of a production project. | X | X | X | 45 | |||||
Experimental design works, development of technical project and working design documentation. | X | X | X | 45 | |||||
Production of non-standard technological equipment. | X | X | X | 200 | |||||
Complete by standard equipment. | X | X | 180 | ||||||
Performing construction and installation work. | X | X | 70 | ||||||
Pre-commissioning, commissioning. | X | 50 | |||||||
Total: | 610 |
Tailing Dumps of the Processing Plant | Waste Volumes [47] | Productivity | Annual Revenue | Payback | Term of the Work |
---|---|---|---|---|---|
Million Tons | Thousand Tons | Million USD | Month | Year | |
Sibay | 28.5 | 200 | 15.610 | 7 | 142.5 |
Uchaly | 40.8 | 200 | 15.994 | 6.5 | 204 |
Buribai | 5.5 | 200 | 15.523 | 7 | 27.5 |
Guy | 40 | 200 | 10.591 | 10 | 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongar-Syuryun, C.B.; Aleksakhin, A.V.; Eliseeva, E.N.; Zhaglovskaya, A.V.; Klyuev, R.V.; Petrusevich, D.A. Modern Technologies Providing a Full Cycle of Geo-Resources Development. Resources 2023, 12, 50. https://doi.org/10.3390/resources12040050
Kongar-Syuryun CB, Aleksakhin AV, Eliseeva EN, Zhaglovskaya AV, Klyuev RV, Petrusevich DA. Modern Technologies Providing a Full Cycle of Geo-Resources Development. Resources. 2023; 12(4):50. https://doi.org/10.3390/resources12040050
Chicago/Turabian StyleKongar-Syuryun, Cheynesh B., Alexander V. Aleksakhin, Evgeniya N. Eliseeva, Anna V. Zhaglovskaya, Roman V. Klyuev, and Denis A. Petrusevich. 2023. "Modern Technologies Providing a Full Cycle of Geo-Resources Development" Resources 12, no. 4: 50. https://doi.org/10.3390/resources12040050
APA StyleKongar-Syuryun, C. B., Aleksakhin, A. V., Eliseeva, E. N., Zhaglovskaya, A. V., Klyuev, R. V., & Petrusevich, D. A. (2023). Modern Technologies Providing a Full Cycle of Geo-Resources Development. Resources, 12(4), 50. https://doi.org/10.3390/resources12040050