The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Concept of Ecological Footprint
2.2. Housing in Hungary
2.3. Using the EF Concept in the Construction Industry
3. Methodology
Equation | No. |
---|---|
EFmaterial = ecological footprint of materials (gha) EFmaterial = Vi × CFi × ACFi × Ei × DFi × FIoC Vi: aggregated volume of the i-th material in the CBS expressed in its own preferred unit of measurement (e.g., m2 of wall) CFi: conversion factor of the i-th material (e.g., 220.8 kg/m2 in case of a wall built with 30 cm masonry blocks, assuming that 16 bricks are needed for each m2 of wall and each brick weighs 13.8 kg) ACFi: additional conversion factor of the i-th material (optional, only in cases of special items, e.g., PVC profiles) Ei: emission factor of i-th material (e.g., 0.21 kgCO2/kg for 1 kg of brick) [73] DFi: diversion factor, when Ei is expressed in an interval (default value = 1) FIoC: footprint intensity of carbon (0.338 global hectare/kg of CO2 in Hungary) [17] | (1) |
EFwindows = ecological footprint of windows and glazed doors (gha) EFwindows = Ni × [(wi × hi) × (Eglazing + Eloading) + 2 × (wi × hi) × Eframe)] × FIoC Ni: number of the i-th type of window(s) or glazed door(s) i: width of the frame of the i-th type of window or glazed door hi: height of the frame of the i-th type of window or glazed door Eglazing: emission factor of double or triple glazing (e.g., 17.2 kgCO2/kg for 1 m2 of glass surface) [73] Eloading: emission factor of loading (e.g., in case of argon, 0 kgCO2/kg for 1 m2 of glass surface) [73] Eframe: emission factor of the frame (e.g., 1.625 kgCO2/kg for 1 m of timber frame) [73] FIoC: footprint intensity of carbon (0.338 global hectare/kg of CO2 in Hungary) [17] | (2) |
4. Results
5. Conclusions and Discussion
6. Limitations of Our Research
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Main Technical Parameters of Construction Methods of Analysed Buildings
Appendix A.1. New Condominium 1
Appendix A.2. New Condominium 2
Appendix A.3. Prefabricated Type A (Large Block)
Appendix A.4. Prefabricated Type B (Panel)
Appendix B. Items Included in the Calculator
References
- Elhacham, E.; Ben-Uri, L.; Grozovski, J.; Bar-On, Y.M.; Milo, R. Global Human-Made Mass Exceeds All Living Biomass. Nature 2020, 588, 442–444. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Stoemer, E.F. The “Anthropocene”. IGBP Glob. Chang. Newsl. 2000, 41, 17–18. [Google Scholar]
- Lewis, S.L.; Maslin, M.A. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- IPCC Summary for Policymakers. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2018; ISBN 978-1-00-915794-0. [Google Scholar]
- Warszawski, L.; Kriegler, E.; Lenton, T.M.; Gaffney, O.; Jacob, D.; Klingenfeld, D.; Koide, R.; Costa, M.M.; Messner, D.; Nakicenovic, N.; et al. All Options, Not Silver Bullets, Needed to Limit Global Warming to 1.5 °C: A Scenario Appraisal. Environ. Res. Lett. 2021, 16, 064037. [Google Scholar] [CrossRef]
- National Ready Mixed Concrete Association Concrete CO2 Fact Sheet 2012. Available online: http://docshare02.docshare.tips/files/27104/271046448.pdf (accessed on 13 July 2021).
- psci.princeton.edu. Cement and Concrete: The Environmental Impact. Available online: https://psci.princeton.edu/tips/2020/11/3/cement-and-concrete-the-environmental-impact (accessed on 12 July 2021).
- The Guardian. Concrete: The Most Destructive Material on Earth. Available online: http://www.theguardian.com/cities/2019/feb/25/concrete-the-most-destructive-material-on-earth (accessed on 14 July 2021).
- Eurostat. Statistics on Small and Medium-Sized Enterprises-Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Statistics_on_small_and_medium-sized_enterprises#General_overview (accessed on 26 November 2020).
- European Commission. Number of Small and Medium-Sized Enterprises (SMEs) in the Non-Financial Business Economy of the European Union (EU27) in 2022, by Sector. Statista. Available online: https://www.statista.com/statistics/1252884/smes-in-europe-by-sector/ (accessed on 20 October 2022).
- Szigeti, C.; Szennay, Á.; Lisányi Endréné Beke, J.; Polák-Weldon, R.; Radácsi, L. Vállalati ökológiailábnyom-számítás kihívásai a kkv-szektorban. Veztud. Bp. Manag. Rev. 2019, 50, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Szennay, Á.; Szigeti, C.; Beke, J.; Radácsi, L. Ecological Footprint as an Indicator of Corporate Environmental Performance—Empirical Evidence from Hungarian SMEs. Sustainability 2021, 13, 1000. [Google Scholar] [CrossRef]
- Szennay, Á. Calculating Events’ Travel-Related Ecological Footprint. In Proceedings of the 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021), Online, 23–25 September 2021; pp. 673–676. Available online: https://www.researchgate.net/publication/365841938_Calculating_events’_travel-related_ecological_footprint (accessed on 3 January 2023).
- Szigeti, C.; Szennay, Á.; Lisányi Endréné Beke, J.; Polák-Weldon, J.; Radácsi, L. Challenges of Corporate Ecological Footprint Calculations in the SME Sector in Hungary: Case Study Evidence from Six Hungarian Small Enterprises. In Agroecological Footprints Management for Sustainable Food System; Banerjee, A., Meena, R.S., Jhariya, M.K., Yadav, D.K., Eds.; Springer: Singapore, 2021; pp. 345–363. ISBN 9789811594960. [Google Scholar]
- Wackernagel, M.; Lin, D.; Evans, M.; Hanscom, L.; Raven, P. Defying the Footprint Oracle: Implications of Country Resource Trends. Sustainability 2019, 11, 2164. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Hanscom, L.; Murthy, A.; Galli, A.; Evans, M.; Neill, E.; Mancini, M.S.; Martindill, J.; Medouar, F.-Z.; Huang, S.; et al. Ecological Footprint Accounting for Countries: Updates and Results of the National Footprint Accounts, 2012–2018. Resources 2018, 7, 58. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.; Hanscom, L.; Martindill, J.; Borucke, M.; Cohen, L.; Galli, A.; Lazarus, E.; Zokai, G.; Iha, K.; Wackernagel, M. Working Guidebook to the National Footprint Accounts; Global Footprint Network: Oakland, CA, USA, 2018. [Google Scholar]
- Kovács, Z.; Farkas, J.Z.; Szigeti, C.; Harangozó, G. Assessing the Sustainability of Urbanization at the Sub-National Level: The Ecological Footprint and Biocapacity Accounts of the Budapest Metropolitan Region, Hungary. Sustain. Cities Soc. 2022, 84, 104022. [Google Scholar] [CrossRef]
- Borucke, M.; Moore, D.; Cranston, G.; Gracey, K.; Iha, K.; Larson, J.; Lazarus, E.; Morales, J.C.; Wackernagel, M.; Galli, A. Accounting for Demand and Supply of the Biosphere’s Regenerative Capacity: The National Footprint Accounts’ Underlying Methodology and Framework. Ecol. Indic. 2013, 24, 518–533. [Google Scholar] [CrossRef]
- Kovács, Z.; Harangozó, G.; Szigeti, C.; Koppány, K.; Kondor, A.C.; Szabó, B. Measuring the Impacts of Suburbanization with Ecological Footprint Calculations. Cities 2020, 101, 102715. [Google Scholar] [CrossRef]
- Chambers, N.; Simmons, C.; Wackernagel, M. Sharing Nature’s Interest: Ecological Footprints as an Indicator of Sustainability; Routledge: London, UK, 2000; ISBN 978-1-315-87026-7. [Google Scholar]
- Wackernagel, M.; Beyers, B. Ecological Footprint-Managing Our Biocapacity Budget; New Society Publishers: Gabriola Island, BC, Canada, 2019; ISBN 978-0-86571-911-8. [Google Scholar]
- Tóth, G.; Szigeti, C.; Harangozó, G.; Szabó, D.R. Ecological Footprint at the Micro-Scale—How It Can Save Costs: The Case of ENPRO. Resources 2018, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, E.; Lin, D.; Martindill, J.; Hardiman, J.; Pitney, L.; Galli, A. Biodiversity Loss and the Ecological Footprint of Trade. Diversity 2015, 7, 170–191. [Google Scholar] [CrossRef] [Green Version]
- Butnariu, A.; Avasilcai, S. Research on the Possibility to Apply Ecological Footprint as Environmental Performance Indicator for the Textile Industry. Procedia Soc. Behav. Sci. 2014, 124, 344–350. [Google Scholar] [CrossRef] [Green Version]
- McBain, B.; Lenzen, M.; Albrecht, G.; Wackernagel, M. Building Robust Housing Sector Policy Using the Ecological Footprint. Resources 2018, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Balogh, E.; Simor, É.; Vörös, C. (Eds.) Mikrocenzus 2016-7. Lakáskörülmények; Központi Statisztikai Hivatal: Budapest, Hungary, 2018; ISBN 978-963-235-494-1. [Google Scholar]
- KSH. Mikrocenzus 2016-7. Lakáskörülmények-2.1 Lakóegységek, Lakások. Available online: https://www.ksh.hu/mikrocenzus2016/kotet_7_lakaskorulmenyek (accessed on 5 October 2022).
- Egedy, T. A magyar lakótelepek helyzetének értékelése. Földrajzi Ért. 2000, XLIX, 265–283. [Google Scholar]
- Sýkora, L. Post-Socialist Cities. In International Encyclopedia of Human Geography; Kitchin, R., Thrift, N., Eds.; Elsevier: Oxford, UK, 2009; pp. 387–395. ISBN 978-0-08-044910-4. [Google Scholar]
- Paládi-Kovács, Á. A Telepszerű Lakásépítés Elterjedése a XX. Század Második Felében Magyarországon DLA Értekezés Mestermunkájának Bemutatása. Ph.D. Thesis, Pécsi Tudományegyetem, Pécs, Hungary, 2020. [Google Scholar]
- Csoknyai, T. Iparosított Technológiával Létesített Lakóépületek Energiatudatos Felújítása. Ph.D. Thesis, Budapesti Műszaki és Gazdaságtudományi Egyetem, Budapest, Hungary, 2004. [Google Scholar]
- Karlócainé Bakay, E. Lakótelepek szabadtérépítészete 1945-1990 között Budapest példáján. Ph.D. Thesis, Budapesti Corvinus Egyetem Tájépítészeti és Tájökológiai Doktori Iskola, Budapest, Hungary, 2012. [Google Scholar]
- Bojer, A.; Eszenyi, O.; Hluchány, H.; Nagyné Forgács, E.; Simon, É.; Szabó-Jankovics, N. Mikrocenzus 2016-2. A Népesség és a Lakások Jellemzői; Központi Statisztiaki Hivatal: Budapest, Hungary, 2017; ISBN 978-963-235-499-6. [Google Scholar]
- Szabó, B.; Bene, M. Budapesti lakótelepek a panelprogram előtt és után. Ter. Stat. 2019, 59, 526–554. [Google Scholar] [CrossRef]
- Nedučin, D.; Krklješ, M.; Perović, S.K. Demolition-Based Urban Regeneration from a Post-Socialist Perspective: Case Study of a Neighborhood in Novi Sad, Serbia. Sustainability 2021, 13, 10430. [Google Scholar] [CrossRef]
- Kovács, Z.; Egedy, T.; Szabó, B. Persistence or Change: Divergent Trajectories of Large Housing Estates in Budapest, Hungary. In Housing Estates in Europe; The Urban Book Series; Hess, D.B., Tammaru, T., van Ham, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Lasselsberger Knauf Panel Épületek Felújítása. Available online: https://www.cemix.hu/upload/catalogdocs/Lb-K_PANEL_2009.pdf (accessed on 17 October 2022).
- Osztroluczky, M.; Csoknyai, T. Solanova Projekt-Környezetbarát Energiatudatos Panelépület-Felújítási Mintaprojekt Dunaújvárosban. 2005. Available online: http://energotrade.hu/pdf/energotrade_solanova_leiras.pdf (accessed on 17 October 2022).
- Kumar, A.; Singh, P.; Kapoor, N.R.; Meena, C.S.; Jain, K.; Kulkarni, K.S.; Cozzolino, R. Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study. Sustainability 2021, 13, 11949. [Google Scholar] [CrossRef]
- Labaran, Y.H.; Mathur, V.S.; Muhammad, S.U.; Musa, A.A. Carbon Footprint Management: A Review of Construction Industry. Clean. Eng. Technol. 2022, 9, 100531. [Google Scholar] [CrossRef]
- Ramesh, T.; Prakash, R.; Shukla, K.K. Life Cycle Energy Analysis of Buildings: An Overview. Energy Build. 2010, 42, 1592–1600. [Google Scholar] [CrossRef]
- Jackson, D.J. Addressing the Challenges of Reducing Greenhouse Gas Emissions in the Construction Industry: A Multi-Perspective Approach. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2020. [Google Scholar]
- Holthaus, E. Thee Future Earth a Radical Vision for Whats’s Possible in the Age of Warming; HarperCollins: New York, NY, USA, 2020. [Google Scholar]
- Mostert, C.; Bock, J.; Sameer, H.; Bringezu, S. Environmental Assessment of Carbon Concrete Based on Life-Cycle Wide Climate, Material, Energy and Water Footprints. Materials 2022, 15, 4855. [Google Scholar] [CrossRef] [PubMed]
- Farina, I.; Moccia, I.; Salzano, C.; Singh, N.; Sadrolodabaee, P.; Colangelo, F. Compressive and Thermal Properties of Non-Structural Lightweight Concrete Containing Industrial Byproduct Aggregates. Materials 2022, 15, 4029. [Google Scholar] [CrossRef] [PubMed]
- Horváth, Á. BIM 5D Web Alkalmazás (Költség és Idő Optimalizálás a Kivitelezésben); ELTE: Budapest, Hungary, 2020. [Google Scholar]
- Somogyi, Á.; Lovas, T. Supporting BIM by terrestrial laser scanning. Geod. Es Kartogr. 2017, 69, 10–14. [Google Scholar]
- Somogyi, Á.; Fehér, K.; Lovas, T.; Halmos, B.; Barsi, Á. Analysis of Gothic Architectural Details by Spatial Object Reconstruction Techniques. Period. Polytech. Civ. Eng. 2017, 61, 640–651. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, P.; Wang, F.; Osmani, M.; Demian, P. Building Information Modeling (BIM) Driven Carbon Emission Reduction Research: A 14-Year Bibliometric Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12820. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, W.; Wang, W. BIM-Based Multi-Objective Optimization of Low-Carbon and Energy-Saving Buildings. Sustainability 2022, 14, 13064. [Google Scholar] [CrossRef]
- de Paula, N.; Jyo, L.K.; Melhado, S.B. Sources of Challenges for Sustainability in the Building Design—The Relationship between Designers and Clients. Buildings 2022, 12, 1725. [Google Scholar] [CrossRef]
- Onososen, A.; Musonda, I.; Tjebane, M.M. Drivers of BIM-Based Life Cycle Sustainability Assessment of Buildings: An Interpretive Structural Modelling Approach. Sustainability 2022, 14, 11052. [Google Scholar] [CrossRef]
- Hammond, G.P.; Jones, C.I. Embodied Energy and Carbon in Construction Materials. Proc. Inst. Civ. Eng. Energy 2008, 161, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Lu, Q.; Tang, J.; Chen, L.; Hong, J.; Broyd, T. Digital Tools for Revealing and Reducing Carbon Footprint in Infrastructure, Building, and City Scopes. Buildings 2022, 12, 1097. [Google Scholar] [CrossRef]
- Leon, F.; Ramos, A.; Vaswani, J.; Mendieta, C.; Brito, S. Climate Change Mitigation Strategy through Membranes Replacement and Determination Methodology of Carbon Footprint in Reverse Osmosis RO Desalination Plants for Islands and Isolated Territories. Water 2021, 13, 293. [Google Scholar] [CrossRef]
- Leon, F.A.; Ramos Martín, A.; Falcón Alvarado, Y.; Brito, S. Proposal to Determine the Carbon and Ecological Footprint of Seawater Reverse Osmosis Desalination in the Canary Islands Plants Considering the Energy Mix. Desalin. Water Treat. 2021, 230, 9–16. [Google Scholar] [CrossRef]
- Leão, A.S.; Araujo, M.C.; de Jesus, T.B.; Almeida, E.d.S. Is the Soil-Cement Brick an Ecological Brick? An Analysis of the Life Cycle Environmental and Energy Performance of Masonry Walls. Sustainability 2022, 14, 12735. [Google Scholar] [CrossRef]
- Pulselli, R.M.; Simoncini, E.; Ridolfi, R.; Bastianoni, S. Specific Emergy of Cement and Concrete: An Energy-Based Appraisal of Building Materials and Their Transport. Ecol. Indic. 2008, 8, 647–656. [Google Scholar] [CrossRef]
- Li, D.; Joshi, V.; Lavender, C.; Khaleel, M.; Ahzi, S. Yield Asymmetry Design of Magnesium Alloys by Integrated Computational Materials Engineering. Comput. Mater. Sci. 2013, 79, 448–455. [Google Scholar] [CrossRef]
- Solís-Guzmán, J.; Marrero, M.; Ramírez-de-Arellano, A. Methodology for Determining the Ecological Footprint of the Construction of Residential Buildings in Andalusia (Spain). Ecol. Indic. 2013, 25, 239–249. [Google Scholar] [CrossRef]
- Bastianoni, S.; Galli, A.; Niccolucci, V.; Pulselli, R.M. The Ecological Footprint of Building Construction. In The Sustainable City IV: Urban Regeneration and Sustainability; WIT Press: Tallin, Estonia, 2006; Volume 1, pp. 345–356. [Google Scholar]
- Ruiz-Pérez, M.R.; Alba-Rodríguez, M.D.; Castaño-Rosa, R.; Solís-Guzmán, J.; Marrero, M. HEREVEA Tool for Economic and Environmental Impact Evaluation for Sustainable Planning Policy in Housing Renovation. Sustainability 2019, 11, 2852. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Szigeti, C. The Historical Ecological Footprint: From over-Population to over-Consumption. Ecol. Indic. 2016, 60, 283–291. [Google Scholar] [CrossRef]
- Freire-Guerrero, A.; Alba-Rodríguez, M.D.; Marrero, M. A Budget for the Ecological Footprint of Buildings Is Possible: A Case Study Using the Dwelling Construction Cost Database of Andalusia. Sustain. Cities Soc. 2019, 51, 101737. [Google Scholar] [CrossRef]
- González-Vallejo, P.; Muñoz-Sanguinetti, C.; Marrero, M. Environmental and Economic Assessment of Dwelling Construction in Spain and Chile. A Comparative Analysis of Two Representative Case Studies. J. Clean. Prod. 2019, 208, 621–635. [Google Scholar] [CrossRef]
- González-Vallejo, P.; Marrero, M.; Solís-Guzmán, J. The Ecological Footprint of Dwelling Construction in Spain. Ecol. Indic. 2015, 52, 75–84. [Google Scholar] [CrossRef]
- Szennay, Á.; Major, Z.; Beke, J. Ecological Footprint Satellite Calculators to Determine the Environmental Impact of Material Usage of SMEs. In Proceedings of the 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021), Online, 23–25 September 2021; pp. 677–680. Available online: https://www.researchgate.net/publication/365841797_Ecological_footprint_satellite_calculators_to_determine_the_environmental_impact_of_material_usage_of_SMEs (accessed on 3 January 2023).
- Mózner, Z.V. Sustainability and Consumption Structure: Environmental Impacts of Food Consumption Clusters. A Case Study for Hungary. Int. J. Consum. Stud. 2014, 38, 529–539. [Google Scholar] [CrossRef]
- International Energy Agency. Energy Policies of IEA Countries-Hungary 2017 Review; International Energy Agency: Paris, France, 2017; Volume 176. [Google Scholar]
- DEFRA. Greenhouse Gas Reporting: Conversion Factors 2018. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2018 (accessed on 15 July 2020).
- Hammond, G.; Jones, C. Inventory of Carbon and Energy; University of Bath: Bath, UK, 2008. [Google Scholar]
- Embodied Carbon Footprint Database. Circular Ecology.
- Dr Palotás, L. (Ed.) Mérnöki Kézikönyv–I. Kötet; Műszaki Könyvkiadó: Budapest, Hungary, 1981. [Google Scholar]
- Global Footprint Network. Open Data Platform. Available online: http://data.footprintnetwork.org/#/analyzeTrends?type=EFCtot&cn=5001 (accessed on 20 October 2020).
Location | Size of Building | Methodology | Specific EF | Source |
---|---|---|---|---|
Seville (Andalusia, Spain) | 50 dwellings (5 detailed case studies) | holistic approach (EF and financial cost) | new construction: 0.260–0.291 gha/m2 floor area renovation: 0.009–0.022 gha/m2 floor area | [63] |
n/a (Huelva, Spain) | 107 dwellings, with parking spaces, storerooms, and shops in 2 purpose-built blocks (4 floors above ground level and 2 below ground each) 5444.91 + 4798.78 m2 floor area | total annual EF (inclusive machinery, materials, manpower, and indirect costs) urbanization taken into consideration | 0.385 gha/year/m2 floor area | [61] |
La Palma del Condado (Huelva, Spain) | 107 multi-family dwellings, parking lots, storerooms, and commercial premises 8510.70 + 7504.22 m2 floor area | total EF (inclusive machinery, materials, manpower, and indirect costs) urbanization is taken into consideration | 0.228 gha/m2 floor area | [65] |
Seville (Andalusia, Spain) | single-family dwelling 143 m2 total floor area | total EF (inclusive machinery, materials, manpower, and indirect costs) | 0.17 gha/m2 floor area | [66] |
Temuco (Chilean Araucanía, Chile) | single-family dwelling 52 m2 total floor area | total EF (inclusive machinery, materials, manpower, and indirect costs) | 0.19 gha/m2 floor area | [66] |
Spain | 92 projects with 1, 2, 3, 4, 5, and 10 floors above ground level | total EF (inclusive machinery, materials, manpower, and indirect costs) | 1 floor—10.811 gha/person 2 floors—6.936 gha/person 3 floors—4.191 gha/person 4 floors—4.132 gha/person 5 floors—4.196 gha/person 10 floors—4.236 gha/person | [67] |
Element of EF | Description | Literature |
---|---|---|
EFmeals | Food consumption during work time, calculated on the basis of Hungarian national average values | Mózner [69] |
EFwater consumption | Water consumed by employees during work time. Industrial water consumption is excluded | Chambers et al. [21] |
EFbuilt-up area | Total area of non-water absorbent surfaces | Lin et al. [16] |
EFelectricity consumption | Electricity consumption from electricity grid, including heating and boiling with electric devices | IEA [70] DEFRA 2018 [71] |
EFheating and boiling | Heating and boiling with fossil fuels, e.g., natural gas, coal, or wood. | DEFRA 2018 [71] |
EFtransportation | All transportation related EFs, including commuting (both public transport and vehicles owned by employees or the enterprise); transportation of goods, use of corporate cars, flying, etc.; petrol, gasoline, and gas consumption of equipment (e.g., generators) are included | DEFRA 2018 [71] |
Project | Main Attributes | Apartment Characteristics | Other Facts |
---|---|---|---|
new build condominium 1 | three separate two-story buildings (ground floor, first floor) | 28 apartments, average floor area 59.5 m2 + covered terrace | 28 storage rooms 31 units paved parking, fence |
new build condominium 2 | a five-story building (ground floor + 4 floors) with underground parking | 123 apartments, average floor area 51.7 m2 + terrace | 41 storage rooms 56 above-ground + 73 underground parking spaces |
energetic upgrade: prefabricated type A (large block)—1 | five-story apartment building with a basement | 40 apartments + a basement | N/A |
energetic upgrade: prefabricated type A (large block)—2 | five-story apartment building with a basement | 40 apartments + basement | N/A |
energetic upgrade: prefabricated type B (panel)—1 | five-story apartment building (no information on basement) | 40 apartments | N/A |
energetic upgrade: prefabricated type B (panel)—2 | five-story apartment building (no information on basement) | 40 apartments | N/A |
energetic upgrade: prefabricated type B (panel)—3 | ten-story apartment building (no information on the basement) | 60 apartments | N/A |
Name | Unit of Measurement | New Build Condominium 1 | New Build Condominium 2 |
---|---|---|---|
GHG emission | tonnes of CO2 | 1178.23 | 3818.03 |
ecological footprint | global hectares (gha) | 398.24 | 1290.50 |
ecological footprint per dwelling | gha per apartment | 14.22 | 10.49 |
footprint per square meter of useful floor area | gha per square meters | 0.17 | 0.20 |
footprint per capita | gha per capita | 5.04 | N/A |
Unit of Measurement | Prefabricated Type A (Large Block) 1 | Prefabricated Type A (Large Block) 2 | Prefabricated Type B (Panel) 1 | Prefabricated Type B (Panel) 2 | Prefabricated Type B (Panel) 3 | |
---|---|---|---|---|---|---|
built-in materials | m2 | 1356.5 | 1468.9 | 1690.0 | 1690.0 | 2437.6 |
m3 | 332.9 | 352.2 | 401.7 | 401.7 | 500.3 | |
windows and doors | Piece | 0 | 0 | 142 | 142 | 228 |
number of apartments | Piece | 40 | 40 | 40 | 40 | 60 |
total surface area (facade) | m2 | 1152.9 | 1265.3 | 1484 | 1484 | 2064.9 |
total surface area (end slab) | m2 | 345 | 345 | 560 | 560 | 462.5 |
CO2 | tonnes | 36.0 | 38.6 | 80.2 | 78.7 | 138.8 |
per dwelling | tonnes/dwelling | 0.9 | 1.0 | 2.0 | 2.0 | 2.3 |
ecological footprint | gha | 12.2 | 13.0 | 27.1 | 26.6 | 46.9 |
per dwelling | gha/dwelling | 0.3 | 0.3 | 0.7 | 0.7 | 0.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szigeti, C.; Major, Z.; Szabó, D.R.; Szennay, Á. The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary. Resources 2023, 12, 15. https://doi.org/10.3390/resources12010015
Szigeti C, Major Z, Szabó DR, Szennay Á. The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary. Resources. 2023; 12(1):15. https://doi.org/10.3390/resources12010015
Chicago/Turabian StyleSzigeti, Cecília, Zoltán Major, Dániel Róbert Szabó, and Áron Szennay. 2023. "The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary" Resources 12, no. 1: 15. https://doi.org/10.3390/resources12010015
APA StyleSzigeti, C., Major, Z., Szabó, D. R., & Szennay, Á. (2023). The Ecological Footprint of Construction Materials—A Standardized Approach from Hungary. Resources, 12(1), 15. https://doi.org/10.3390/resources12010015