Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability
1. Introduction
2. Papers Published in This Special Issue
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- European Commission. The European Green Deal—COM(2019)640; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Lo, S.L.Y.; How, B.S.; Leong, W.D.; Teng, S.Y.; Rhamdhani, M.A.; Sunarso, J. Techno-Economic Analysis for Biomass Supply Chain: A State-of-the-Art Review. Renew. Sustain. Energy Rev. 2021, 135, 110164. [Google Scholar] [CrossRef]
- Scarlat, N.; Dallemand, J.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; Sanchez Lopez, J., Avraamides, M., Eds.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Toscano, G.; Pizzi, A.; Foppa Pedretti, E.; Rossini, G.; Ciceri, G.; Martignon, G.; Duca, D. Torrefaction of Tomato Industry Residues. Fuel 2015, 143, 89–97. [Google Scholar] [CrossRef]
- Chia, W.Y.; Chew, K.W.; Le, C.F.; Lam, S.S.; Chee, C.S.C.; Ooi, M.S.L.; Show, P.L. Sustainable Utilization of Biowaste Compost for Renewable Energy and Soil Amendments. Environ. Pollut. 2020, 267, 115662. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Duca, D. Effect of the Carbon Oxidation State of Biomass Compounds on the Relationship between GCV and Carbon Content. Biomass Bioenergy 2013, 48, 231–238. [Google Scholar] [CrossRef]
- Oh, Y.-K.; Hwang, K.-R.; Kim, C.; Kim, J.R.; Lee, J.-S. Recent Developments and Key Barriers to Advanced Biofuels: A Short Review. Bioresour. Technol. 2018, 257, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Aravani, V.P.; Sun, H.; Yang, Z.; Liu, G.; Wang, W.; Anagnostopoulos, G.; Syriopoulos, G.; Charisiou, N.D.; Goula, M.A.; Kornaros, M.; et al. Agricultural and Livestock Sector’s Residues in Greece & China: Comparative Qualitative and Quantitative Characterization for Assessing Their Potential for Biogas Production. Renew. Sustain. Energy Rev. 2022, 154, 111821. [Google Scholar] [CrossRef]
- Mai-Moulin, T.; Hoefnagels, R.; Grundmann, P.; Junginger, M. Effective Sustainability Criteria for Bioenergy: Towards the Implementation of the European Renewable Directive II. Renew. Sustain. Energy Rev. 2021, 138, 110645. [Google Scholar] [CrossRef]
- Toscano, G.; Alfano, V.; Scarfone, A.; Pari, L. Pelleting Vineyard Pruning at Low Cost with a Mobile Technology. Energies 2018, 11, 2477. [Google Scholar] [CrossRef] [Green Version]
- Prasad, S.; Singh, A.; Korres, N.E.; Rathore, D.; Sevda, S.; Pant, D. Sustainable Utilization of Crop Residues for Energy Generation: A Life Cycle Assessment (LCA) Perspective. Bioresour. Technol. 2020, 303, 122964. [Google Scholar] [CrossRef] [PubMed]
- de Clercq, D.; Wen, Z.; Gottfried, O.; Schmidt, F.; Fei, F. A Review of Global Strategies Promoting the Conversion of Food Waste to Bioenergy via Anaerobic Digestion. Renew. Sustain. Energy Rev. 2017, 79, 204–221. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Foppa Pedretti, E.; Fabrizi, S.; Duca, D. Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources 2020, 9, 94. [Google Scholar] [CrossRef]
- European Commission Directive 2008/98/EC; European Commission—Publications Office of the European Union: Luxembourg, 2008; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32008L0098 (accessed on 1 June 2022).
- Toscano, G.; Feliciangeli, G.; Rossini, G.; Fabrizi, S.; Foppa Pedretti, E.; Duca, D. Engineered Solid Biofuel from Herbaceous Biomass Mixed with Inorganic Additives. Fuel 2019, 256, 115895. [Google Scholar] [CrossRef]
- Ko, S.; Lautala, P.; Handler, R.M. Securing the Feedstock Procurement for Bioenergy Products: A Literature Review on the Biomass Transportation and Logistics. J. Clean. Prod. 2018, 200, 205–218. [Google Scholar] [CrossRef]
- Duca, D.; Maceratesi, V.; Fabrizi, S.; Toscano, G. Valorising Agricultural Residues through Pelletisation. Processes 2022, 10, 232. [Google Scholar] [CrossRef]
- Toscano, G.; Leoni, E.; Gasperini, T.; Picchi, G. Performance of a Portable NIR Spectrometer for the Determination of Moisture Content of Industrial Wood Chips Fuel. Fuel 2022, 320, 123948. [Google Scholar] [CrossRef]
- Hoang, A.T.; Ong, H.C.; Fattah, I.M.R.; Chong, C.T.; Cheng, C.K.; Sakthivel, R.; Ok, Y.S. Progress on the Lignocellulosic Biomass Pyrolysis for Biofuel Production toward Environmental Sustainability. Fuel Process. Technol. 2021, 223, 106997. [Google Scholar] [CrossRef]
- Venturini, E.; Vassura, I.; Agostini, F.; Pizzi, A.; Toscano, G.; Passarini, F. Effect of Fuel Quality Classes on the Emissions of a Residential Wood Pellet Stove. Fuel 2018, 211, 269–277. [Google Scholar] [CrossRef]
- Brand, M.A.; Mariano Rodrigues, T.; Peretti da Silva, J.; de Oliveira, J. Recovery of Agricultural and Wood Wastes: The Effect of Biomass Blends on the Quality of Pellets. Fuel 2021, 284, 118881. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Foppa Pedretti, E.; Corinaldesi, F.; Mengarelli, C.; Duca, D. Investigation on Wood Pellet Quality and Relationship between Ash Content and the Most Important Chemical Elements. Biomass Bioenergy 2013, 56, 317–322. [Google Scholar] [CrossRef]
- Zamorano, M.; Popov, V.; Rodríguez, M.L.; García-Maraver, A. A Comparative Study of Quality Properties of Pelletized Agricultural and Forestry Lopping Residues. Renew. Energy 2011, 36, 3133–3140. [Google Scholar] [CrossRef]
- Rossini, G.; Toscano, G.; Duca, D.; Corinaldesi, F.; Foppa Pedretti, E.; Riva, G. Analysis of the Characteristics of the Tomato Manufacturing Residues Finalized to the Energy Recovery. Biomass Bioenergy 2013, 51, 177–182. [Google Scholar] [CrossRef]
- Toscano, G.; Riva, G.; Duca, D.; Pedretti, E.F.; Corinaldesi, F.; Rossini, G. Analysis of the Characteristics of the Residues of the Wine Production Chain Finalized to Their Industrial and Energy Recovery. Biomass Bioenergy 2013, 55, 260–267. [Google Scholar] [CrossRef]
- Dao, C.N.; Salam, A.; Kim Oanh, N.T.; Tabil, L.G. Effects of Length-to-Diameter Ratio, Pinewood Sawdust, and Sodium Lignosulfonate on Quality of Rice Straw Pellets Produced via a Flat Die Pellet Mill. Renew. Energy 2022, 181, 1140–1154. [Google Scholar] [CrossRef]
- Butnaru, E.; Pamfil, D.; Stoleru, E.; Brebu, M. Characterization of Bark, Needles and Cones from Silver Fir (Abies Alba Mill.) towards Valorization of Biomass Forestry Residues. Biomass Bioenergy 2022, 159, 106413. [Google Scholar] [CrossRef]
- Sohni, S.; Norulaini, N.A.N.; Hashim, R.; Khan, S.B.; Fadhullah, W.; Mohd Omar, A.K. Physicochemical Characterization of Malaysian Crop and Agro-Industrial Biomass Residues as Renewable Energy Resources. Ind. Crops Prod. 2018, 111, 642–650. [Google Scholar] [CrossRef]
- Toscano, G.; Leoni, E.; Feliciangeli, G.; Duca, D.; Mancini, M. Application of ISO Standards on Sampling and Effects on the Quality Assessment of Solid Biofuel Employed in a Real Power Plant. Fuel 2020, 278, 118142. [Google Scholar] [CrossRef]
- Deng, T.; Alzahrani, A.M.; Bradley, M.S. Influences of Environmental Humidity on Physical Properties and Attrition of Wood Pellets. Fuel Process. Technol. 2019, 185, 126–138. [Google Scholar] [CrossRef]
- Giungato, P.; Barbieri, P.; Cozzutto, S.; Licen, S. Sustainable Domestic Burning of Residual Biomasses from the Friuli Venezia Giulia Region. J. Clean. Prod. 2018, 172, 3841–3850. [Google Scholar] [CrossRef]
- Gillespie, G.D.; Everard, C.D.; McDonnell, K.P. Prediction of Biomass Pellet Quality Indices Using near Infrared Spectroscopy. Energy 2015, 80, 582–588. [Google Scholar] [CrossRef]
- de Freitas Homem de Faria, B.; Santana Barbosa, P.; Valente Roque, J.; de Cássia Oliveira Carneiro, A.; Rousset, P.; Candelier, K.; Francisco Teófilo, R. Evaluation of Weight Loss and High Heating Value from Biomasses during Fungal Degradation by NIR Spectroscopy. Fuel 2022, 320, 123841. [Google Scholar] [CrossRef]
- Toscano, G.; Maceratesi, V.; Leoni, E.; Stipa, P.; Laudadio, E.; Sabbatini, S. FTIR Spectroscopy for Determination of the Raw Materials Used in Wood Pellet Production. Fuel 2022, 313, 123017. [Google Scholar] [CrossRef]
- Leoni, E.; Mancini, M.; Duca, D.; Toscano, G. Rapid Quality Control of Woodchip Parameters Using a Hand-Held Near Infrared Spectrophotometer. Processes 2020, 8, 1413. [Google Scholar] [CrossRef]
- Mancini, M.; Duca, D.; Toscano, G. Laboratory Customized Online Measurements for the Prediction of the Key-Parameters of Biomass Quality Control. J. Near Infrared Spectrosc. 2019, 27, 15–25. [Google Scholar] [CrossRef]
- Mancini, M.; Leoni, E.; Toscano, G. Quality Control of Woodchip Energy Parameters Usign near Infrared Spectroscopy Coupled with Chemometrics. In Proceedings of the 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento-Bolzano, Italy, 3–5 November 2021; pp. 432–435. [Google Scholar]
- Mancini, M.; Rinnan, Å.; Pizzi, A.; Toscano, G. Prediction of Gross Calorific Value and Ash Content of Woodchip Samples by Means of FT-NIR Spectroscopy. Fuel Process. Technol. 2018, 169, 77–83. [Google Scholar] [CrossRef]
- Triolo, J.M.; Ward, A.J.; Pedersen, L.; Løkke, M.M.; Qu, H.; Sommer, S.G. Near Infrared Reflectance Spectroscopy (NIRS) for Rapid Determination of Biochemical Methane Potential of Plant Biomass. Appl. Energy 2014, 116, 52–57. [Google Scholar] [CrossRef]
- Toscano, G.; Rinnan, A.; Pizzi, A.; Mancini, M. The Use of Near-Infrared (NIR) Spectroscopy and Principal Component Analysis (PCA) to Discriminate Bark and Wood of the Most Common Species of the Pellet Sector. Energy Fuels 2017, 31, 2814–2821. [Google Scholar] [CrossRef]
- Mancini, M.; Rinnan, Å.; Pizzi, A.; Mengarelli, C.; Rossini, G.; Duca, D.; Toscano, G. Near Infrared Spectroscopy for the Discrimination between Different Residues of the Wood Processing Industry in the Pellet Sector. Fuel 2018, 217, 650–655. [Google Scholar] [CrossRef]
- Pizzi, A.; Duca, D.; Rossini, G.; Fabrizi, F.; Toscano, G. Biofuel, Bioenergy and Feed Valorization of by-Products and Residues from Hevea Brasiliensis Cultivation to Enhance Sustainability. Resources 2020, 9, 114. [Google Scholar] [CrossRef]
- Ilari, A.; Duca, D.; Boakye-Yiadom, K.A.; Gasperini, T.; Toscano, G. Carbon Footprint and Feedstock Quality of a Real Biomass Power Plant Fed with Forestry and Agricultural Residues. Resources 2022, 11, 7. [Google Scholar] [CrossRef]
- Ilari, A.; Pedretti, E.F.; de Francesco, C.; Duca, D. Pellet Production from Residual Biomass of Greenery Maintenance in a Small-Scale Company to Improve Sustainability. Resources 2021, 10, 122. [Google Scholar] [CrossRef]
- Ilari, A.; Fabrizi, S.; Pedretti, E.F. European Hophornbeam Biomass for Energy Application: Influence of Different Production Processes and Heating Devices on Environmental Sustainability. Resources 2022, 11, 11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duca, D.; Toscano, G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources 2022, 11, 57. https://doi.org/10.3390/resources11060057
Duca D, Toscano G. Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources. 2022; 11(6):57. https://doi.org/10.3390/resources11060057
Chicago/Turabian StyleDuca, Daniele, and Giuseppe Toscano. 2022. "Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability" Resources 11, no. 6: 57. https://doi.org/10.3390/resources11060057
APA StyleDuca, D., & Toscano, G. (2022). Biomass Energy Resources: Feedstock Quality and Bioenergy Sustainability. Resources, 11(6), 57. https://doi.org/10.3390/resources11060057