Tracking the Fate of Aluminium in the EU Using the MaTrace Model
Abstract
:1. Introduction
2. Methodology
2.1. System Boundaries
2.2. Data Sources
2.3. Model and Data
2.3.1. Treatment of the Data
2.3.2. Model Implementation
Use Phase
End-of-Life-Phase
Production Phase
Losses
Stocks
2.4. Scenarios
3. Results and Discussion
3.1. Baseline Scenario
3.1.1. Analysis per Sector
3.1.2. Analysis per Alloy Group
3.2. Alternative Scenario Analysis
4. Conclusions and Recommendations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Niero, M.; Olsen, S. Circular Economy: To be or not to be in a closed product loop? A Life Cycle Assessment of aluminium cans with inclusion of alloying elements. Resour. Conserv. Recycl. 2016, 114, 18–31. [Google Scholar] [CrossRef] [Green Version]
- EMF. What is Circular Economy? A Framework for an Economy that Is Restorative and Regenerative by Desing. 2017. Available online: https://www.ellenmacarthurfoundation.org/circular-economy/concep (accessed on 8 October 2019).
- EC. Circular Economy Action Plan. The European Green Deal; European Commision: Brussels, Belgium, 2020. [Google Scholar]
- EC. Study on the EU’s list of Critical Raw Materials; European Commision: Brussels, Belgium, 2020. [Google Scholar]
- Rombach, G. Raw material supply by aluminum recycling—Efficiency evaluation and long-term availability. Acta Mater. 2013, 61, 1012–1020. [Google Scholar] [CrossRef]
- Boin, U.; Bertram, M. Melting standardized aluminium scrap: A mass balance model for Europe. JOM 2005, 57, 26–33. [Google Scholar] [CrossRef]
- Bertram, M.; Martcheck, K.; Rombach, G. Material Flow Analysis in the Aluminium Industry. J. Ind. Ecol. 2009, 13, 650–654. [Google Scholar] [CrossRef]
- Capuzzi, S.; Timelli, G. Preparation and melting of scrap in aluminium recycling: A review. Metals 2018, 8, 1–24. [Google Scholar]
- Liu, G.; Müller, D. Mapping the global journe of anthropogenic aluminium: A trade-linked multilevel material flow analysis. Environ. Sci. Technol. 2013, 47, 11873–11881. [Google Scholar] [CrossRef] [PubMed]
- EAA. Environmental Profile Report; European Aluminium: Brussels, Belgium, 2018. [Google Scholar]
- Davis, J. Aluminium and Aluminium Alloys; ASM International: Novelty, OH, USA, 2001. [Google Scholar]
- Paraskevas, D.; Kellens, K.; Dewulf, W.; Duflou, J. Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. J. Clean. Prod. 2015, 105, 357–370. [Google Scholar] [CrossRef]
- Hatayama, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Evolution of aluminum recycling initiated by the introduction of next-generation vehicles and scrap sorting technology. Resour. Conserv. Recycl. 2012. [Google Scholar] [CrossRef]
- Bertram, M.; Ramkumar, S.; Rechberg, H.; Rombach, G.; Bayliss, C.; Martcheck, K.; Liu, G. A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour. Conserv. Recycl. 2017, 125, 48–69. [Google Scholar] [CrossRef]
- Nakamura, S.; Kondo, Y.; Kagawa, S.; Matsubae, K.; Nakajima, K.; Nagasaka, T. MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling. Environ. Sci. Technol. 2014. [Google Scholar] [CrossRef]
- Nakamura, S.; Kondo, Y.; Nakajima, K.; Ohno, H.; Pauliuk, S. Quantifying Recycling and Losses of Cr and Ni in Steel Throughout Multiple Life Cycles Using MaTrace-Alloy. Environ. Sci. Technol. 2017. [Google Scholar] [CrossRef] [Green Version]
- Pauliuk, S.; Kondo, Y.; Nakamura, S.; Nakajima, K. Regional Distribution and losses of end-of-life steel throughout multiple product life cycles—Insights form the global multiregional MaTrace model. Resour. Conserv. Recycl. 2017, 116, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy León, M.; Blengini, G.; Dewulf, J. Cobalt in End-of-Life Products in Europe, Where does it End Up?—The MaTrace Approach. Resour. Conserv. Recycl. 2020, 158. [Google Scholar] [CrossRef] [PubMed]
- Wilson, G.; Smalley, G.; Suckling, J.; Lilley, D.; Lee, J.; Mawle, R. The hibernating mobile phone. Dead storage as a barrier to efficient electronic waste recovery. Waste Manag. 2017, 60, 521–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Passarini, F.; Ciacci, L.; Nuss, P.; Manfredi, S. Material Flow Analysis of Aluminium, Copper, and Iron in the EU–28; Joint Research Center—European Commission: Brussels, Belgium, 2018. [Google Scholar]
- National Institute for Environmental Studies. Lifespan Definition. 2020. Available online: http://www.nies.go.jp/lifespan/e_01.html (accessed on 10 April 2018).
- UNEP. Recycling Rates of Metals: A Status Report; UNEP—International Resource Panel: Paris, France, 2011. [Google Scholar]
- Godoy Leon, M.; Dewulf, J. Data quality assessment framework for critical raw materials. The case of cobalt. Resour. Conserv. Recycl. 2020, 157. [Google Scholar] [CrossRef]
- Hatayama, H.; Yamada, H.; Daigo, I.; Matsuno, Y.; Adachi, Y. Dynamic Substance Flow Analysis of Aluminum and Its Alloying Elements. Mater. Trans. 2007, 48, 2518–2524. [Google Scholar] [CrossRef] [Green Version]
- Modaresi, R.; Müller, D. The Role of Automobiles for the Future of Aluminum Recycling. Environ. Sci. Technol. 2012, 46, 8587–8594. [Google Scholar] [CrossRef]
- Løvik, A.; Modaresi, R.; Müller, D. Long-Term Strategies for Increased Recycling of Automotive Aluminum and Its Alloying Elements. Environ. Sci. Technol. 2014, 48, 4257–4265. [Google Scholar] [CrossRef]
- Dokker. Aluminium Content in Cars; European Aluminium Association: Brussels, Belgium, 2016. [Google Scholar]
- EC. Directive (EU) 2018/852 of the European Parliament and of the Council of 30 May 2018 Amending Directive 94/62/EC on Packaging and Packaging Waste. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0852&from=EN (accessed on 24 February 2020).
- EAA. Lightweighting: A Solution to Low Carbon Mobility; EAA: Brussels, Belgium, 2018. [Google Scholar]
- EAA. Circular Aluminium Action Plan; EAA: Brussels, Belgium, 2020. [Google Scholar]
- Warrings, R.; Fellner, J. Current status of circularity for aluminum from householdwaste in Austria. Waste Manag. 2018, 76, 217–224. [Google Scholar] [CrossRef]
- Cui, J.; Roven, H. Recycling of automotive aluminium. Trans. Non-Ferr. Met. Soc. China 2010, 20, 2057–2063. [Google Scholar] [CrossRef] [Green Version]
- Ciacci, L.; Nassar, N.; Harper, E.; Reck, B. Metal Dissipation and Inefficient Recycling Intensify Climate Forcing. Environ. Sci. Technol. 2016, 50. [Google Scholar] [CrossRef] [PubMed]
- EAA. Aluminum in Packaging; European Aluminium: Brussels, Belgium, 2016. [Google Scholar]
Metal | Geographic Boundaries | Author | Year |
---|---|---|---|
Steel | Japan | Nakamura et al. [15] | 2014 |
Cobalt | EU | Godoy León et al. [18] | 2020 |
Chromium, Nickel and Steel | Japan | Nakamura et al. [16] | 2017 |
Steel | Global | Pauliuk et al. [17] | 2017 |
Sector | Product category |
---|---|
Transportation | Automobiles |
Aerospace | |
Other transport | |
Building and construction | Residential building |
Non-residential building | |
Packaging and cans | Used beverage cans |
Mixed packaging | |
Industrial machinery and equipment | Industrial machinery and equipment |
Electrical engineering | Cables |
Other engineering | |
Consumer durables | Consumer durables |
Others | Others |
Dissipative uses |
Scenario Number | Scenario Name | Modified Parameter | Modification |
---|---|---|---|
S1 | Allocation of secondary material for transportation sector | Allocation of secondary material (matrix D) | Increase of wrought alloy content: 5, 8 or 16% every five years |
S2 | No EoL products export | Export of EoL products | No export of EoL products |
S3 | Collection-to-recycling rate packaging directive a | Collection-to-recycling rate | Increase of 0.2, 1 or 5% per year |
S4 | Aluminium content in automobiles b | Demand | Increase 0.04% per year between 2018–2025 |
S5 | Maximum collection to recycling rate c | Collection-to-recycling rate | Increase 5, 10 or 15% per year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarrín Jácome, G.; Godoy León, M.F.; Alvarenga, R.A.F.; Dewulf, J. Tracking the Fate of Aluminium in the EU Using the MaTrace Model. Resources 2021, 10, 72. https://doi.org/10.3390/resources10070072
Jarrín Jácome G, Godoy León MF, Alvarenga RAF, Dewulf J. Tracking the Fate of Aluminium in the EU Using the MaTrace Model. Resources. 2021; 10(7):72. https://doi.org/10.3390/resources10070072
Chicago/Turabian StyleJarrín Jácome, Gabriela, María Fernanda Godoy León, Rodrigo A. F. Alvarenga, and Jo Dewulf. 2021. "Tracking the Fate of Aluminium in the EU Using the MaTrace Model" Resources 10, no. 7: 72. https://doi.org/10.3390/resources10070072
APA StyleJarrín Jácome, G., Godoy León, M. F., Alvarenga, R. A. F., & Dewulf, J. (2021). Tracking the Fate of Aluminium in the EU Using the MaTrace Model. Resources, 10(7), 72. https://doi.org/10.3390/resources10070072