Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Content of Paraffinic Carbon, Naphthenic Carbon and Aromatic Carbon by the n-d-M (ASTM D-3238)
- %CA: 2.7 to 34.6
- %CN: 23.7 to 47.2
- %CP: 32.3 to 68.6
- RA: 0.12 to 1.69
- RN: 1.61 to 2.90
- RT: 1.73 to 3.77
2.2. Determination of Content of Paraffinic (P), Naphthenic (N) and Aromatic (A) Portions by API Procedure 2B4.1 and 3
- %P: 10.2 to 81.0
- %N: 13.3 to 63.9
- %A: 0 to 44.3
2.3. Determination of Refractive Index, Aromatic Carbon and Hydrogen Content by the Total Method
- %CA: 1.2 to 51.6
- %H: 9.6 to 14.58
- SG: 0.8335 to 1.0133
- RI: 1.4459 to 1.5681
- T10%, °C: 27 to 478
- T50%, °C: 385 to 504
- Viscosity at 98.9 °C, mm2/s: 3.6 to 41.8
2.4. Determination of Hydrogen Content and Molecular Weight by the Method of Goosens
2.5. Determination of Aromatic Carbon and Hydrogen Content by the Conoco Philips Method (COP)
- %CA: 14.0 to 75.0
- %H: 8.2 to 13.1
- API (SG): −2.7 to 28 (0.887 to 1.098)
- RI: 1.485 to 1.660
- T10%, °C: 277 to 418
- T50%, °C: 354 to 546
- RI: 1.4747 to 1.6538
- T50%, °C: 243 to 475
- d15, g/cm3: 0.8630 to 1.0971
2.6. Aromatic Ring Index (ARI), Developed by Abutaqiya et al. Is a Characterization Factor, Which Is a Function of Molecular Weight and Refractive Index and Is Used to Estimate the Average Aromatic Ring Numbers in the Average Hydrocarbon Structure of the Investigated Vacuum Gas Oils. ARI Is Estimated by Equations (27) and (28)
3. Results
3.1. Evaluation of VGO Property Relations and Predictions of the Empirical Models and Development of New Empirical Models
- The function f1 is monotonically increasing.
- There exists a point x0 in the interval [0.8, 0.9 g/cm3] such that f1(x0) = 0 (aromatic structure content = 0). (This interval was defined by the value for density of triacontane (C30H62).
- f1(x) < 100 for all x ∈ [x_0, ∞].
- The function f1 approximates data xi (density), yi (aromatic structure content) from the data in Table S3 from Supplementary material (mentioned above).
3.2. Validation of the Developed Model for Prediction of VGO Saturate Content
4. Conclusions
- The use of a logistic function and employment of nonlinear least squares method along with ARI allows prediction of the VGO saturate content by the newly developed correlation in this work.
- The content of heavy aromatics was found to correlate with the aromatic carbon content.
- The dependence of heavy aromatic content on the aromatic carbon content was found to differentiate between FCC slurry oils and other VGOs.
- The relationship of aromatic carbon content with heavy aromatic content for FCC slurry oils can be predicted by a second-order polynomial, while that of the remaining VGOs can be predicted by a linear function.
- The empirical models developed in this study can be used not only for obtaining the valuable structural information necessary to predict the behavior of the VGOs in the conversion processes but can also be applied for the detection of incorrectly performed SARA analyses.
- In the current study, it was shown that the two physical properties, density and T50%, and the ARI estimated on their base along with empirical modeling are capable of predicting the contents of saturates and heavy poly-nuclear (tri-nuclear plus) aromatics in vacuum gas oils with reasonable accuracy.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | API gravity |
ARI | Aromatic ring index |
C | Carbon content, wt. % |
CA | Aromatic carbon content, % |
CH | Carbon to hydrogen ratio |
CN | Naphthenic carbon content, % |
Cp | Paraffinic carbon content, % |
d | Density at 20 °C, g/cm3 |
d15 | Density at 15 °C, g/cm3 |
FRI | Function of refractive index |
FCC SLO | Fluid catalytic cracking slurry oil |
H | Hydrogen content, wt.% |
I | Refractive index parameter |
Kw | Watson K factor |
m, v, w, CR | Parameters |
MW | Molecular weight |
nD20 | Refractive index at 20 °C |
RI | Refractive index at 20 °C |
S | Sulfur content, wt.% |
SG | Specific gravity |
Tb | Normal boiling point or 50 wt.% TBP, K |
T50 | 50% boiling point, °C |
T50F | 50% boiling point, °F |
VGO | Vacuum gas oil |
VIS | Viscosity at 98.9 °C (210 °F), cSt |
References
- Alabdullah, M.A.; Gomez, A.; Vittenet, J.; Bendjeriou-Sedjerari, A.; Xu, W.; Abba, I.; Gascon, J. A viewpoint on the refinery of the future: Catalyst and process challenges. ACS Catal. 2020, 10, 8131–8140. [Google Scholar] [CrossRef]
- Ng, S.H.; Wang, J.; Fairbridge, C.; Zhu, Y.; Yang, L.; Ding, F.; Yui, S. Study of Canadian FCC feeds from various origins and treatments. 1. Ranking of feedstocks based on feed quality and product distribution. Energy Fuels 2004, 18, 160–171. [Google Scholar] [CrossRef]
- Fisher, I.P. Effect of feedstock variability on catalytic cracking yields. Appl. Catal. 1990, 65, 189–210. [Google Scholar] [CrossRef]
- Billaud, F.; Berthelin, M.; Freund, E. Thermal cracking of vacuum distillates. J. Anal. Appl. Pyrolysis 1986, 10, 139–151. [Google Scholar] [CrossRef]
- Bollas, G.M.; Vasalos, I.A.; Lappas, A.A.; Iatridis, D.K.; Tsioni, G.K. Bulk molecular characterization approach for the simu-lation of FCC feedstocks. Ind. Eng. Chem. Res. 2004, 43, 3270–3281. [Google Scholar] [CrossRef]
- Stratiev, D.; Galkin, V.; Shishkova, I.; Minkov, D.; Stanulov, K. Yield of products from catalytic cracking of vacuum gasoils. Chem. Technol. Fuels Oils 2007, 43, 311–318. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Ivanov, M.; Dinkov, R.; Georgiev, B.; Argirov, G.; Atanassova, V.; Vassilev, P.; Atanassov, K.; Yordanov, D.; et al. Catalytic cracking of diverse vacuum residue hydrocracking gas oils. Chem. Eng. Technol. 2021, 44, 997–1008. [Google Scholar] [CrossRef]
- Nazarova, G.; Oreshina, A.; Kaliyev, T.; Arkenova, S.; Antonov, A.; Lemeshko, E. Development of a formalized scheme of hydrocarbon transformations in the catalytic cracking for forecasting the individual composition of gases. AIP Conf. Proc. 2020, 2285, 020014. [Google Scholar]
- Ivanchina, E.D.; Ivashkina, E.N.; Nazarova, G.Y.; Seitenova, G.Z. Influence of feedstock group composition on the octane number and composition of the gasoline fraction of catalytically cracked vacuum distillate. Pet. Chem. 2018, 58, 225–236. [Google Scholar] [CrossRef]
- Ivanchina, E.; Ivashkina, E.; Nazarova, G. Mathematical modelling of catalytic cracking riser reactor. Chem. Eng. J. 2017, 329, 262–274. [Google Scholar] [CrossRef]
- Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Oreshina, A.; Dolganova, I.; Pasyukova, M. Modeling of the catalytic cracking: Catalyst deactivation by coke and heavy metals. Fuel Process. Technol. 2020, 200. [Google Scholar] [CrossRef]
- Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Oreshina, A.; Vymyatnin, E. A predictive model of catalytic cracking: Feedstock-induced changes in gasoline and gas composition. Fuel Process. Technol. 2021, 217, 106720. [Google Scholar] [CrossRef]
- Nazarova, G.Y.; Ivashkina, E.N.; Oreshina, A.A.; Vymyatnin, E.K.; Seytenova, G.Z.; Burumbaeva, G.R. Vacuum distillate catalytic cracking technology modelling: Feedstock and products composition and properties investigation. Pet. Coal 2020, 62, 380–389. [Google Scholar]
- Nazarova, G.; Ivashkina, E.; Ivanchina, E.; Vosmerikov, A.; Vosmerikova, L.; Antonov, A. A model of catalytic cracking: Product distribution and catalyst deactivation depending on saturates, aromatics and resins content in feed. Catalysts 2021, 11, 701. [Google Scholar] [CrossRef]
- Ng, S.H.; Heshka, N.E.; Zheng, Y.; Ling, H.; Wang, J.; Liu, Q.; Little, E.; Ding, F.; Wang, H. Virgin heavy gas oil from oil sands bitumen as FCC feed. Catalysts 2020, 10, 277. [Google Scholar] [CrossRef] [Green Version]
- Stratiev, D.; Shishkova, I.; Veli, A.; Nikolova, R.; Stratiev, D.D.; Mitkova, M.; Yordanov, D. Fluid catalytic cracking and thermal cracking of vacuum gas oils. Effect of feedstock properties on conversion and yields. OGEM 2017, 84–89. [Google Scholar] [CrossRef]
- Stratiev, D.; Minkov, D. Prediction of FCC yields from feedstock quality characterized by empirical methods. Oil Gas Eur. Mag. 2000, 1, 27–32. [Google Scholar]
- ASTM International. ASTM International. ASTM D 3238-17a. In Calculation of Carbon Distribution and Structural Group Analysis of Petroleum Oils by the n-d-M Method; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Riazi, M.R.; Daubert, T.E. Prediction of molecular-type analysis of petroleum fractions and coal liquids. Ind. Eng. Chem. Res. 1986, 25, 1009–1015. [Google Scholar] [CrossRef]
- Riazi, M.R.; Daubert, T.E. Characterization parameters for petroleum fractions. Ind. Eng. Chem. Res. 1987, 26, 755–759. [Google Scholar] [CrossRef]
- Choudhary, T.; Meier, P.F. Characterization of heavy petroleum feedstocks. Fuel Process. Technol. 2008, 89, 697–703. [Google Scholar] [CrossRef]
- Goossens, A.G. Prediction of the hydrogen content of petroleum fractions. Ind. Eng. Chem. Res. 1997, 36, 2500–2504. [Google Scholar] [CrossRef]
- Goossens, A.G. Prediction of molecular weight of petroleum fractions. Ind. Eng. Chem. Res. 1996, 35, 985–988. [Google Scholar] [CrossRef]
- Riazi, M.R. Characterization and Properties of Petroleum Fraction; ASTM Manual Series MNL50; ASTM International: Philadelphia, PA, USA, 2005. [Google Scholar]
- Dhulesia, H. New correlations predict FCC feed characterizing parameters. Oil Gas J. 1986, 84, 51–54. [Google Scholar]
- Abutaqiya, M. Advances in Thermodynamic Modeling of Nonpolar Hydrocarbons and Asphaltene Precipitation in Crude Oils. Ph.D. Thesis, Rice University, Houston, TX, USA, 2019. [Google Scholar]
- Abutaqiya, M.I.L.; Alhammadi, A.A.; Sisco, C.J.; Vargas, F.M. Aromatic Ring Index (ARI): A characterization factor for nonpolar hydrocarbons from molecular weight and refractive index. Energy Fuels 2021, 35, 1113–1119. [Google Scholar] [CrossRef]
- Modarress, H.; Vakili-Nezhaad, G.R.A. New characterization factor for hydrocarbons and petroleum fluids fractions. Oil Gas Sci. Technol. 2002, 57, 149–154. [Google Scholar] [CrossRef]
- Pujro, R.; Falco, M.; Sedran, U. Catalytic cracking of heavy aromatics and polycyclic aromatic hydrocarbons (PAHs) over FCC catalysts. Energy Fuels 2015, 29, 1543–1549. [Google Scholar] [CrossRef]
- Abbott, M.M.; Kaufmann, T.G.; Domash, L. A correlation for predicting liquid viscosities of petroleum fractions. Can. J. Chem. Eng. 1971, 49, 379–384. [Google Scholar] [CrossRef]
- Stratiev, D.S.; Marinov, I.M.; Shishkova, I.K.; Dinkov, R.K.; Stratiev, D.D. Investigation on feasibility to predict the content of saturate plus mono-nuclear aromatic hydrocarbons in vacuum gas oils from bulk properties and empirical correlations. Fuel 2014, 129, 156–162. [Google Scholar] [CrossRef]
- Stratiev, D.; Shishkova, I.; Tankov, I.; Pavlova, A. Challenges in characterization of residual oils. A review. J. Pet. Sci. Eng. 2019, 178, 227–250. [Google Scholar] [CrossRef]
- Marques, J.; Maget, S.; Verstraete, J.J. Improvement of ebullated-bed effluent stability at high conversion operation. Energy Fuels 2011, 25, 3867–3874. [Google Scholar] [CrossRef]
- Ding, F.; Ng, S.H.; Xu, C.; Yui, S. Reduction of light cycle oil in catalytic cracking of bitumen-derived crude HGOs through catalyst selection. Fuel Process. Technol. 2007, 88, 833–845. [Google Scholar] [CrossRef]
- Prabha, K.; Dasila, I.R.; Choudhury, D.N.; Saraf, V.; Kagdiyal, S.; Rajagopal, S.J.; Chopra, S.J. Estimation of FCC feed composition from routinely measured lab properties through ANN model. Fuel Process. Technol. 2014, 125, 155–162. [Google Scholar]
- Sheppard, C.M.; Green, J.B.; Vanderveen, J.W. Relating feedstock composition to product slate and composition in catalytic cracking. 4. An extended pendant-core model for gasoline composition. Energy Fuels 1998, 12, 320–328. [Google Scholar] [CrossRef]
- Li, Z.-K.; Wang, G.; Shi, Q.; Xu, C.-M.; Gao, J.-S. Retardation effect of basic nitrogen compounds on hydrocarbons catalytic cracking in coker gas oil and their structural identification. Ind. Eng. Chem. Res. 2011, 50, 4123–4132. [Google Scholar] [CrossRef]
- Mondal, S.; Yadav, A.; Kumar, R.; Bansal, V.; Das, S.K.; Christopher, J.; Kapur, G.S. Molecular-level structural insight into clarified oil by nuclear magnetic resonance (NMR) spectroscopy: Estimation of hydrocarbon types and average structural parameters. Energy Fuels 2017, 31, 7682–7692. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Zhang, L.; Xu, Z.; Sun, X.; Zhao, S.; Xu, C. Supercritical fluid extraction of FCC slurry oil: Bulk property and molecular composition of narrow fraction. Energy Fuels 2016, 30, 10064–10071. [Google Scholar] [CrossRef]
- Nesumi, Y.; Oyama, T.; Todo, Y.; Azuma, A.; Mochida, I.; Korai, Y. Properties of fluid catalytic cracking decant oils of different origins in their single carbonization and cocarbonization with a petroleum vacuum residue. Ind. Eng. Chem. Res. 1990, 29, 1793–1801. [Google Scholar] [CrossRef]
- VanNes, K.; VanWesten, H.A. Aspects of the Constitution of Mineral Oils; Elsevier: New York, NY, USA, 1951. [Google Scholar]
- Riazi, M.R. Prediction of Thermophysical Properties of Petroleum Fractions. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, USA, 1979. [Google Scholar]
- Altgeld, K.H.; Boduszynski, M. Composition and Analysis of Heavy Petroleum Fractions; Marcel Dekker, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Stratiev, D.; Nenov, S.; Shishkova, I.; Georgiev, B.; Argirov, G.; Dinkov, R.; Yordanov, D.; Atanassova, V.; Vassilev, P.; Atanassov, K. Commercial investigation of the ebullated-bed vacuum residue hydrocracking in the conversion range of 55–93%. ACS Omega 2020, 5, 33290–33304. [Google Scholar] [CrossRef]
- Todorova-Yankova, L.; Yordanov, D.; Stratiev, D.; Shishkova, I. Investigation on SARA composition of light, medium, heavy, and extra heavy crude oils, and oil sands, and bitumen. Ind. Technol. 2021. article in press. (In Bulgarian) [Google Scholar]
- Stratiev, D.S.; Shishkova, I.K.; Dinkov, R.K.; Petrov, I.P.; Kolev, I.V.; Yordanov, D.; Sotirov, S.; Sotirova, E.; Atanassova, V.; Ribagin, S.; et al. Crude slate, FCC slurry oil, recycle, and operating conditions effects on H-Oil product quality. Processes 2021, 9, 952. [Google Scholar] [CrossRef]
- Jacob, S.M.; Gross, B.; Voltz, S.E.; Weekman, V.W. A lumping and reaction scheme for catalytic cracking. AIChE J. 1976, 22, 701–713. [Google Scholar] [CrossRef]
- Ancheyta-Juarez, J.; Lopez-Isunza, F.; Aguilar-Rodriguez, E.; Moreno-Mayorga, J.C. A strategy for kinetic parameter estimation in the fluid catalytic cracking process. Ind. Eng. Chem. Res. 1997, 36, 5170–5174. [Google Scholar] [CrossRef]
- Higher Alkanes. Available online: https://en.wikipedia.org/wiki/Higher_alkanes (accessed on 10 June 2021).
- Mitkova, M.; Stratiev, D.; Shishkova, I.; Dobrev, D. Thermal and Thermo-Catalytic Processes for Heavy Oil Conversion; Professor Marin Drinov Publishing House of Bulgarian Academy of Sciences: Sofia, Bulgaria, 2017. [Google Scholar]
- Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- ASTM International. ASTM International. ASTM D 2007-19. In Standard Test Method for Characteristic Groups in Rubber Extender and Processing Oils and Other Petroleum-Derived Oils by the Clay-Gel Absorption Chromatographic Method; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Ivanov, M.; Dinkov, R.; Georgiev, B.; Argirov, G.; Atanassova, V.; Vassilev, P.; Atanassov, K.; Yordanov, D.; et al. Role of catalyst in optimizing fluid catalytic cracking performance during cracking of h-oil-derived gas oils. ACS Omega 2021, 6, 7626–7637. [Google Scholar] [CrossRef] [PubMed]
- Stratiev, D.; Shishkova, I.; Nikolova, R.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation on precision of determination of SARA analysis of vacuum residual oils from different origin. Pet Coal 2016, 58, 109–119. [Google Scholar]
- Stratiev, D.; Shishkova, I.; Tsaneva, T.; Mitkova, M.; Yordanov, D. Investigation of relations between properties of vacuum residual oils from different origin, and of their deasphalted and asphaltene fractions. Fuel 2016, 170, 115–129. [Google Scholar] [CrossRef]
- Liñan, L.Z.; Lima, N.M.N.; Maciel, M.R.W.; Filho, R.M.; Medina, L.C.; Embiruçu, M. Correlation for predicting the molecular weight of Brazilian petroleum residues and cuts: An application for the simulation of a molecular distillation process. J. Pet. Sci. Eng. 2011, 78, 78–85. [Google Scholar] [CrossRef]
- Sánchez-Lemus, M.; Schoeggl, F.; Taylor, S.; Yarranton, H. Physical properties of heavy oil distillation cuts. Fuel 2016, 180, 457–472. [Google Scholar] [CrossRef]
Min | Max | |
---|---|---|
Density at 15 °C (g/mL) | 0.801 | 1.065 |
Kw | 10.72 | 13.47 |
MW | 258 | 715 |
Kin. viscosity at 100 °C | 2.6 | 161.66 |
T50% | 369 | 620 |
CCR, wt.% | 0 | 11 |
Hydrogen content (wt.%) | 6.88 | 15.59 |
H/C atomic ratio | 1.03 | 2.23 |
Total Nitrogen Content (wppm) | 0 | 4122 |
Basic Nitrogen Content (wppm) | 0.5 | 1543 |
Sulphur % | 0.0008 | 4.6 |
Aromatic Carbon Content, wt.% | 4.4 | 82 |
Aniline Point, °C | 33.1 | 99.8 |
Refractive Index at 20 °C | 1.4747 | 1.5695 |
Saturates | 0.8 | 90.1 |
Paraffins | 0 | 35.2 |
Cyclo-paraffins | 16.7 | 68.4 |
Aromatics | 9.3 | 99.2 |
mono-ARO | 6.87 | 31.3 |
di-ARO | 0.7 | 42.56 |
tri-ARO | 0.1 | 45.33 |
tetra- and greater ARO | 0.5 | 74.94 |
Aromatic Sulfur | 0.1 | 10.7 |
Polar Compounds | 0.7 | 15.2 |
D15 | Kw | VIS100 | H | H/C | CA | AP | RI | Sat. | Aro | Tri-Aro | 4+ARO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
D15 | 1.00 | |||||||||||
Kw | 0.12 | 1.00 | ||||||||||
CCR | 0.52 | 0.49 | 0.97 | |||||||||
H | 0.02 | 0.92 | 0.38 | 1.00 | ||||||||
H/C | 0.03 | 0.96 | 0.33 | 1.00 | 1.00 | |||||||
CA | 0.91 | 0.05 | 0.05 | 0.02 | 0.03 | 1.00 | ||||||
AP | 0.07 | 0.85 | 0.28 | 0.96 | 0.94 | 0.08 | 1.00 | |||||
RI | 0.98 | 0.10 | 0.27 | 0.01 | 0.01 | 0.04 | 0.06 | 1.00 | ||||
Sat. | 0.07 | 0.70 | 0.49 | 0.92 | 0.85 | 0.12 | 0.85 | 0.09 | 1.00 | |||
Par. | 0.19 | 0.35 | 0.50 | 0.74 | 0.84 | 0.46 | 0.68 | 0.32 | 0.78 | |||
Naph. | 0.30 | 0.64 | 0.36 | 0.61 | 0.56 | 0.26 | 0.71 | 0.34 | 0.76 | |||
Aro | 0.46 | 0.20 | 0.32 | 0.38 | 0.40 | 0.51 | 0.07 | 0.63 | 0.24 | 1.00 | ||
DI-Aro | 0.76 | 0.22 | 0.20 | 0.03 | 0.20 | 0.50 | 0.15 | 0.04 | 0.47 | 0.28 | ||
Tri-Aro | 0.50 | 0.30 | 0.03 | 0.51 | 0.40 | 0.74 | 0.33 | 0.55 | 0.40 | 0.67 | 1.00 | |
4+ARO | 0.40 | 0.38 | 0.22 | 0.20 | 0.32 | 0.89 | 0.29 | 0.78 | 0.28 | 0.78 | 0.84 | 1.00 |
Polars | 0.60 | 0.36 | 0.72 | 0.40 | 0.42 | 0.46 | 0.49 | 0.56 | 0.34 | 0.53 | 0.19 | 0.31 |
Heavy ARO | 0.62 | 0.27 | 0.21 | 0.27 | 0.42 | 0.87 | 0.13 | 0.70 | 0.31 | 0.76 | 0.93 | 0.98 |
Min | Max | |
---|---|---|
CA (ndM) | −34.2 | 84.2 |
CN (ndM) | −6.2 | 70.7 |
CP (ndM) | 11.0 | 66.2 |
P (API) | −31.1 | 75.3 |
N (API) | 4.9 | 88.0 |
A (API) | 3.5 | 45.2 |
Hydrogen content, wt. (Goosens) | 7.2 | 17.8 |
Hydrogen content, wt.% (COP) | 6.3 | 15.2 |
CA, wt.% (COP) | −12.4 | 108.7 |
ARI | −1.6 | 3.6 |
Properties | Hydrocracked VGO | FCC SLO (1st SARA Analysis) | FCC SLO (2nd SARA Analysis) |
---|---|---|---|
Density at 15°C (g/mL) | 0.8520 | 1.0826 | |
T50%, °C | 425 | 401 | |
Refractive index at 20°C | 1.4731 | 1.6349 | |
Molecular weight, g/mol | 350 | 250 | |
Aromatic ring index (26, 27) | 0.67 | 3.00 | |
Hydrocarbon group composition, wt.% | |||
Saturates | 93.1 | 44.5 | 7.3 |
Total aromatics | 50.3 | 5.8 | |
Light aromatics | 2.5 | 0.7 | |
Middle aromatics | 2.4 | 12.3 | |
Heavy aromatics | 0.9 | 75.8 | |
Resins | 1.1 | 2.7 | 2.1 |
Asphaltenes | 0 | 2.5 | 1.8 |
Estimated by Equation (40) saturates content, wt.% | 94.6 | 5.9 | 5.9 |
Deifference between measured and predicted by Equation (40) saturates content, wt.% | −1.5 | 38.6 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stratiev, D.S.; Shishkova, I.K.; Dinkov, R.K.; Petrov, I.P.; Kolev, I.V.; Yordanov, D.; Sotirov, S.; Sotirova, E.; Atanassova, V.; Ribagin, S.; et al. Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents. Resources 2021, 10, 71. https://doi.org/10.3390/resources10070071
Stratiev DS, Shishkova IK, Dinkov RK, Petrov IP, Kolev IV, Yordanov D, Sotirov S, Sotirova E, Atanassova V, Ribagin S, et al. Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents. Resources. 2021; 10(7):71. https://doi.org/10.3390/resources10070071
Chicago/Turabian StyleStratiev, Dicho S., Ivelina K. Shishkova, Rosen K. Dinkov, Ivan P. Petrov, Iliyan V. Kolev, Dobromir Yordanov, Sotir Sotirov, Evdokia Sotirova, Vassia Atanassova, Simeon Ribagin, and et al. 2021. "Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents" Resources 10, no. 7: 71. https://doi.org/10.3390/resources10070071
APA StyleStratiev, D. S., Shishkova, I. K., Dinkov, R. K., Petrov, I. P., Kolev, I. V., Yordanov, D., Sotirov, S., Sotirova, E., Atanassova, V., Ribagin, S., Atanassov, K., Stratiev, D. D., Nenov, S., Todorova-Yankova, L., & Zlatanov, K. (2021). Empirical Models to Characterize the Structural and Physiochemical Properties of Vacuum Gas Oils with Different Saturate Contents. Resources, 10(7), 71. https://doi.org/10.3390/resources10070071