Is the EU’s Resource Base of Copper Ore Deposits Large? A Fuzzy Set Theory Approach
Abstract
:1. Introduction
- ✓
- Geological surveys of countries as a database (e.g., Mineral Commodity Summaries published by the US Geological Survey, Minerals Yearbook of Poland published by the Polish Geological Institute-National Research Institute and others);
- ✓
- ✓
- Political and economic unions of countries (e.g., the European Union) as components of an availability study [4];
- ✓
- Non-profit organizations as scientific projects (e.g., Minerals4EU project).
2. Materials and Methods
2.1. Ore Deposits and Copper Mining in Europe
- ✓
- Porphyry;
- ✓
- Sediment-hosted (Kupferschiefer-type);
- ✓
- Red-bed;
- ✓
- Volcanogenic massive sulphide (VMS);
- ✓
- Magmatic sulphide deposits;
- ✓
- Sedimentary exhalative (SEDEX);
- ✓
- Epithermal;
- ✓
- Copper skarns (metasomatic);
- ✓
- Vein-style deposits (polymetallic veins);
- ✓
- Iron oxide copper-gold (IOCG);
- ✓
- Supergene.
2.2. Copper Resources and Reserves in the EU
2.3. EU Copper Reserves in a Fuzzy Concept
- , the element is fully a member of fuzzy set A;
- , the element is not a member of fuzzy set A;
- , the element belongs only partially to fuzzy set A.
- ✓
- Very small/very low (semi-trapezoidal membership function, percentiles 0.1 and 0.25);
- ✓
- Small/low (triangular membership function, percentiles 0.1, 0.25, and 0.4);
- ✓
- Medium/medium (trapezoidal membership function, percentile 0.35, arithmetic mean ± 10%, percentile 0.65);
- ✓
- Large/high (triangular membership function, percentiles 0.6, 0.75, 0.9);
- ✓
- Very large/very high (semi-trapezoidal membership function, percentiles 0.75 and 0.9).
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jovanović, B. The Origin of Copper Mining in Europe. Sci. Am. 1980, 242, 152–167. [Google Scholar] [CrossRef]
- AngloAmerican. Ore Reserves and Mineral Resources Report; AngloAmerican plc: London, UK, 2015; p. 56. [Google Scholar]
- Glencore. Resources & Reserves as at 31 December 2019; Glencore: Baar, Switzerland, 2020; p. 71. [Google Scholar]
- European Commission. Study on the Review of the List of Critical Raw Materials. Non-Critical Raw Materials Factsheets; European Commission: Brussels, Belgium, 2017; pp. 77–92. [Google Scholar]
- Hammarstrom, J.M.; Zientek, M.L.; Parks, H.L.; Dicken, C.L. U.S. Geological Survey Global Copper Mineral Resource Assessment Team. Assessment of Undiscovered Copper Resources of the World, 2015 (v1.1, 24 May 2019); 2018–5160; USGS: Washington, DC, USA, 2019; p. 644.
- Oszczepalski, S.; Speczik, S.; Małecka, K.; Chmielewski, A. Prospective copper resources in Poland. Gospodarka Surowcami Mineralnymi Miner. Resour. Manag. 2016, 32, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.A.; Kojo, I.V. Copper: A Key Enabler of Resource Efficiency. World Metall. Erzmetall 2014, 67, 46–53. [Google Scholar]
- Huysman, S.; Sala, S.; Mancini, L.; Ardente, F.; Alvarenga, R.A.; de Meester, S.; Mathieux, F.; Dewulf, J. Toward a systematized framework for resource efficiency indicators. Resour. Conserv. Recykling 2015, 95, 68–76. [Google Scholar] [CrossRef]
- Kitajima, T.; Sawanishi, H.; Taguchi, M.; Torihara, K.; Honma, O.; Mishima, N. A Proposal on a Resource Efficiency Index for EEE. Procedia CIRP 2015, 26, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Spuerk, S.; Drobe, M.; Lottermoser, B.G. Evaluating resource efficiency at major copper mines. Miner. Eng. 2017, 107, 27–33. [Google Scholar] [CrossRef]
- Pham, T.D. Grade Estimation Using Fuzzy-Set Algorithms. Math. Geol. 1997, 29, 291–305. [Google Scholar] [CrossRef]
- Luo, X.; Dimitrakopoulos, R. Data-Driven Fuzzy Analysis in Quantitative Mineral Resource Assessment. Comput. Geosci. 2003, 29, 3–13. [Google Scholar] [CrossRef]
- Bárdossy, G.; Fodor, J. Assessment of the Completeness of Mineral Exploration by the Application of Fuzzy Arithmetic and Prior Information. Acta Polytech. Hung. 2005, 2, 15–31. [Google Scholar]
- Emery, X.; Ortiz, J.M.; Rodríguez, J.J. Quantifying uncertainty in mineral resources by use of classification schemes and conditional simulations. Math. Geol. 2006, 38, 445–464. [Google Scholar] [CrossRef]
- Tutmez, B. An uncertainty oriented fuzzy methodology for grade estimation. Comput. Geosci. 2007, 33, 280–288. [Google Scholar] [CrossRef]
- Tutmez, B.; Tercan, A.E.; Kaymak, U. Fuzzy Modelling for Reserve Estimation Based on Spatial Variability. Math. Geol. 2007, 39, 87–111. [Google Scholar] [CrossRef]
- Tutmez, B. Use of hybrid intelligent computing in mineral resources evaluation. Appl. Soft Comput. 2009, 9, 1023–1028. [Google Scholar] [CrossRef]
- Dag, A.; Mert, B.A. Evaluating Thickness of Bauxite Deposit Using Indicator Geostatistics and Fuzzy Estimation. Resour. Geol. 2009, 58, 188–195. [Google Scholar] [CrossRef]
- Taboada, J.; Rivas, T.; Saavedra, A.; Ordóñez, C.; Bastante, F.; Giráldez, E. Evaluation of the reserve of a granite deposit by fuzzy kriging. Eng. Geol. 2008, 99, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, P.; Hezarkhani, A. Application of Adaptive Neuro-Fuzzy Inference System for Grade Estimation; Case Study, Sarcheshmeh Porphyry Copper Deposit, Kerman, Iran. Aust. J. Basic Appl. Sci. 2010, 4, 408–420. [Google Scholar]
- Elmas, N.; Şahın, U. Computation of Grade Values of Sediment-Hosted Barite Deposits in Northeastern Isparta (Western Turkey). Turk. J. Earth Sci. 2013, 22, 1–13. [Google Scholar] [CrossRef]
- Muhammad, K.; Glass, H.J. Modelling short-scale variability and uncertainty during mineral resource estimation using a novel fuzzy estimation technique. Geostand. Geoanal. Res. 2011, 35, 369–385. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Qu, X.; Xu, Q. The Evaluation of Mineral Resources Development Efficiency Based on Hesitant Fuzzy Linguistic Approach and Modified TODIM. Hindawi Math. Probl. Eng. 2018, 2018, 1808426. [Google Scholar] [CrossRef]
- Krzak, M.; Panajew, P. Qualitative description of metal ore deposits parameters based on selected fuzzy logic operators on the example of a KGHM Polish Copper, S.A. copper-silver mine. Arch. Min. Sci. 2019, 64, 261–277. [Google Scholar] [CrossRef]
- Ozkan, E.; Iphar, M.; Konuk, A. Fuzzy logic approach in resource classification. Int. J. Min. Reclam. Environ. 2019, 33, 183–205. [Google Scholar] [CrossRef]
- Soltani-Mohammadi, S.; Soltani, A.; Sohrabian, B. Fuzzy tonnage-average grade model based on extension principle. J. Min. Environ. 2019, 10, 659–666. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, K.; Du, X. Application of fuzzy logic and fuzzy AHP to mineral prospectivity mapping of porphyry and hydrothermal vein copper deposits in the Dananhu-Tousuquan island arc, Xinjiang, NW China. J. Afr. Earth Sci. 2017, 128, 94–96. [Google Scholar] [CrossRef]
- Pazand, K.; Hezarkhani, A. Predictive Cu porphyry potential mapping using fuzzy modelling in Ahar-Arasbaran zone, Iran. Geol. Ecol. Landsc. 2018, 2, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Cui, C.-Q.; Wang, B.; Zhao, Y.-X.; Wang, Q.; Sun, Z.-M. China’s regional sustainability assessment on mineral resources: Results from an improved analytic hierarchy process-based normal cloud model. J. Clean. Prod. 2019, 210, 105–120. [Google Scholar] [CrossRef]
- Yon-Ho, K.; Kwang, U.C.; Ryong-Kil, R. Application of fuzzy logic and geometric average: A Cu sulfide deposits potential mapping case study from Kapsan Basin, DPR Korea. Ore Geol. Rev. 2019, 107, 239–247. [Google Scholar] [CrossRef]
- British Geological Survey. Copper Mineral Profile; Natural Environment Research Council: Nottingham, UK, 2007; p. 28. [Google Scholar]
- Rötzer, N.; Schmidt, M. Decreasing Metal Ore Grades—Is the Fear of Resource Depletion Justified? Resources 2018, 7, 88. [Google Scholar] [CrossRef] [Green Version]
- Julihn, C.E.; Meyer, H.M. Copper. In Minerals Yearbook 1932–1933; Kiessling, O.E., Ed.; United States Government Printing Office: Washington, DC, USA, 1933; pp. 27–52. [Google Scholar]
- World Bureau of Metal Statistics. World Metal Statistics, Yearbook 2020; World Bureau of Metal Statistics (WBMS): Herts, UK, 2020; pp. 24–36. [Google Scholar]
- European Commission. European Minerals Yearbook; Roskill Information Services Ltd.: London, UK, 1995; pp. 10–17. [Google Scholar]
- European Commission. European Minerals Yearbook, 2nd ed.; Bureau de Recherches Géologiques et Minières: Luxembourg, 1998; pp. 43–50. [Google Scholar]
- Polish Geological Institute—National Research Institute. Mineral Resources of Poland state as 31.12.2019; Polish Geological Institute—National Research Institute (PIG-PIB): Warsaw, Poland, 2020; pp. 57–59.
- CSA Global. Mineral Resource and Mineral Reserve Update; NI 43-101; CSA Global: Horsham, UK, 2020; pp. 92–128. [Google Scholar]
- Zadeh, L.A. Fuzzy sets and information granularity. In Advances in Fuzzy Systems-Applications and Theory, Fuzzy Sets, Fuzzy Logic and Fuzzy Systems; Klir, G.J., Yuan, B., Eds.; World Scientific: Singapore, 1996; Volume 6, pp. 433–448. [Google Scholar]
- Flanagan, D.M. Copper. In USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 2020; pp. 52–53. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Edelstein, D.L. Copper. In USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 1996; pp. 50–51. [Google Scholar]
- Edelstein, D.L. Copper. In USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 2001; pp. 52–53. [Google Scholar]
- Edelstein, D.L. Copper. In USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 2006; pp. 56–57. [Google Scholar]
- Edelstein, D.L. Copper. In USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 2011; pp. 48–49. [Google Scholar]
- Brininstool, M. USGS Mineral Commodity Summaries; USGS Publ.: Washington, DC, USA, 2016; pp. 54–55.
- Zimmermann, H.-J.; Zysno, P. Latent connectives in human decision making. Fuzzy Sets Syst. 1980, 4, 37–51. [Google Scholar] [CrossRef]
Year | France | Germany | Italy | Great Britain | Greece | Spain | Portugal | UE/Europe (%) | UE/World (%) |
---|---|---|---|---|---|---|---|---|---|
1960 | 0.6 | 1.8 | 3 | – | – | – | – | 0.81 | 0.13 |
1970 | 0.3 | 1.3 | 2.3 | – | – | – | – | 0.30 | 0.06 |
1985 | 0.2 | 0.9 | 0.1 | 0.6 | 0.3 | – | – | 0.12 | 0.03 |
1990 | 0.3 | – | – | – | – | 13.3 | 159.7 | 9.86 | 1.92 |
Finland | Portugal | Spain | Sweden | ||||||
1995 | 9.5 | 129.7 | 22.4 | 83.6 | 17.37 | 2.42 | |||
2000 | 11.6 | 76.2 | 23.3 | 77.8 | 13.48 | 1.43 |
Country | Resources | Reserves | |||||
---|---|---|---|---|---|---|---|
Reporting Code | Quantity (Mt)/Grade (%) | Code Type | Reporting Code | Quantity (Mt)/Grade (%) | Code Type | ||
Great Britain * | NI 43–101 | 0.023/0.02 2.976/0.08 10.476/0.18 | measured indicated inferred | – | |||
JORC | 2.114/0.58 4.114/1.46 | indicated inferred | |||||
Sweden | FRB-standard | 528.9/0.21 2210.4/0.19 817.87/0.21 | measured indicated inferred | FRB-standard | 516.2/0.24 165.76/0.25 | proven probable | |
NI 43–101 | 5.02/2.2 69.8/0.32 3019.9/0.012 | measured indicated inferred | NI 43–101 | 3.798/2.2 0.077/2.1 | proven probable (quantity included within the resources) | ||
JORC | 0.493/0.7 13.8/0.86 39.38/0.83 | measured indicated inferred | |||||
Finland | NI 43–101 | 342/0.23 330/0.28 182/0.2 | measured indicated inferred | NI 43–101 | 196.5/0.30 79/0.40 | proven probable | |
JORC | 521/0.13 857/0.14 807/0.12 | measured indicated inferred | JORC | 1.5/0.8 5/1.4 | proven probable | ||
Portugal | NI 43–101 | 33.946/1.68 112.18/1.18 54.973/1.34 | measured indicated inferred | NI 43–101 | 16.521/1.82 33.77/1.72 | proven probable | |
Spain | various | 17.973/0.99 14.133/1.81 49.126/1.3 | measured indicated inferred | various | 10.13/2.58 28.46/3.0 | proven probable | |
Poland | National Rep. Code | 33.79/1.92 | A + B + C1 + C2 + D | National Rep. Code | 1157.28/2.0 | A + B (quantity included within the resources) | |
Czechia | National Rep. Code | 0.049/0.45 | potentially economic | – | |||
Slovakia | – | 43.916/0.72 | not specified | – | |||
Hungary | Russian classification | 30.71/0.89 359/0.61 391/0.68 | B + C1 + C2 | – | |||
Romania | UNFC | 333/– | 333 | UNFC | 121/– | ||
Greece | USGS measured | 2.8/– | measured | ||||
CIM | 250/0.55 100/0.5 | indicated inferred |
Country | Copper Reserves (Mt) |
---|---|
Portugal | 0.9 |
Spain | 1.1 |
Bulgaria | 2.8 |
Sweden | 5.5 |
Finland | 7.4 |
Congo | 19 |
Zambia | 19 |
Kazakhstan | 20 |
Poland | 23.1 |
China | 26 |
Indonesia | 28 |
EU (total) | 40.9 |
USA | 51 |
Mexico | 53 |
Russia | 61 |
Peru | 87 |
Australia | 87 |
Chile | 200 |
Country | Value of Membership Function | ||
---|---|---|---|
Small | Medium | High | |
Portugal | 1.000 | 0.000 | 0.000 |
Spain | 1.000 | 0.000 | 0.000 |
Bulgaria | 1.000 | 0.000 | 0.000 |
Sweden | 1.000 | 0.000 | 0.000 |
Finland | 0.912 | 0.088 | 0.000 |
Congo | 0.238 | 0.722 | 0.000 |
Zambia | 0.238 | 0.722 | 0.000 |
Kazakhstan | 0.180 | 0.820 | 0.000 |
Poland | 0.000 | 1.000 | 0.000 |
China | 0.000 | 0.920 | 0.080 |
Indonesia | 0.000 | 0.865 | 0.135 |
USA | 0.000 | 0.231 | 0.769 |
Mexico | 0.000 | 0.176 | 0.824 |
Russia | 0.000 | 0.000 | 1.000 |
Peru | 0.000 | 0.000 | 1.000 |
Australia | 0.000 | 0.000 | 1.000 |
Chile | 0.000 | 0.000 | 1.000 |
Value of Membership Function (Reserves) | Value of Operator (Reserves) | Value of Membership Function (Grade) | Value of Operator (Grade) | |||||
---|---|---|---|---|---|---|---|---|
Large | Very Large | MAX | Algebraic Sum | Medium | High | MAX | Algebraic Sum | |
Lubin-Małomice | 0.000 | 1000 | 1000 | 1000 | 1000 | 0.000 | 1000 | 1000 |
Assarel | 0.000 | 1000 | 1000 | 1000 | 0.000 | 0.000 | 0.000 | 0.000 |
Głogów Głęboki | 0.000 | 1000 | 1000 | 1000 | 0.000 | 0.489 | 0.489 | 0.489 |
Prohorovo | 0.011 | 0.989 | 0.989 | 0.989 | 0.000 | 0.000 | 0.000 | 0.000 |
Rudna | 0.385 | 0.615 | 0.615 | 0.763 | 0.000 | 0.419 | 0.419 | 0.419 |
Aljustrel | 0.666 | 0.334 | 0.666 | 0.778 | 0.145 | 0.000 | 0.145 | 0.145 |
Sieroszowice | 0.719 | 0.281 | 0.719 | 0.798 | 0.000 | 0.000 | 0.000 | 0.000 |
Elatsite | 0.700 | 0.000 | 0.700 | 0.700 | 0.000 | 0.000 | 0.000 | 0.000 |
Orlovo Gnezdo | 0.443 | 0.000 | 0.443 | 0.443 | 0.032 | 0.000 | 0.032 | 0.032 |
Kevitsa | 0.411 | 0.000 | 0.411 | 0.411 | 0.000 | 0.000 | 0.000 | 0.000 |
Rio Tinto | 0.257 | 0.000 | 0.257 | 0.257 | 0.129 | 0.000 | 0.129 | 0.129 |
Value of Operator MIN | Value of Operator Hamacher Product | |||
---|---|---|---|---|
MAX | Algebraic Sum | MAX | Algebraic Sum | |
Lubin-Małomice | 1000 | 1000 | 1000 | 1000 |
Assarel | 0.000 | 0.000 | 0.000 | 0.000 |
Głogów Głęboki | 0.489 | 0.489 | 0.489 | 0.489 |
Prohorovo | 0.000 | 0.000 | 0.000 | 0.000 |
Rudna | 0.419 | 0.419 | 0.332 | 0.371 |
Aljustrel | 0.145 | 0.145 | 0.135 | 0.139 |
Sieroszowice | 0.000 | 0.000 | 0.000 | 0.000 |
Elatsite | 0.000 | 0.000 | 0.000 | 0.000 |
Orlovo Gnezdo | 0.032 | 0.032 | 0.031 | 0.031 |
Kevitsa | 0.000 | 0.000 | 0.000 | 0.000 |
Rio Tinto | 0.129 | 0.129 | 0.094 | 0.094 |
Year | Refined Production | Mining Production | Share of Mining Production (%) | Use of Secondary Materials | Share of Use of Secondary Materials (%) | Non-EU Supply | Share of Non-EU Supply (%) |
---|---|---|---|---|---|---|---|
1995 | 1491 | 245 | 16.4 | 907 | 60.8 | 339 | 22.7 |
1996 | 1720 | 228 | 13.3 | 982 | 57.1 | 510 | 29.7 |
1997 | 1733 | 237 | 13.7 | 958 | 55.3 | 538 | 31.0 |
1998 | 1718 | 235 | 13.7 | 963 | 56.1 | 520 | 30.3 |
1999 | 1728 | 184 | 10.6 | 875 | 50.6 | 669 | 38.7 |
2000 | 1847 | 189 | 10.2 | 893 | 48.4 | 765 | 41.4 |
2001 | 1828 | 179 | 9.8 | 796 | 43.6 | 853 | 46.7 |
2002 | 1879 | 165 | 8.8 | 758 | 40.3 | 956 | 50.9 |
2003 | 1755 | 176 | 10.0 | 686 | 39.1 | 893 | 50.9 |
2004 | 2290 | 726 | 31.7 | 691 | 30.2 | 873 | 38.1 |
2005 | 2350 | 711 | 30.3 | 658 | 28.0 | 981 | 41.7 |
2006 | 2367 | 684 | 28.9 | 663 | 28.0 | 1020 | 43.1 |
2007 | 2423 | 730 | 30.1 | 668 | 27.6 | 1025 | 42.3 |
2008 | 2574 | 706 | 27.4 | 732 | 28.4 | 1136 | 44.1 |
2009 | 2487 | 723 | 29.1 | 810 | 32.6 | 954 | 38.4 |
2010 | 2634 | 767 | 29.1 | 781 | 29.6 | 1086 | 41.2 |
2011 | 2715 | 795 | 29.3 | 795 | 29.3 | 1125 | 41.4 |
2012 | 2740 | 831 | 30.3 | 800 | 29.2 | 1109 | 40.5 |
2013 | 2622 | 852 | 32.5 | 767 | 29.3 | 1003 | 38.3 |
2014 | 2747 | 839 | 30.5 | 748 | 27.2 | 1160 | 42.2 |
2015 | 2742 | 867 | 31.6 | 738 | 26.9 | 1137 | 41.5 |
2016 | 2679 | 888 | 33.1 | 762 | 28.5 | 1029 | 38.4 |
2017 | 2754 | 949 | 34.5 | 838 | 30.4 | 967 | 35.1 |
2018 | 2712 | 915 | 33.7 | 827 | 30.5 | 970 | 35.8 |
2019 | 2546 | 921 | 36.2 | 827 | 32.5 | 798 | 31.3 |
1995 | 2000 | 2005 | 2010 | 2015 | 2019 | |
---|---|---|---|---|---|---|
Chile | 88 | 88 | 140 | 150 | 210 | 200 |
Peru | 7 | 19 | 30 | 90 | 82 | 87 |
Russia | 20 | 20 | 20 | 30 | 30 | 61 |
Mexico | – | 15 | 27 | 38 | 46 | 53 |
USA | 45 | 45 | 35 | 35 | 33 | 51 |
Australia | 7 | 9 | 24 | 80 | 88 (26 acc. to JORC) | 87 (23 acc. to JORC) |
Poland | 20 | 20 | 30 | 26 | 23 # | 23 # |
World | 310 | 340 | 470 | 630 | 720 | 870 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krzak, M. Is the EU’s Resource Base of Copper Ore Deposits Large? A Fuzzy Set Theory Approach. Resources 2021, 10, 11. https://doi.org/10.3390/resources10020011
Krzak M. Is the EU’s Resource Base of Copper Ore Deposits Large? A Fuzzy Set Theory Approach. Resources. 2021; 10(2):11. https://doi.org/10.3390/resources10020011
Chicago/Turabian StyleKrzak, Mariusz. 2021. "Is the EU’s Resource Base of Copper Ore Deposits Large? A Fuzzy Set Theory Approach" Resources 10, no. 2: 11. https://doi.org/10.3390/resources10020011
APA StyleKrzak, M. (2021). Is the EU’s Resource Base of Copper Ore Deposits Large? A Fuzzy Set Theory Approach. Resources, 10(2), 11. https://doi.org/10.3390/resources10020011