Designing on the Basis of Recycling-Metallurgy Possibilities: Material-Specific Rules and Standards for “Anti-Dissipative” Products
Abstract
:1. Introduction
1.1. Legal Measures of the EU to Counteract Metal Dissipation
1.2. WEEE as a Promising Urban Metal Ore
1.3. Implications for the Design of EEE
2. Building a Material-Specific Knowledge Base
2.1. Case Study
2.2. Methodological Approach
2.3. Metal Wheel
2.4. Electrotechnical Standards
3. Findings
3.1. Challenges Associated with ITO
3.2. Possibilities of Zn-Pb Metallurgy
3.3. Electrotechnical Standards Improve ITO Recycling
4. Discussion
4.1. Limitation: The Idea of “Anti-Dissipative” Products
4.2. Differentiation: With Material-Specific Rules towards a CE
4.3. Conversation: Standards for Resource Management and Regulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Environment Agency. Europe’s Consumption in a Circular Economy: The Benefits of Longer-Lasting Electronics; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Exner, A.; Held, M.; Kümmerer, K. Einführung: Kritische Metalle in der Großen Transformation. In Kritische Metalle in der Großen Transformation; Exner, A., Held, M., Kümmerer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–16. [Google Scholar]
- Reuter, M.A.; Hudson, C.; Van Schaik, A.; Heiskanen, K.; Meskers, C.; Hagelüken, C. Metal Recycling: Opportunities, Limits, Infrastructure, A Report of the Working Group on the Global Metal Flows to the Inter- National Resource Panel; UNEP, Ed.; United Nations Environment Programme: Nairobi, Kenya, 2013. [Google Scholar]
- Neukirchen, F.; Ries, G. Die Welt der Rohstoffe. Lagerstätten, Förderung und Wirtschaftliche Aspekte; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Dießenbacher, J.; Das Reller, A. Fairphone‘—ein Impuls in Richtung nachhaltige Elektronik? In Kritische Metalle in der Großen Transformation; Exner, A., Held, M., Kümmerer, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 269–292. [Google Scholar]
- Reck, B.K.; Graedel, T.E. Challenges in Metal Recycling. Science 2012, 337, 690–695. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Circular Economy Action Plan: For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Worrell, E.; Reuter, M.A. Handbook of Recycling: State-of-the-Art for Practitioners, Analysts, and Scientists; Elsevier: Waltham, MA, USA, 2014. [Google Scholar]
- Reuter, M.A.; van Schaik, A.; Ballester, M. Limits of the Circular Economy: Fairphone Modular Design Pushing the Limits. World Metall. 2018, 71, 68–79. [Google Scholar]
- Ylä-Mella, J.; Pongracz, E. Drivers and Constraints of Critical Materials Recycling: The Case of Indium. Resources 2016, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Held, M.; Jenny, R.D.; Hempel, M. Metalle Auf der Bühne der Menschheit; DBU-Umweltkommunikation; Oekom: Munich, Germany, 2018; Volume 11. [Google Scholar]
- European Environment Agency. Circular by Design. Products in the Circular Economy; European Union: Copenhagen, Denmark, 2017. [Google Scholar]
- Cook, G.; Jardim, E. Guide to Greener Electronics—2017 Company Report Card; Greenpeace Inc.: Washington, DC, USA, 2017. [Google Scholar]
- World Economic Forum. A New Circular Vision for Electronics, Time for a Global Reboot. Available online: https://www.weforum.org/reports/a-new-circular-vision-for-electronics-time-for-a-global-reboot/ (accessed on 10 July 2020).
- European Commission Waste Electrical & Electronic Equipment (WEEE). Available online: https://ec.europa.eu/environment/waste/weee/index_en.htm (accessed on 10 July 2020).
- European Commission. Mitteilung der Kommission an das Europäische Parlament, Den Rat, Den Europäischen Wirtschafts- und Sozialausschuss und Den Ausschuss der Regionen. Gestaltung der Digitalen Zukunft Europas; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Environment Agency. The European Environment—State and Outlook 2020: Knowledge for Transition to a Sustainable Europe; Publications Office of the European Union: Copenhagen, Denmark, 2019. [Google Scholar]
- Meskers, C.; Hagelüken, C. Complex Life Cycles of Precious and Special Metals. In Linkages of Sustainability; Graedel, T.E., Van der Voet, E., Eds.; MIT Press: London, UK, 2010; pp. 163–197. [Google Scholar]
- European Union Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:0030:en:PDF (accessed on 28 July 2020).
- European Union Directive 2002/96/EC of the European Parliament and of the Council of 27 January 2003 on Waste Electrical and Electronic Equipment (WEEE). Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:ac89e64f-a4a5-4c13-8d96-1fd1d6bcaa49.0004.02/DOC_1&format=PDF (accessed on 28 July 2020).
- European Union Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE). Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2012:197:0038:0071:en:PDF (accessed on 28 July 2020).
- Martens, H.; Goldmann, D. Recyclingtechnik. Fachbuch für Lehre und Praxis; Springer: Wiesbaden, Germany, 2016. [Google Scholar]
- Mathieux, F.; Ardente, F.; Bobba, S.; Nuss, P.; Blengini, G.; Alves Dias, P.; Blagoeva, D.; De Matos, T.C.; Wittmer, D.; Pavel, C.; et al. Critical Raw Materials and the Circular Economy—Background Report; EUR 29595 EN; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- European Union Directive 2009/125/EC of the European Parliament and of the Council of 21 October 2009 Establishing a Framework for the Setting of Ecodesign Requirements for Energy-Related Products. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:285:0010:0035:en:PDF (accessed on 28 July 2020).
- BIO Intelligence Service. Material-Efficiency Ecodesign Report and Module to the Methodology for the Ecodesign of Energy-Related Products (MEErP). Part 1: Material Efficiency for Ecodesign. Available online: https://www.eup-network.de/fileadmin/user_upload/Produktgruppen/ecodesign-BIO-IZM-WI-material-efficiency-meerp_en.pdf (accessed on 19 July 2020).
- Wieser, H.; Tröger, N. Die Nutzungsdauer und Obsoleszenz von Gebrauchsgütern im Zeitalter der Beschleunigung. Eine Empirische Untersuchung in Österreichischen Haushalten; Kammer für Arbeiter und Angestellte für Wien, Ed.; AK-Wien: Vienna, Austria, 2015. [Google Scholar]
- Tröger, N.; Wieser, H.; Hübner, R. Smartphones werden häufiger ersetzt als T-Shirts. In Beiträge zur Verbraucherforschung Band 6: Pack ein, Schmeiß’ Weg? Wegwerfkultur und Wertschätzung von Konsumgütern; Bala, C., Schuldzinski, W., Eds.; Verbraucherzentrale NRW: Düsseldorf, Germany, 2017; pp. 80–102. [Google Scholar]
- Wieser, H. Beyond Planned Obsolescence. Product Lifespan and the Challenges to a Circular Economy. GAIA 2016, 25, 156–160. [Google Scholar] [CrossRef]
- Cooper, T. Inadequate Life? Evidence of Consumer Attitudes to Product Obsolescence. J. Consum. Policy 2004, 27, 421–449. [Google Scholar] [CrossRef] [Green Version]
- Adler, B. Strategische Metalle—Eigenschaften, Anwendung und Recycling; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Cordella, M.; Alfieri, F.; Sanfelix, J. Guidance for the Assessment of Material Efficiency: Application to Smartphones; EUR 30068 EN; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Jardim, E. From Smart to Senseless: The Global Impact of 10 Years of Smartphone; Greenpeace Inc.: Washington, DC, USA, 2017. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. On the Implementation of the Circular Economy Action Plan; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. Study on the EU’s List of Critical Raw Materials—Final Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries 2020; USGS: Reston, VA, USA, 2020.
- Nordmann, J.; Welfens, M.J.; Fischer, D.; Nemnich, C.; Bookhagen, B.; Bienge, K.; Niebert, K. Die Rohstoff-Expedition. Entdecke, Was in (d)Einem Handy Steckt! 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Marscheider-Weidemann, F.; Langkau, S.; Hummen, T.; Erdmann, L.; Espinoza, L.T.; Angerer, G.; Marwede, M.; Benecke, S. Rohstoffe für Zukunftstechnologien 2016; DERA Rohstoffinformationen 28; Deutsche Rohstoffagentur: Berlin, Germany, 2016. [Google Scholar]
- Graedel, T.E.; Allwood, J.; Birat, J.-P.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.; Buchert, M.; Hagelüken, C. Recycling Rates of Metals. A Status Report; UNEP, Ed.; United Nations Environment Programme: Nairobi, Kenya, 2011. [Google Scholar]
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; UNU: Bonn, Germany; UNITAR: Geneva, Switzerland; ITU: Rotterdam, The Netherlands, 2020. [Google Scholar]
- European Environment Agency. Is Europe Living within the Limits of Our Planet? An Assessment of Europe’s Environmental Footprints in Relation to Planetary Boundaries; European Environment Agency: Copenhagen, Denmark, 2020. [Google Scholar]
- Opschoor, J.B. Ecospace and the Fall and Rise of Throughput Intensity. Ecol. Econ. 1995, 15, 137–140. [Google Scholar] [CrossRef]
- Meadows, D.; Meadows, D.; Zahn, E.; Milling, P. Die Grenzen des Wachstums. Bericht des Club of Rome Zur Lage der Menschheit; Dva Informativ: Stuttgart, Germany, 1972. [Google Scholar]
- Schmidt-Bleek, F. Wieviel Umwelt Braucht Der Mensch? MIPS—Das Maß Für Ökologisches Wirtschaften; Birkhäuser: Berlin, Germany, 1993. [Google Scholar]
- Liedtke, C.; Bienge, K.; Wiesen, K.; Teubler, J.; Greiff, K.; Lettenmeier, M.; Rohn, H. Resource Use in the Production and Consumption System—The MIPS Approach. Resources 2014, 3, 544–574. [Google Scholar] [CrossRef] [Green Version]
- Hagelüken, C. Recycling of Electronic Scrap at Umicore Precious Metals Refining. In Proceedings of the Acta Metallurgica Slovaca, Štrbské Pleso, Slovakia, 20–22 June 2006. [Google Scholar]
- Nolte, A. Metals for Progress—Nachhaltige Multi-Metall-Gewinnung bei Aurubis. In Recycling und Rohstoffe; Thiel, S., Thome-Kozmiensky, E., Goldmann, D., Eds.; Thome-Kozmiensky Verlag GmbH: Neuruppin, Germany, 2018; Volume 11, pp. 299–306. [Google Scholar]
- Reuter, M.A.; Matusewicz, R.; Van Schaik, A. Lead, Zinc and Their Minor Elements: Enablers of a Circular Economy. World Metall. 2015, 68, 134–148. [Google Scholar]
- Li, S.; Tang, M.; He, J.; Yang, S.; Tang, C.; Chen, Y. Extraction of Indium from Indium-Zinc Concentrates. Trans. Nonferrous Met. Soc. China 2006, 16, 1448–1454. [Google Scholar] [CrossRef]
- DIHK; DIN; ZDH. 1 × 1 Der Normung. Ein Praxisorientierter Leitfaden Für KMU. Available online: https://www.din.de/resource/blob/69886/5bd30d4f89c483b829994f52f57d8ac2/kleines-1x1-der-normung-neu-data.pdf (accessed on 22 December 2020).
- DIN e.V. Normen Und Standards Ebnen Der Circular Economy Den Weg. Available online: https://www.din.de/de/forschung-und-innovation/themen/circular-economy (accessed on 15 October 2020).
- Mouyal, N. Anwendung von Normen Auf Die Kreislaufwirtschaft. Available online: https://www.dke.de/de/arbeitsfelder/components-technologies/news/anwendung-von-normen-auf-die-kreislaufwirtschaft (accessed on 31 August 2020).
- International Electrotechnical Commission IEC TC 111. Available online: https://tc111.iec.ch/#about (accessed on 15 October 2020).
- Kalyani, N.T.; Swart, H.; Dhoble, S.J. Principles and Applications of Organic Light Emitting Diodes (OLEDs); Woodhead Publishing: Cambridge, UK, 2017. [Google Scholar]
- British Geological Survey; Bureau de Recherches Géologiques et Minières; Deloitte Sustainability; European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs; Toegepast natuurwetenschappelijk onderzoek. Study on the Review of the List of Critical Raw Materials: Critical Raw Materials Factsheets; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- U.S. Geological Survey (USGS). Mineral Commodity Summaries. Available online: https://www.usgs.gov/centers/nmic/mineral-commodity-summaries (accessed on 13 December 2020).
- Watari, T.; Nansai, K.; Nakajima, K. Review of Critical Metal Dynamics to 2050 for 48 Elements. Resour. Conserv. Recycl. 2020, 155, 104669. [Google Scholar] [CrossRef]
- Angerer, G.; Marscheider-Weidemann, F.; Lüllmann, A.; Erdmann, L.; Scharp, M.; Handke, V.; Marwede, M. Rohstoffe für Zukunftstechnologien, 2nd ed.; Fraunhofer IRB Verlag: Stuttgart, Germany, 2009. [Google Scholar]
- Schwarz-Schampera, U. Indium. In Critical Metals Handbook; Gunn, G., Ed.; John Wiley & Sons: Nottingham, UK, 2014; pp. 204–229. [Google Scholar]
- Werner, T.T.; Gavin, M.M.; Simon, M.J. The World’s by Product and Critical Metal Resources Part III: A Global Assessment of Indium. Ore Geol. Rev. 2017, 86, 939–956. [Google Scholar] [CrossRef]
- Nassar, N.T.; Graedel, T.E.; Harper, E.M. By-Product Metals Are Technologically Essential but Have Problematic Supply. Adv. Sci. 2015, 1, e1400180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mostert, C.; Bringezu, S. Measuring Product Material Footprint as New Life Cycle Impact Assessment Method: Indicators and Abiotic Characterization Factors. Resources 2019, 8, 61. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Leading the Way to a Global Circular Economy: State of Play and Outlook; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Graedel, T.E.; Nassar, N.T. The criticality of metals: A perspective for geologists. In Ore Deposits in an Evolving Earth; Jenkin, G.R.T., Lusty, P.A.J., McDonald, I., Smith, M.P., Boyce, A.J., Wilkinson, J.J., Eds.; The Geological Society of London: London, UK, 2013. [Google Scholar]
- Li, Y.; Liu, Z.; Li, Q.; Liu, Z.; Li, Z. Recovery of Indium from Used Indium-Tin Oxide (ITO) Targets. Hydrometallurgy 2011, 105, 207–212. [Google Scholar] [CrossRef]
- DKE Alles Rund um den Normungsprozess. Available online: https://www.dke.de/de/normen-standards/grundlagen-der-normung/normungsprozess (accessed on 28 January 2020).
- International Electrotechnical Commission. Preparing the Circular Economy; E-Tech: Geneva, Switzerland, 2019; pp. 1–20. [Google Scholar]
- Van Schaik, A.; Reuter, M.A. Product Centric Simulation Based Design for Recycling (DfR) and Design for Resource Efficiency (DfRE)—10 Fundamental Rules & General Guidelines for Design for Recycling & Resource Efficiency; NVMP/Wecycle: Zoetermeer, The Netherlands, 2014. [Google Scholar]
- Van Schaik, A.; Reuter, M.A. Product Centric Design for Recycling: Predicting Recycling Rates—An Example on LED Lamp Recycling. In Proceedings of the Going Green—Care Innovation, Vienna, Austria, 17–20 November 2014. [Google Scholar]
- Mancini, L.; Vidal Legaz, B.; Vizzarri, M.; Wittmer, D.; Grassi, G.; Pennington, D. Mapping the Role of Raw Materials in Sustainable Development Goals. A Preliminary Analysis of Links, Monitoring Indicators, and Related Policy Initiatives; EUR 29595 EN; European Union: Luxembourg, 2019. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoch, K.; Liedtke, C.; Bienge, K. Designing on the Basis of Recycling-Metallurgy Possibilities: Material-Specific Rules and Standards for “Anti-Dissipative” Products. Resources 2021, 10, 5. https://doi.org/10.3390/resources10010005
Schoch K, Liedtke C, Bienge K. Designing on the Basis of Recycling-Metallurgy Possibilities: Material-Specific Rules and Standards for “Anti-Dissipative” Products. Resources. 2021; 10(1):5. https://doi.org/10.3390/resources10010005
Chicago/Turabian StyleSchoch, Konrad, Christa Liedtke, and Katrin Bienge. 2021. "Designing on the Basis of Recycling-Metallurgy Possibilities: Material-Specific Rules and Standards for “Anti-Dissipative” Products" Resources 10, no. 1: 5. https://doi.org/10.3390/resources10010005
APA StyleSchoch, K., Liedtke, C., & Bienge, K. (2021). Designing on the Basis of Recycling-Metallurgy Possibilities: Material-Specific Rules and Standards for “Anti-Dissipative” Products. Resources, 10(1), 5. https://doi.org/10.3390/resources10010005