Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands
Abstract
:1. Introduction
1.1. Connectivity Processes Drive Dryland Landscape Dynamics
1.2. A Systems and Action Research Approach
1.3. Main Aim of Work and Flood Flow Connectivity to the Landscape (FlowCon) Framework Summary
1.3.1. Main Aim of Work
1.3.2. Integration of Other Elements of FlowCon Framework
2. Materials and Methods
2.1. Model Structure
2.1.1. Generic Structure Generated from Southern New Mexico Site
2.1.2. Model Water Budget Approach
2.1.3. Model Boundary, Assumptions, and Inputs from Other FlowCon Framework Models
2.1.4. Calibration, Validation, and Confidence Building Tests
2.2. Upland System to Support Ranchers to Increase Vegetation
2.3. Valley System to Support Farmers to Increase Water Availability through Recharge and Stormwater Spreading
3. Results
3.1. Support
3.2. Strategy 1: Overall Balance of System Management of Stormwater to Increase Downstream Benefit While Not Negatively Impacting Downstream Users
3.3. Strategy 2: Increase Productivity/Water Availability to Agriculture and Reverse Trends of Groundwater Storage Declines
4. Discussion
4.1. Scenarios for Achieving Transformation of Trends of Resource Declines
4.2. The Hydrology–Vegetation Feedback Dynamics
4.3. Managed Aquifer Recharge to Reverse Groundwater Storage Declines
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
The model has 76 (76) variables (array expansion in parens). In root model and 0 additional modules with 0 sectors. Stocks: 9 (9) Flows: 20 (20) Converters: 47 (47) Constants: 23 (23) Equations: 44 (44) Graphicals: 10 (10) Top-Level Model: “Actual_vegetation_coverage_%_(VCa)”(t) = “Actual_vegetation_coverage_%_(VCa)”(t - dt) + (“ET_availability_effect_on_vegetation_(ETa)”) * dt INIT “Actual_vegetation_coverage_%_(VCa)” = 0.25 UNITS: NDVInormal INFLOWS: “ET_availability_effect_on_vegetation_(ETa)” = (“Vegetation_coverage_expected_(VCe)”- “Actual_vegetation_coverage_%_(VCa)”)/”Vegetation_response_delay_(Vd)” UNITS: NDVInormal/Years “Benefit_perceived_legitimate_in_uplands_(BLu)”(t) = “Benefit_perceived_legitimate_in_uplands_(BLu)”(t - dt) + (“Benefit_evaluation_uplands_(Bu)”) * dt INIT “Benefit_perceived_legitimate_in_uplands_(BLu)” = 0 UNITS: 1 INFLOWS: “Benefit_evaluation_uplands_(Bu)” = ((“Productivity_benefit_uplands_(PBu)”- “Benefit_perceived_legitimate_in_uplands_(BLu)”)/”Productivity_evaluation_delay_(Pd)”)* switch UNITS: Per Year “Benefit_perceived_legitimate_valley_(BLv)”(t) = “Benefit_perceived_legitimate_valley_(BLv)”(t - dt) + (Benefit_evaluation_valley) * dt INIT “Benefit_perceived_legitimate_valley_(BLv)” = 0 UNITS: 1 INFLOWS: Benefit_evaluation_valley = (Productivity_benefit_valley- “Benefit_perceived_legitimate_valley_(BLv)”)/”Productivity_evaluation_delay_(Pd)” UNITS: Per Year pink(t) = pink(t - dt) + (update) * dt INIT pink = scaled UNITS: 1 INFLOWS: update = gap/corr_time UNITS: Per Year “Shallow_groundwater_aquifer_storage_(GW)”(t) = “Shallow_groundwater_aquifer_storage_(GW)”(t - dt) + (“Recharge_valley_(Rv)” + “Recharge_uplands_(Ru)” - “Groundwater_pumping_(GWout)”) * dt INIT “Shallow_groundwater_aquifer_storage_(GW)” = 20000000 UNITS: Feet*Acre INFLOWS: “Recharge_valley_(Rv)” = (“Soil_moisture_valley_(SMv)”+ “Stormwater_actual_spread_rate_in_valley_(SWa)”* “Ditch_/_Field_ratio_(DF)”)* (1-”ETv_ratio_(ETvr)”) [UNIFLOW] UNITS: Feet*Acre/Years “Recharge_uplands_(Ru)” = “Soil_moisture_uplands_(SMup)”* (1-”ET_upland_fraction_(ETup)”) [UNIFLOW] UNITS: Feet*Acre/Years OUTFLOWS: “Groundwater_pumping_(GWout)” = “GW_availability_(GWa)”* ((“Minimum_pumping_rate_(GWp)”* “Irrigated_land_area_(Ai)”)+ “Compact_allocation_gap_(Cg)”) [UNIFLOW] UNITS: Feet*Acre/Years “Soil_moisture_uplands_(SMup)”(t) = “Soil_moisture_uplands_(SMup)”(t - dt) + (“Infiltration_in_uplands_(Iu)” + “Additional_infiltration_in_uplands_(AIup)” - “Recharge_uplands_(Ru)” - “Evapotranspiration_(ET)_uplands_(ETu)”) * dt INIT “Soil_moisture_uplands_(SMup)” = 50000 UNITS: Feet*Acre INFLOWS: “Infiltration_in_uplands_(Iu)” = “Surface_water_in_uplands_(Qu)”* “Infiltration_upland_fraction_(If)” [UNIFLOW] UNITS: Feet*Acre/Years “Additional_infiltration_in_uplands_(AIup)” = “Surface_spreading_in_uplands_actual_(SSa)”* “Infiltration_floodplains_fraction_(Ifp)” [UNIFLOW] UNITS: Feet*Acre/Years OUTFLOWS: “Recharge_uplands_(Ru)” = “Soil_moisture_uplands_(SMup)”* (1-”ET_upland_fraction_(ETup)”) [UNIFLOW] UNITS: Feet*Acre/Years “Evapotranspiration_(ET)_uplands_(ETu)” = “Soil_moisture_uplands_(SMup)”* “ET_upland_fraction_(ETup)” [UNIFLOW] UNITS: Feet*Acre/Years “Soil_moisture_valley_(SMv)”(t) = “Soil_moisture_valley_(SMv)”(t - dt) + (“Infiltration_in_valley_(Iv)” + “Additional_infiltration_in_valleys_(AIv)” - “Recharge_valley_(Rv)” - “ET_valley_(ETv)”) * dt INIT “Soil_moisture_valley_(SMv)” = 1.39e6 UNITS: Feet*Acre INFLOWS: “Infiltration_in_valley_(Iv)” = “Infiltration_valley_ratio_(Ir)”* “Surface_water_in_valley_(Qv)” [UNIFLOW] UNITS: Feet*Acre/Years “Additional_infiltration_in_valleys_(AIv)” = ((1-”Ditch_/_Field_ratio_(DF)”)* “Stormwater_actual_spread_rate_in_valley_(SWa)”) [UNIFLOW] UNITS: Feet*Acre/Years OUTFLOWS: “Recharge_valley_(Rv)” = (“Soil_moisture_valley_(SMv)”+ “Stormwater_actual_spread_rate_in_valley_(SWa)”* “Ditch_/_Field_ratio_(DF)”)* (1-”ETv_ratio_(ETvr)”) [UNIFLOW] UNITS: Feet*Acre/Years “ET_valley_(ETv)” = “Soil_moisture_valley_(SMv)”* “ETv_ratio_(ETvr)” [UNIFLOW] UNITS: Feet*Acre/Years “Surface_water_in_uplands_(Qu)”(t) = “Surface_water_in_uplands_(Qu)”(t - dt) + (“Precipitation_onto_uplands_(Pu)” - “Stormwater_runoff_(Qr)” - “Infiltration_in_uplands_(Iu)” - “Evaporation_uplands_(Eu)” - “Additional_infiltration_in_uplands_(AIup)”) * dt INIT “Surface_water_in_uplands_(Qu)” = 1.29e6 UNITS: Feet*Acre INFLOWS: “Precipitation_onto_uplands_(Pu)” = “Precipitation_rate_(Pr)”* “Upland_area_(Al)” [UNIFLOW] UNITS: Feet*Acre/Years OUTFLOWS: “Stormwater_runoff_(Qr)” = “Surface_water_in_uplands_(Qu)”* (“Runoff_ratio_(Qrr)”)* “Spreading_effect_on_Qrr_(SSe)” [UNIFLOW] UNITS: Feet*Acre/Years “Infiltration_in_uplands_(Iu)” = “Surface_water_in_uplands_(Qu)”* “Infiltration_upland_fraction_(If)” [UNIFLOW] UNITS: Feet*Acre/Years “Evaporation_uplands_(Eu)” = “Surface_water_in_uplands_(Qu)”* (1-”Runoff_ratio_(Qrr)”- “Infiltration_upland_fraction_(If)”) [UNIFLOW] UNITS: Feet*Acre/Years “Additional_infiltration_in_uplands_(AIup)” = “Surface_spreading_in_uplands_actual_(SSa)”* “Infiltration_floodplains_fraction_(Ifp)” [UNIFLOW] UNITS: Feet*Acre/Years “Surface_water_in_valley_(Qv)”(t) = “Surface_water_in_valley_(Qv)”(t - dt) + (“Stormwater_runoff_(Qr)” + “Precipitation_onto_valley_(Pv)” + “Surface_water_in_(Qin)” - “Infiltration_in_valley_(Iv)” - “Evaporation_valley_(Ev)” - “SW_out_of_valley_(Qout)” - “Additional_infiltration_in_valleys_(AIv)”) * dt INIT “Surface_water_in_valley_(Qv)” = 2.95e6 UNITS: Feet*Acre INFLOWS: “Stormwater_runoff_(Qr)” = “Surface_water_in_uplands_(Qu)”* (“Runoff_ratio_(Qrr)”)* “Spreading_effect_on_Qrr_(SSe)” [UNIFLOW] UNITS: Feet*Acre/Years “Precipitation_onto_valley_(Pv)” = “Irrigated_land_area_(Ai)”* “Precipitation_rate_(Pr)” [UNIFLOW] UNITS: Feet*Acre/Years “Surface_water_in_(Qin)” = “Effect_of_precipitation_(Pe)”* (“Compact_local_allocation_(Cl)”+ “Compact_downstream_allocation_(Cd)”)/”Conveyance_efficiency_(Lc)” [UNIFLOW] UNITS: Feet*Acre/Years OUTFLOWS: “Infiltration_in_valley_(Iv)” = “Infiltration_valley_ratio_(Ir)”* “Surface_water_in_valley_(Qv)” [UNIFLOW] UNITS: Feet*Acre/Years “Evaporation_valley_(Ev)” = “Evaporation_valley_ratio_(Er)”* “Surface_water_in_valley_(Qv)” [UNIFLOW] UNITS: Feet*Acre/Years “SW_out_of_valley_(Qout)” = MAX(“Surface_water_in_valley_(Qv)”* “Surface_outflow_ratio_(Qr)”, “SW_availability_(Qa)”* “Compact_downstream_allocation_(Cd)”* “Effect_of_precipitation_(Pe)”) [UNIFLOW] UNITS: Feet*Acre/Years “Additional_infiltration_in_valleys_(AIv)” = ((1-”Ditch_/_Field_ratio_(DF)”)* “Stormwater_actual_spread_rate_in_valley_(SWa)”) [UNIFLOW] UNITS: Feet*Acre/Years “Compact_allocation_gap_(Cg)” = “Compact_local_allocation_(Cl)”/”Conveyance_efficiency_(Lc)”- “Withdrawals_(W)” UNITS: Feet*Acre/Years “Compact_downstream_allocation_(Cd)” = 679000 UNITS: Feet*Acre/Years “Compact_local_allocation_(Cl)” = “Surface_water_right_(Wr)”* “Irrigated_land_area_(Ai)” UNITS: Feet*Acre/Years “Conveyance_efficiency_(Lc)” = 1- (“Infiltration_valley_ratio_(Ir)”+ “Evaporation_valley_ratio_(Er)”) UNITS: 1 corr_time = 1 UNITS: yr “Ditch_/_Field_ratio_(DF)” = 0.75 UNITS: 1 “Effect_of_precipitation_(Pe)” = GRAPH(“Precipitation_rate_(Pr)”/”Mean_precipitation_(Pm)”) (0.000, 0.000), (0.250, 0.550), (0.500, 0.850), (0.750, 0.975), (1.000, 1.000) UNITS: 1 “ET_availability_normalized_(ETa)” = “Evapotranspiration_(ET)_uplands_(ETu)”/”ET_initial_rate_(ETi)” UNITS: 1 “ET_initial_rate_(ETi)” = INIT(“Evapotranspiration_(ET)_uplands_(ETu)”) UNITS: Feet*Acre/Years “ET_upland_fraction_(ETup)” = GRAPH(“Actual_vegetation_coverage_%_(VCa)”) (0.000, 0.550), (0.500, 0.700), (1.000, 0.850) UNITS: 1/Year “ETv_ratio_(ETvr)” = 0.92 UNITS: 1/Year “Evaporation_valley_ratio_(Er)” = 0.10 UNITS: 1 gap = scaled - pink UNITS: 1 “GW_availability_(GWa)” = GRAPH(“Shallow_groundwater_aquifer_storage_(GW)”/INIT(“Shallow_groundwater_aquifer_storage_(GW)”)) (0, 0.000), (0.025, 0.930), (0.05, 0.969), (0.075, 0.996), (0.1, 1.000) UNITS: 1 “Infiltration_floodplains_fraction_(Ifp)” = GRAPH(“Actual_vegetation_coverage_%_(VCa)”) (0.000, 0.0000), (0.125, 0.0878), (0.250, 0.1564), (0.375, 0.2035), (0.500, 0.2340), (0.625, 0.2582), (0.750, 0.2735), (0.875, 0.286146400701), (1.000, 0.2900) UNITS: 1/Year “Infiltration_upland_fraction_(If)” = GRAPH(“Actual_vegetation_coverage_%_(VCa)”) (0.000, 0.0090), (0.200, 0.0307824761905), (0.400, 0.0663417142857), (0.600, 0.1118), (0.800, 0.1425), (1.000, 0.1538) UNITS: 1/Year “Infiltration_valley_ratio_(Ir)” = 0.47 UNITS: 1 “Irrigated_land_area_(Ai)” = 90640 UNITS: Acre “Mean_precipitation_(Pm)” = 0.868 UNITS: Feet/Year “Minimum_pumping_rate_(GWp)” = 1.5 UNITS: Feet/Year “Pink_noise_random_output_(Pn)” = IF(sd_pink > 0) THEN pink ELSE white UNITS: 1 “Precipitation_rate_(Pr)” = “Mean_precipitation_(Pm)”*(1+”Pink_noise_random_output_(Pn)”) UNITS: Feet/Year “Productivity_benefit_uplands_(PBu)” = GRAPH((“Actual_vegetation_coverage_%_(VCa)”/INIT(“Actual_vegetation_coverage_%_(VCa)”))) (1.000, 0.000), (1.400, 0.33583091167), (1.800, 0.560945103841), (2.200, 0.7118436595), (2.600, 0.812993986277), (3.000, 0.880797077978), (3.400, 0.926246849528), (3.800, 0.956712742486), (4.200, 0.977134641257), (4.600, 0.99082384938), (5.000, 1.000) UNITS: NDVInormal Productivity_benefit_valley = GRAPH(“Withdrawals_change_(Wc)”) (0, 0.000), (0.01, 0.560945103841), (0.02, 0.812993986277), (0.03, 0.926246849528), (0.04, 0.977134641257), (0.05, 1.000) UNITS: 1 “Productivity_evaluation_delay_(Pd)” = 2 UNITS: Years “Recovery_policy_ratio_(Rp)” = 0.75 UNITS: 1 “Runoff_ratio_(Qrr)” = 0.043 UNITS: 1/Year scaled = white * (sd_pink/100) * ((2-DT/corr_time)/(DT/corr_time))^.5 UNITS: 1 sd_pink = 30 UNITS: 1 sd_white = 15 UNITS: 1 seed = 25 UNITS: 1 “Spreading_effect_on_Qrr_(SSe)” = GRAPH(“Additional_infiltration_in_uplands_(AIup)”/”Surface_water_in_uplands_(Qu)”) (0, 1.0000), (0.00357142857143, 0.838460240499), (0.00714285714286, 0.717066779305), (0.0107142857143, 0.62584234969), (0.0142857142857, 0.557289262261), (0.0178571428571, 0.505773173687), (0.0214285714286, 0.467060002896), (0.025, 0.437967934104), (0.0285714285714, 0.416105904998), (0.0321428571429, 0.399677086544), (0.0357142857143, 0.387331202524), (0.0392857142857, 0.37805355102), (0.0428571428571, 0.371081606582), (0.0464285714286, 0.365842348648), (0.05, 0.361905165278) UNITS: 1 “Stormwater_actual_spread_rate_in_valley_(SWa)” = (“Benefit_perceived_legitimate_valley_(BLv)”+ “Support_to_land_managers_(S)”* “Stormwater_spreading_potential_ratio_(SWSr)”)* “Stormwater_runoff_(Qr)” UNITS: Feet*Acre/Years “Stormwater_spreading_potential_ratio_(SWSr)” = 1 UNITS: 1 “Support_to_land_managers_(S)” = 0.20 UNITS: 1 “Surface_outflow_ratio_(Qr)” = 0.38 UNITS: 1/Year “Surface_spreading_in_uplands_actual_(SSa)” = (“Benefit_perceived_legitimate_in_uplands_(BLu)”+ “Support_to_land_managers_(S)”)* “Surface_spreading_potential_ratio_(SSr)”* “Surface_water_in_uplands_(Qu)” UNITS: Feet*Acre “Surface_spreading_potential_ratio_(SSr)” = 0.20 UNITS: 1 “Surface_water_right_(Wr)” = 5.26 UNITS: Feet/Year “SW_availability_(Qa)” = GRAPH(“Surface_water_in_valley_(Qv)”/INIT(“Surface_water_in_valley_(Qv)”)) (0, 0.000), (0.025, 0.930), (0.05, 0.969), (0.075, 0.996), (0.1, 1.000) UNITS: 1 switch = 1 UNITS: 1 “Upland_area_(Al)” = 1.47354e+006 UNITS: Acre “Vegetation_coverage_expected_(VCe)” = GRAPH(“ET_availability_normalized_(ETa)”) (0.000, 0.0000), (0.500, 0.1623), (1.000, 0.2434), (1.500, 0.29123), (2.000, 0.3443), (2.500, 0.3772), (3.000, 0.4145), (3.500, 0.4452), (4.000, 0.4649), (4.500, 0.4825), (5.000, 0.5000) UNITS: NDVI “Vegetation_response_delay_(Vd)” = 1/12 UNITS: Years white = NORMAL(0, sd_white/100, seed) UNITS: 1 “Withdrawals_(W)” = “SW_availability_(Qa)”* ((“Compact_local_allocation_(Cl)”* “Effect_of_precipitation_(Pe)”/”Conveyance_efficiency_(Lc)”)+ “Additional_infiltration_in_valleys_(AIv)”* “Recovery_policy_ratio_(Rp)”) UNITS: Feet*Acre/Years “Withdrawals_change_(Wc)” = “Additional_infiltration_in_valleys_(AIv)”/(“Withdrawals_(W)”- “Additional_infiltration_in_valleys_(AIv)”) UNITS: 1 |
References
- Dettinger, M.; Udall, B.; Georgakakos, A. Western water and climate change. Ecol. Appl. 2015, 25, 2069–2093. [Google Scholar] [CrossRef] [PubMed]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Effects of temperature and precipitation variability on snowpack trends in the western United States. J. Clim. 2005, 18, 4545–4561. [Google Scholar] [CrossRef]
- Fyfe, J.C.; Derksen, C.; Mudryk, L.; Flato, G.M.; Santer, B.D.; Swart, N.C.; Molotch, N.P.; Zhang, X.; Wan, H.; Arora, V.K. Large near-term projected snowpack loss over the western United States. Nat. Commun. 2017, 8, 14996. [Google Scholar] [CrossRef] [PubMed]
- Jardine, A.; Merideth, R.; Black, M.; LeRoy, S. Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; Island Press: Washington, DC, USA, 2013. [Google Scholar]
- Bryan, K. Date of channel trenching (arroyo cutting) in the arid southwest. Science 1925, 62, 338–344. Available online: http://science.sciencemag.org/content/62/1607/338.long (accessed on 1 July 2019). [CrossRef] [PubMed]
- Antevs, E. Arroyo-cutting and filling. J. Geol. 1952, 60, 375–385. [Google Scholar] [CrossRef]
- Bryan, K. Flood-water farming. Geogr. Rev. 1929, 19, 444–456. [Google Scholar] [CrossRef]
- Tockner, K.; Pusch, M.; Borchardt, D.; Lorang, M.S. Multiple stressors in coupled river–floodplain ecosystems. Freshwat. Biol. 2010, 55, 135–151. [Google Scholar] [CrossRef]
- Fernald, A.G.; Baker, T.T.; Guldan, S.J. Hydrologic, riparian, and agroecosystem functions of traditional acequia irrigation systems. J. Sustainable Agric. 2007, 30, 147–171. [Google Scholar] [CrossRef]
- Ochoa, C.G.; Fernald, A.G.; Guldan, S.J.; Tidwell, V.C.; Shukla, M.K. Shallow aquifer recharge from irrigation in a semiarid agricultural valley in New Mexico. J. Hydrol. Eng. 2012, 18, 1219–1230. [Google Scholar] [CrossRef]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockstrom, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15. [Google Scholar] [CrossRef]
- Palmer, M.A.; Febria, C.M. The heartbeat of ecosystems. Science 2012, 336, 1393–1394. Available online: http://science.sciencemag.org/content/336/6087/1393.long (accessed on 1 July 2019). [CrossRef] [PubMed]
- Kauffman, J.B.; Beschta, R.L.; Otting, N.; Lytjen, D. An Ecological Perspective of Riparian and Stream Restoration in the Western United States. Fisheries 1997, 22, 12–24. [Google Scholar] [CrossRef]
- Stringham, T.K.; Krueger, W.C.; Shaver, P.L. State and transition modeling: An ecological process approach. Rangeland Ecol. Manag. 2003, 56, 106–113. [Google Scholar] [CrossRef]
- Okin, G.S.; Heras, M.M.-d.l.; Saco, P.M.; Throop, H.L.; Vivoni, E.R.; Parsons, A.J.; Wainwright, J.; Peters, D.P. Connectivity in dryland landscapes: Shifting concepts of spatial interactions. Front. Ecol. Environ. 2015, 13, 20–27. [Google Scholar] [CrossRef]
- Pulver, S.; Ulibarri, N.; Sobocinski, K.L.; Alexander, S.M.; Johnson, M.L.; McCord, P.F.; Dell’Angelo, J. Frontiers in socio-environmental research: Components, connections, scale, and context. Ecol. Soc. 2018, 23. [Google Scholar] [CrossRef]
- De Vriend, H.J.; van Koningsveld, M.; Aarninkhof, S.G.; de Vries, M.B.; Baptist, M.J. Sustainable hydraulic engineering through building with nature. J. Hydro-Environ. Res. 2015, 9, 159–171. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- Mustafa, D. Floods and Flood Control. In Encyclopedia of Environment and Society; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Busscher, T.; van den Brink, M.; Verweij, S. Strategies for integrating water management and spatial planning: Organising for spatial quality in the Dutch “Room for the River” program. J. Flood Risk Manag. 2018, 12, e12448. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef]
- Whelchel, A.W.; Reguero, B.G.; van Wesenbeeck, B.; Renaud, F.G. Advancing disaster risk reduction through the integration of science, design, and policy into eco-engineering and several global resource management processes. Int. J. Disast. Risk. 2018, 32, 29–41. [Google Scholar] [CrossRef]
- Liao, K.-H. From flood control to flood adaptation: A case study on the Lower Green River Valley and the City of Kent in King County, Washington. Nat. Hazards 2014, 71, 723–750. [Google Scholar] [CrossRef]
- Fanelli, R.; Prestegaard, K.; Palmer, M. Evaluation of infiltration-based stormwater management to restore hydrological processes in urban headwater streams. Hydrol. Process. 2017, 31, 3306–3319. [Google Scholar] [CrossRef]
- Rijke, J.; van Herk, S.; Zevenbergen, C.; Ashley, R. Room for the River: Delivering integrated river basin management in the Netherlands. Int. J. River Basin Manage. 2012, 10, 369–382. [Google Scholar] [CrossRef]
- Vogl, A.L.; Goldstein, J.H.; Daily, G.C.; Vira, B.; Bremer, L.; McDonald, R.I.; Shemie, D.; Tellman, B.; Cassin, J. Mainstreaming investments in watershed services to enhance water security: Barriers and opportunities. Environ. Sci. Policy 2017, 75, 19–27. [Google Scholar] [CrossRef]
- Peters, D.P.; Havstad, K.M.; Archer, S.R.; Sala, O.E. Beyond desertification: New paradigms for dryland landscapes. Front. Ecol. Environ. 2015, 13, 4–12. [Google Scholar] [CrossRef]
- Wainwright, J.; Turnbull, L.; Ibrahim, T.G.; Lexartza-Artza, I.; Thornton, S.F.; Brazier, R.E. Linking environmental regimes, space and time: Interpretations of structural and functional connectivity. Geomorphology 2011, 126, 387–404. [Google Scholar] [CrossRef]
- Bracken, L.J.; Wainwright, J.; Ali, G.A.; Tetzlaff, D.; Smith, M.W.; Reaney, S.M.; Roy, A.G. Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Sci. Rev. 2013, 119, 17–34. [Google Scholar] [CrossRef]
- Wohl, E.; Beckman, N.D. Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams. Geomorphology 2014, 205, 27–35. [Google Scholar] [CrossRef]
- Wohl, E.; Brierley, G.; Cadol, D.; Coulthard, T.J.; Covino, T.; Fryirs, K.A.; Grant, G.; Hilton, R.G.; Lane, S.N.; Magilligan, F.J. Connectivity as an emergent property of geomorphic systems. Earth. Surf. Proc. Land. 2019, 44, 4–26. [Google Scholar] [CrossRef]
- Puttock, A.; Macleod, C.J.; Bol, R.; Sessford, P.; Dungait, J.; Brazier, R.E. Changes in ecosystem structure, function and hydrological connectivity control water, soil and carbon losses in semi-arid grass to woody vegetation transitions. Earth. Surf. Proc. Land. 2013, 38, 1602–1611. [Google Scholar] [CrossRef]
- Faist, A.M.; Herrick, J.E.; Belnap, J.; Van Zee, J.W.; Barger, N.N. Biological soil crust and disturbance controls on surface hydrology in a semi-arid ecosystem. Ecosphere 2017, 8, e01691. [Google Scholar] [CrossRef]
- Peters, D.P.; Groffman, P.M.; Nadelhoffer, K.J.; Grimm, N.B.; Collins, S.L.; Michener, W.K.; Huston, M.A. Living in an increasingly connected world: A framework for continental-scale environmental science. Front. Ecol. Environ. 2008, 6, 229–237. [Google Scholar] [CrossRef]
- Stone, M.C.; Byrne, C.F.; Morrison, R.R. Evaluating the impacts of hydrologic and geomorphic alterations on floodplain connectivity. Ecohydrol. 2017, 10, e1833. [Google Scholar] [CrossRef]
- Thompson, C.; Fryirs, K.; Croke, J. The disconnected sediment conveyor belt: Patterns of longitudinal and lateral erosion and deposition during a catastrophic flood in the Lockyer Valley, South East Queensland, Australia. River Res. Appl. 2016, 32, 540–551. [Google Scholar] [CrossRef]
- Hudson, B.D. Soil organic matter and available water capacity. J. Soil Water Conserv. 1994, 49, 189–194. [Google Scholar]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Acuña, V.; Hunter, M.; Ruhí, A. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biol. Conserv. 2017, 211, 12–19. [Google Scholar] [CrossRef]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An Ecosystem Perspective of Riparian Zones. Bioscience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Acuña, V.; Datry, T.; Marshall, J.; Barceló, D.; Dahm, C.; Ginebreda, A.; McGregor, G.; Sabater, S.; Tockner, K.; Palmer, M. Why Should We Care About Temporary Waterways? Science 2014, 343, 1080–1081. Available online: http://science.sciencemag.org/content/sci/343/6175/1080.full.pdf (accessed on 1 July 2019). [CrossRef]
- Niazi, A.; Prasher, S.; Adamowski, J.; Gleeson, T. A System Dynamics Model to Conserve Arid Region Water Resources through Aquifer Storage and Recovery in Conjunction with a Dam. Water 2014, 6, 2300–2321. [Google Scholar] [CrossRef] [Green Version]
- MEA, M.E.A. Ecosystems and Human Well-Being: Global Assessment Reports; Island Press: Washington, DC, USA, 2005; Available online: https://www.millenniumassessment.org/en/index.html (accessed on 1 July 2019).
- Opperman, J.J.; Galloway, G.E.; Fargione, J.; Mount, J.F.; Richter, B.D.; Secchi, S. Sustainable floodplains through large-scale reconnection to rivers. Science 2009, 326, 1487–1488. Available online: http://science.sciencemag.org/content/326/5959/1487.long (accessed on 1 July 2019). [CrossRef] [PubMed]
- Rijkswaterstaat. Room for the River for a Safer and More Attractive River Landscape. 2019. Available online: https://www.ruimtevoorderivier.nl/english/ (accessed on 20 November 2019).
- FEMA. Final Report—Innovative Drought and Flood Mitigation Projects; Federal Emergency Management Agency Department of Homeland Security: Washington, DC, USA, 2017. Available online: https://www.fema.gov/media-library/assets/documents/129691 (accessed on 1 July 2019).
- Pittock, J.; Xu, M. World Resources Report Case Study. Controlling Yangtze River Floods: A New Approach. World Resources Institute: Washington, DC, USA, 2011. Available online: https://www.wri.org/our-work/project/world-resources-report/controlling-yangtze-river-floods-new-approach (accessed on 27 November 2019).
- Brody, S.D.; Highfield, W.E. Open space protection and flood mitigation: A national study. Land Use Policy 2013, 32, 89–95. [Google Scholar] [CrossRef]
- Peterken, G.; Hughes, F. Restoration of floodplain forests in Britain. Forestry 1995, 68, 187–202. [Google Scholar] [CrossRef]
- Fernald, A.G.; Cevik, S.Y.; Ochoa, C.G.; Tidwell, V.C.; King, J.P.; Guldan, S.J. River Hydrograph Retransmission Functions of Irrigated Valley Surface Water–Groundwater Interactions. J. Irrig. Drain. Eng. 2010, 136, 823–835. [Google Scholar] [CrossRef]
- Mehari, A.; Van Steenbergen, F.; Schultz, B. Modernization of Spate Irrigated Agriculture: A New Approach. Irrig. Drain. 2011, 60, 163–173. [Google Scholar] [CrossRef]
- Chen, D.; Wei, W.; Chen, L. Effects of terracing practices on water erosion control in China: A meta-analysis. Earth-Sci. Rev. 2017, 173, 109–121. [Google Scholar] [CrossRef]
- Schultz, R.; Isenhart, T.; Simpkins, W.; Colletti, J. Riparian forest buffers in agroecosystems–lessons learned from the Bear Creek Watershed, central Iowa, USA. Agrofor. Syst. 2004, 61, 35–50. [Google Scholar]
- Gumiere, S.J.; Le Bissonnais, Y.; Raclot, D.; Cheviron, B. Vegetated filter effects on sedimentological connectivity of agricultural catchments in erosion modelling: A review. Earth. Surf. Proc. Land. 2011, 36, 3–19. [Google Scholar] [CrossRef]
- Burchsted, D.; Daniels, M.D. Classification of the alterations of beaver dams to headwater streams in northeastern Connecticut, U.S.A. Geomorphology 2014, 205, 36–50. [Google Scholar] [CrossRef]
- Manners, R.; Doyle, M. A mechanistic model of woody debris jam evolution and its application to wood-based restoration and management. River Res. Appl. 2008, 24, 1104–1123. [Google Scholar] [CrossRef]
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth. Surf. Proc. Land. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Mongil-Manso, J.; Díaz-Gutiérrez, V.; Navarro-Hevia, J.; Espina, M.; San Segundo, L. The role of check dams in retaining organic carbon and nutrients. A study case in the Sierra de Ávila mountain range (Central Spain). Sci. Total Environ. 2019, 657, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Norman, L.M.; Sankey, J.B.; Dean, D.; Caster, J.; DeLong, S.; DeLong, W.; Pelletier, J.D. Quantifying geomorphic change at ephemeral stream restoration sites using a coupled-model approach. Geomorphology 2017, 283, 1–16. [Google Scholar] [CrossRef]
- Abbe, T.B.; Montgomery, D.R. Large Woody Debris Jams, Channel Hydraulics and Habitat Formation in Large Rivers. Regul. Rivers Res. Manage. 1996, 12, 201–221. [Google Scholar] [CrossRef]
- Collins, B.D.; Montgomery, D.R.; Fetherston, K.L.; Abbe, T.B. The floodplain large-wood cycle hypothesis: A mechanism for the physical and biotic structuring of temperate forested alluvial valleys in the North Pacific coastal ecoregion. Geomorphology 2012, 139, 460–470. [Google Scholar] [CrossRef]
- Macfarlane, W.W.; Wheaton, J.M.; Bouwes, N.; Jensen, M.L.; Gilbert, J.T.; Hough-Snee, N.; Shivik, J.A. Modeling the capacity of riverscapes to support beaver dams. Geomorphology 2015, 277, 72–99. [Google Scholar] [CrossRef]
- Langarudi, S.P.; Maxwell, C.M.; Bai, Y.; Hanson, A.; Fernald, A. Does Socioeconomic Feedback Matter for Water Models? Ecol. Econ. 2019, 159, 35–45. [Google Scholar] [CrossRef]
- Forrester, J.W. System dynamics—the next fifty years. Syst. Dyn. Rev. 2007, 23, 359–370. [Google Scholar] [CrossRef]
- Forrester, J.W. Principles of Systems; Wright-Allen Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Fernald, A.; Tidwell, V.; Rivera, J.; Rodríguez, S.; Guldan, S.; Steele, C.; Ochoa, C.; Hurd, B.; Ortiz, M.; Boykin, K. Modeling sustainability of water, environment, livelihood, and culture in traditional irrigation communities and their linked watersheds. Sustainability 2012, 4, 2998–3022. [Google Scholar] [CrossRef] [Green Version]
- Tidwell, V.C.; Passell, H.D.; Conrad, S.H.; Thomas, R.P. System dynamics modeling for community-based water planning: Application to the Middle Rio Grande. Aquat. Sci. 2004, 66, 357–372. [Google Scholar] [CrossRef]
- Page, A.; Langarudi, S.P.; Forster-Cox, S.; Fernald, A. A Dynamic Hydro-Socio-Technical Policy Analysis of Transboundary Desalination Development. J. Environ. Account. Manag. 2019, 7, 87–115. [Google Scholar] [CrossRef]
- Mirchi, A.; Madani, K.; Watkins, D.; Ahmad, S. Synthesis of System Dynamics Tools for Holistic Conceptualization of Water Resources Problems. Water Resour. Manage. 2012, 26, 2421–2442. [Google Scholar] [CrossRef]
- Prodanovic, P.; Simonovic, S.P. An operational model for support of integrated watershed management. Water Resour. Manage. 2010, 24, 1161–1194. [Google Scholar] [CrossRef]
- Zomorodian, M.; Lai, S.H.; Homayounfar, M.; Ibrahim, S.; Fatemi, S.E.; El-Shafie, A. The state-of-the-art system dynamics application in integrated water resources modeling. J. Environ. Manage. 2018, 227, 294–304. [Google Scholar] [CrossRef]
- Neto, A.d.C.L.; Legey, L.F.; González-Araya, M.C.; Jablonski, S. A System Dynamics Model for the Environmental Management of the Sepetiba Bay Watershed. Environ. Manage. 2006, 38, 879–888. [Google Scholar] [CrossRef]
- Wolstenholme, E.F. Towards the definition and use of a core set of archetypal structures in system dynamics. Syst. Dyn. Rev. 2003, 19, 7–26. [Google Scholar] [CrossRef]
- Senge, P.M. The fifth discipline. Meas. Bus. Excel. 1997, 1, 46–51. [Google Scholar] [CrossRef] [Green Version]
- Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar]
- Clark, W.C.; van Kerkhoff, L.; Lebel, L.; Gallopin, G.C. Crafting usable knowledge for sustainable development. Proc. Natl. Acad. Sci. USA 2016, 113, 4570–4578. [Google Scholar] [CrossRef] [Green Version]
- Poteete, A.R.; Janssen, M.A.; Ostrom, E. Working Together: Collective action, the Commons, and Multiple Methods in Practice; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Warren, P.; Hofer, T.; McGuire, D.; Fleming, W.; Kiersch, B.; Bernini, S. The New Generation of Watershed Management Programmes and Projects; FAO Forestry Paper No. 150; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 2006; Available online: http://www.fao.org/3/a0644e/a0644e00.htm (accessed on 1 July 2019).
- Ostrom, E. Nested externalities and polycentric institutions: Must we wait for global solutions to climate change before taking actions at other scales? Econ. Theory 2012, 49, 353–369. [Google Scholar] [CrossRef]
- Tschakert, P.; Dietrich, K.A. Anticipatory learning for climate change adaptation and resilience. Ecol. Soc. 2010, 15, 11. [Google Scholar] [CrossRef]
- Lebel, L.; Anderies, J.M.; Campbell, B.; Folke, C.; Hatfield-Dodds, S.; Hughes, T.P.; Wilson, J. Governance and the Capacity to Manage Resilience in Regional Social-Ecological Systems. 2006. Available online: https://digitalcommons.library.umaine.edu/ers_facpub/129/ (accessed on 1 July 2019).
- Stein, B.A.; Staudt, A.; Cross, M.S.; Dubois, N.S.; Enquist, C.; Griffis, R.; Hansen, L.J.; Hellmann, J.J.; Lawler, J.J.; Nelson, E.J. Preparing for and managing change: Climate adaptation for biodiversity and ecosystems. Front. Ecol. Environ. 2013, 11, 502–510. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective action; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Lewin, K. Action research and minority problems. J. Soc. Iss. 1946, 2, 34–46. [Google Scholar] [CrossRef]
- ISEE. Stella Software, Isee Systems. 2019. Available online: https://www.iseesystems.com/about.aspx (accessed on 1 July 2019).
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin, F.; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- Lvovitch, M. The global water balance. Eos Trans.Am. Geophys. Union 1973, 54, 28–53. [Google Scholar] [CrossRef]
- Peterson, K.; Hanson, A.; Roach, J.; Randall, J.; Thomson, B. TR 380: A Dynamic Statewide Water Budget for New Mexico: Phase III–Future Scenario Implementation. N. M. Water Resour. Res. Inst. Tech. Rep. 2019. [Google Scholar]
- Picardi, A.C.; Saeed, K. The dynamics of water policy in southwestern Saudi Arabia. Simulation 1979, 33, 109–118. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C. Impact on food security and rural development of transferring water out of agriculture. Water Policy 2000, 1, 567–586. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Ringler, C.; Zhu, T. Water for agriculture: Maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 2009, 34, 205–222. [Google Scholar] [CrossRef]
- De Fraiture, C.; Wichelns, D. Satisfying future water demands for agriculture. Agric. Water Manage. 2010, 97, 502–511. [Google Scholar] [CrossRef]
- Ghashghaei, M.; Bagheri, A.; Morid, S. Rainfall-runoff modeling in a watershed scale using an object oriented approach based on the concepts of system ddynamics. Water Resour. Manage. 2013, 27, 5119–5141. [Google Scholar]
- Yeh, S.-C.; Wang, C.-A.; Yu, H.-C. Simulation of soil erosion and nutrient impact using an integrated system dynamics model in a watershed in Taiwan. Environ. Model. Software 2006, 21, 937–948. [Google Scholar] [CrossRef]
- Zischg, A. Floodplains and Complex Adaptive Systems—Perspectives on Connecting the Dots in Flood Risk Assessment with Coupled Component Models. Systems 2018, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, S.; Simonovic, S.P. Spatial system dynamics: New approach for simulation of water resources systems. J. Comput. Civ. Eng. 2004, 18, 331–340. [Google Scholar] [CrossRef]
- Neuwirth, C.; Peck, A.; Simonović, S. Modeling structural change in spatial system dynamics: A Daisyworld example. Environ. Model. Software 2015, 65, 30–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bestelmeyer, B.T.; Goolsby, D.P.; Archer, S.R. Spatial perspectives in state-and-transition models: A missing link to land management? J. Appl. Ecol. 2011, 48, 746–757. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Kooy, M.; Kemerink, J.; Brandimarte, L. Towards understanding the dynamic behaviour of floodplains as human-water systems. Hydrol. Earth Syst. Sci. Discuss. 2013, 17, 3235–3244. [Google Scholar] [CrossRef] [Green Version]
- Megdal, S.; Dillon, P.; Seasholes, K. Water banks: Using managed aquifer recharge to meet water policy objectives. Water 2014, 6, 1500–1514. [Google Scholar] [CrossRef] [Green Version]
- Beven, K.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef] [Green Version]
- Shi, X. ArcSIE10.4.101 for ArcGIS 10.4; Spatial Inference Enterprises LLC: Bow, NH, USA, 2017. [Google Scholar]
- ITI. Geospatial Data Presentation Form Digital Elevation Model; Intermap Technologies Inc.: Englewood, CO, USA, 2009. [Google Scholar]
- NOAA NCEI. NEXRAD. 2019. Available online: https://www.ncdc.noaa.gov/data-access/radar-data/nexrad (accessed on 1 July 2019).
- Planet Team. Planet Application Program Interface. In Space for Life on Earth; Planet Team: San Francisco, CA, USA, 2017. [Google Scholar]
- USDA-NRCS. Part 630 Hydrology: Chapter 10 Estimation of Direct Runoff from Storm Rainfall. In National Engineering Handbook; Natural Resources Conversation Services, US Department of Agriculture: Washington, DC, USA, 2004. [Google Scholar]
- USACE, H.E.C. HEC-HMS. 2018. Available online: http://www.hec.usace.army.mil/software/hec-hms/ (accessed on 1 July 2019).
- Sterman, J.D. Business Dynamics: Systems Thinking and Modeling for a Complex World; Irwin/McGraw-Hill: Boston, MA, USA, 2000. [Google Scholar]
- Barlas, Y. Formal aspects of model validity and validation in system dynamics. Syst. Dyn. Rev. 1996, 12, 183–210. Available online: http://onlinelibrary.wiley.com/doi/10.1002/(SICI)1099-1727(199623)12:3<183::AID-SDR103>3.0.CO;2-4/abstract (accessed on 1 July 2019). [CrossRef]
- Langarudi, S.P.; Radzicki, M.J. Resurrecting a Forgotten Model: Updating Mashayekhi’s Model of Iranian Economic Development. In Energy Policy Modeling in the 21st Century; Springer: New York, NY, USA, 2013; pp. 197–233. Available online: https://link.springer.com/chapter/10.1007/978-1-4614-8606-0_11 (accessed on 1 July 2019). [CrossRef]
- Forrester, J.W.; Senge, P.M. Tests for Building Confidence in System Dynamics Models. In System Dynamics; Legasto, J.A.A., Machol, R.E., Eds.; North-Holland: New York, NY, USA, 1980. [Google Scholar]
- Sterman, J.D. Appropriate summary statistics for evaluating the historical fit of system dynamics models. Dynamica 1984, 10, 51–66. [Google Scholar]
- Saeed, K. Slicing a complex problem for system dynamics modeling. Syst. Dyn. Rev. 1992, 8, 251–261. Available online: http://onlinelibrary.wiley.com/doi/10.1002/sdr.4260080305/abstract (accessed on 1 July 2019). [CrossRef]
- Radzicki, M.J. Expectation formation and parameter estimation in uncertain dynamical systems: The system dynamics approach to post Keynesian-institutional economics. In Proceedings of the International System Dynamics Conference, Oxford, UK, 25–29 July 2004. [Google Scholar]
- Halley, J.M. Ecology, evolution and 1f-noise. Trends Ecol. Evol. 1996, 11, 33–37. [Google Scholar] [CrossRef]
- Farber, S.; Costanza, R.; Childers, D.L.; Erickson, J.; Gross, K.; Grove, M.; Hopkinson, C.S.; Kahn, J.; Pincetl, S.; Troy, A. Linking Ecology and Economics for Ecosystem Management. Bioscience 2006, 56, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Appleton, A.F. How New York City used an ecosystem services strategy carried out through an urban–rural partnership to preserve the pristine quality of its drinking water and save billions of dollars. In The Katoomba Conference; The Katoomba Group and Forest Trends: Tokyo, Japan, 2002. [Google Scholar]
- Leimona, B.; Joshi, L.; Noordwijk, M. Can rewards for environmental services benefit the poor? Lessons Asia. Int. J. Commons 2009, 3, 82–107. [Google Scholar] [CrossRef]
- Schomers, S.; Matzdorf, B. Payments for ecosystem services: A review and comparison of developing and industrialized countries. Ecosyst. Serv. 2013, 6, 16–30. [Google Scholar] [CrossRef]
- Torres, A.B.; MacMillan, D.C.; Skutsch, M.; Lovett, J.C. Payments for ecosystem services and rural development: Landowners’ preferences and potential participation in western Mexico. Ecosyst. Serv. 2013, 6, 72–81. [Google Scholar] [CrossRef]
- Wu, T.; Kim, Y.-S.; Hurteau, M.D. Investing in Natural Capital: Using Economic Incentives to Overcome Barriers to Forest Restoration. Restor. Ecol. 2011, 19, 441–445. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1526-100X.2011.00788.x (accessed on 1 July 2019). [CrossRef]
- Matzek, V.; Puleston, C.; Gunn, J. Can carbon credits fund riparian forest restoration? Restor. Ecol. 2015, 23, 7–14. [Google Scholar] [CrossRef]
- Wilson, M.A.; Browning, C.J. Investing in Natural Infrastructure: Restoring Watershed Resilience and Capacity in the Face of a Changing Climate. Ecol. Restor. 2012, 30, 96–98. [Google Scholar] [CrossRef]
- Basco, D.R. The Economic Analysis of “Soft” Versus “Hard” Solutions for Shore Protection: An Example. In Coastal Engineering 1998; American Society of Civil Engineers: Reston, VA, USA, 1999; pp. 1449–1460. [Google Scholar] [CrossRef]
- Morris, R.L.; Konlechner, T.M.; Ghisalberti, M.; Swearer, S.E. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biol. 2018, 24, 1827–1842. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E. Beyond markets and states: Polycentric governance of complex economic systems. Transnatl. CorRev. 2010, 2, 1–12. [Google Scholar]
- Ravi, S.; Breshears, D.D.; Huxman, T.E.; D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 2010, 116, 236–245. [Google Scholar] [CrossRef]
- Saco, P.M.; Moreno-de las Heras, M. Ecogeomorphic coevolution of semiarid hillslopes: Emergence of banded and striped vegetation patterns through interaction of biotic and abiotic processes. Water Resour. Res. 2013, 49, 115–126. [Google Scholar] [CrossRef] [Green Version]
- Wilcox, B.P.; Breshears, D.D.; Allen, C.D. Ecohydrology of a Resource-Conserving Semiarid Woodland: Effects of Scale and Disturbance. Ecol. Monogr. 2003, 73, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, M.; Bascompte, J.; Brock, W.A.; Brovkin, V.; Carpenter, S.R.; Dakos, V.; Held, H.; Van Nes, E.H.; Rietkerk, M.; Sugihara, G. Early-warning signals for critical transitions. Nature 2009, 461, 53–59. [Google Scholar] [CrossRef]
- Kéfi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; ElAich, A.; De Ruiter, P.C. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef]
- Saco, P.; Willgoose, G.; Hancock, G. Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 1717–1730. [Google Scholar] [CrossRef] [Green Version]
- Bedford, D.R.; Small, E.E. Spatial patterns of ecohydrologic properties on a hillslope-alluvial fan transect, central New Mexico. Catena 2008, 73, 34–48. Available online: http://www.sciencedirect.com/science/article/pii/S0341816207001397 (accessed on 1 July 2019). [CrossRef]
- Stromberg, J.; Hazelton, A.; White, M. Plant species richness in ephemeral and perennial reaches of a dryland river. Biodivers. Conserv. 2009, 18, 663–677. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
Endogenous | Exogenous | Excluded |
---|---|---|
Main water balance variables | Practices that do not address the natural and social management systems, such as aquifer storage and recovery (injection wells) | |
Surface water* (Qin, Qu, Qv) | Precipitation (Pm) (Pr affected by pink noise random variability) | |
Soil moisture (SMup, SMv) | Water compact agreements (Cl, Cd, Wr) (actual amount varies with supply) | |
Groundwater* (GW) | E and ET fractions (ETup, ETvr, Er) (upland varies within a range of 0.55 and 0.85; valley is 0.92) | |
Stormwater runoff (Qr) | Infiltration * and conveyance efficiency fractions (Ifp, If, Ir, Lc)—from FlowCon | |
Critical scenario variables | ||
Additional infiltration* (AIup, AIv) | Downstream effects *, e.g., in this site, effects on Texas and Mexico (represented by two scenarios of S: Support 1: S = 0, no support from downstream beneficiaries, and Support 2: S = 0.2, support from downstream beneficiaries) | Sediment transport or precipitation intensity measured directly (proxy is reduced stormwater runoff (Qr) in the quantities and character assessed to achieve this goal outside of this model) |
Vegetation coverage* (VCa) | ||
Benefits perceived legitimate (BLu, BLv) | Surface spreading potential ratio targets * (SSr = 0.2, SWSr = 1) | |
Benefit evaluation (Bu, Bv) | Productivity benefits (PBu, PBv) (see Figure 14 for the graphical functions) | |
Withdrawals change (Wc) | Recovery policy ratio (Rp) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maxwell, C.M.; Langarudi, S.P.; Fernald, A.G. Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands. Systems 2019, 7, 53. https://doi.org/10.3390/systems7040053
Maxwell CM, Langarudi SP, Fernald AG. Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands. Systems. 2019; 7(4):53. https://doi.org/10.3390/systems7040053
Chicago/Turabian StyleMaxwell, Connie M., Saeed P. Langarudi, and Alexander G. Fernald. 2019. "Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands" Systems 7, no. 4: 53. https://doi.org/10.3390/systems7040053
APA StyleMaxwell, C. M., Langarudi, S. P., & Fernald, A. G. (2019). Simulating a Watershed-Scale Strategy to Mitigate Drought, Flooding, and Sediment Transport in Drylands. Systems, 7(4), 53. https://doi.org/10.3390/systems7040053