Enabling Humans and AI Systems to Retrieve Information from System Architectures in Model-Based Systems Engineering
Abstract
1. Introduction
2. State of the Art
2.1. Model-Based Systems Engineering
2.2. Generative Artificial Intelligence in MBSE
2.3. Chatbots and Knowledge Augmentation Techniques
2.3.1. Retrieval-Augmented Generation
2.3.2. Graph Retrieval-Augmented Generation
2.4. Research Need
- How can MBSE system models that follow an RFLP modeling approach be transferred into a knowledge graph?
- How can a retrieval strategy be designed that leverages the metamodel of the system model?
3. Materials and Methods
3.1. Preprocessing Pipeline
3.2. Multi-Agent System and Retrieval Strategy
3.3. Categorization Within GraphRAG Framework
3.4. Reference Model: Battery Electric Vehicle Architecture
3.4.1. Requirements Architecture
3.4.2. Functional Architecture
3.4.3. Logical Architecture
- “ConnectivityLogical” for user interfaces and connectivity;
- “PropulsionSystemLogical” for motor control and power conversion;
- “EnergyStorageLogical” for battery management and cell monitoring;
- “ThermalManagementLogical” for cooling and heating control;
- “VehicleControlLogical” for vehicle control;
- “StabilityControlLogical” for dynamics monitoring and intervention;
- “BrakingSystemLogical” for dual-mode braking and energy recovery;
- “ADASSystemLogical” for sensor fusion and automated functions.
3.4.4. Physical Architecture
3.5. Question-and-Answer Dataset
4. Results
4.1. Architecture
4.2. Evaluation
5. Discussion
5.1. Influence of Language Model Selection
5.2. Response Time Considerations
5.3. Impact of Model Characteristics on Accuracy
5.4. Integration into MBSE Development Practice
5.5. Limitations and Scope
6. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| GenAI | Generative Artificial Intelligence |
| GNN | Graph Neural Network |
| GraphRAG | Graph Retrieval-Augmented Generation |
| LM | Language Model |
| LLM | Large Language Model |
| MBSE | Mode-Based Systems Engineering |
| RAG | Retrieval-Augmented Generation |
| SE | Systems Engineering |
References
- Salado, A. Introduction to Systems Engineering in the 21st Century: Volume 1. In Systems Engineering Series; Cuadernos de Isdefe: Madrid, Spain, 2024; ISBN 978-84-695-7816-2. [Google Scholar]
- Griffor, E.R.; Greer, C.; Wollman, D.A.; Burns, M.J. Framework for Cyber-Physical Systems: Volume 1, Overview; National Institute of Standards and Technology (NIST): Gaithersburg, MD, USA, 2017; Volume 1.
- Madni, A.M.; Sievers, M. Model-based systems engineering: Motivation, current status, and research opportunities. Syst. Eng. 2018, 21, 172–190. [Google Scholar] [CrossRef]
- Henderson, K.; Salado, A. Value and benefits of model-based systems engineering (MBSE): Evidence from the literature. Syst. Eng. 2021, 24, 51–66. [Google Scholar] [CrossRef]
- Chami, M.; Bruel, J.-M. A Survey on MBSE Adoption Challenges. In Proceedings of the INCOSE EMEA Sector Systems Engineering Conference (INCOSE EMEASEC 2018), Berlin, Germany, 8 November 2018; pp. 1–16. Available online: https://hal.science/hal-02124402v1/document (accessed on 8 January 2026).
- Förster, F.; Koldewey, C.; Bernijazov, R.; Dumitrescu, R.; Bursac, N. Navigating viewpoints in MBSE: Challenges, potential and pathways for stakeholder participation in industry. Proc. Des. Soc. 2025, 5, 2531–2540. [Google Scholar] [CrossRef]
- Bernijazov, R.; Dumitrescu, R.; Hanke, F.; von Heißen, O.; Kaiser, L.; Tissen, D. AI-Augmented Model-Based Systems Engineering. Z. Für Wirtsch. Fabr. 2025, 120, 96–100. [Google Scholar] [CrossRef]
- Bonner, M.; Zeller, M.; Schulz, G.; Savu, A. LLM-based Approach to Automatically Establish Traceability between Requirements and MBSE. INCOSE Int. Symp. 2024, 34, 2542–2560. [Google Scholar] [CrossRef]
- DeHart, J.K. Leveraging Large Language Models for Direct Interaction with SysML v2. INCOSE Int. Symp. 2024, 34, 2168–2185. [Google Scholar] [CrossRef]
- Ghanawi, I.; Chami, M.W.; Chami, M.; Coric, M.; Abdoun, N. Integrating AI with MBSE for Data Extraction from Medical Standards. INCOSE Int. Symp. 2024, 34, 1354–1366. [Google Scholar] [CrossRef]
- Elias, B.; Jounes, A.C.; Katharina, P.; Markus, M.P.; Christian, N. Integrating SysML v2 into a GRAG LLM Pipeline: Design, Implementation and Evaluation. ResearchGate. 2025. Available online: https://www.researchgate.net/publication/395749011_Integrating_SysML_v2_into_a_GRAG_LLM_Pipeline_Design_Implementation_and_Evaluation (accessed on 8 January 2026). [CrossRef]
- INCOSE. MBSE-Initiative. Available online: https://www.incose.org/communities/working-groups-initiatives/mbse-initiative (accessed on 26 August 2025).
- OMG. SysML v2: The Next Generation Systems Modeling Language. Available online: https://www.omg.org/sysml/sysmlv2/ (accessed on 18 November 2025).
- Estefan, J.A. Survey of model-based systems engineering (MBSE) methodologies. Incose MBSE Focus Group 2007, 25, 1–12. [Google Scholar]
- Bonnet, S.; Voirin, J.-L.; Normand, V.; Exertier, D. Implementing the MBSE Cultural Change: Organization, Coaching and Lessons Learned. INCOSE Int. Symp. 2015, 25, 508–523. [Google Scholar] [CrossRef]
- Bayer, T.; Day, J.; Dodd, E.; Jones-Wilson, L.; Rivera, A.; Shougarian, N.; Susca, S.; Wagner, D. Europa Clipper: MBSE Proving Ground. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; IEEE: New York, NY, USA, 2021; pp. 1–19, ISBN 978-1-7281-7436-5. [Google Scholar]
- Call, D.R.; Herber, D.R.; Conrad, S.A. The Effects of the Assessed Perceptions of MBSE on Adoption. INCOSE Int. Symp. 2024, 34, 462–478. [Google Scholar] [CrossRef]
- Bell, R.; Longshore, R.; Madachy, R. Introducing SysEngBench: A Novel Benchmark for Assessing Large Language Models in Systems Engineering; Acquisition Research Program: Monterey, CA, USA, 2024; Available online: https://dair.nps.edu/handle/123456789/5135 (accessed on 8 January 2026).
- Johns, B.; Carroll, K.; Medina, C.; Lewark, R.; Walliser, J. AI Systems Modeling Enhancer (AI-SME): Initial Investigations into a ChatGPT-enabled MBSE Modeling Assistant. INCOSE Int. Symp. 2024, 34, 1149–1168. [Google Scholar] [CrossRef]
- Chami, M.; Zoghbi, C.; Bruel, J.-M. A First Step towards AI for MBSE: Generating a Part of SysML Models from Text Using AI. In INCOSE Artificial Intelligence: 2019 Conference Proceedings, 1st ed.; Independently published: Chicago, IL, USA, 2019; pp. 123–136. ISBN 9781702233811. Available online: https://www.researchgate.net/publication/337338933_A_First_Step_towards_AI_for_MBSE_Generating_a_Part_of_SysML_Models_from_Text_Using_AI (accessed on 8 January 2026).
- Poulsen, V.V.; Guertler, M.; Eisenbart, B.; Sick, N. Advancing systems engineering with artificial intelligence: A review on the future potential challenges and pathways. Proc. Des. Soc. 2025, 5, 359–368. [Google Scholar] [CrossRef]
- Manno, N. Accelerating Semantic Digital Thread User Queries Using LLMs 2024. Available online: https://sercuarc.org/wp-content/uploads/2025/06/Slides-Accelerating-Semantic-Digital-Thread-User-Queries-Using-LLMs.pdf (accessed on 8 January 2026).
- Pennock, M.; Ponnock, J.; Bannon, T.; Dahmann, J. AI-Enabled Mission Engineering. 2025. Available online: https://sercuarc.org/wp-content/uploads/2025/09/Pennock_AI_Enabled_ME.pdf (accessed on 8 January 2026).
- Caldarini, G.; Jaf, S.; McGarry, K. A Literature Survey of Recent Advances in Chatbots. Information 2022, 13, 41. [Google Scholar] [CrossRef]
- Lewis, P.; Perez, E.; Piktus, A.; Petroni, F.; Karpukhin, V.; Goyal, N.; Küttler, H.; Lewis, M.; Yih, W.; Rocktäschel, T.; et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. In Advances in Neural Information Processing Systems; Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H., Eds.; Curran Associates, Inc.: New York, NY, USA, 2020; pp. 1–16. [Google Scholar]
- Sharma, C. Retrieval-Augmented Generation: A Comprehensive Survey of Architectures, Enhancements, and Robustness Frontiers. arXiv 2025, arXiv:2506.00054. [Google Scholar]
- Edge, D.; Trinh, H.; Cheng, N.; Bradley, J.; Chao, A.; Mody, A.; Truitt, S.; Metropolitansky, D.; Ness, R.O.; Larson, J. From Local to Global: A Graph RAG Approach to Query-Focused Summarization. 2024. Available online: http://arxiv.org/pdf/2404.16130v2 (accessed on 8 January 2026).
- Han, H.; Ma, L.; Shomer, H.; Wang, Y.; Lei, Y.; Guo, K.; Hua, Z.; Long, B.; Liu, H.; Aggarwal, C.C.; et al. RAG vs. GraphRAG: A Systematic Evaluation and Key Insights. arXiv 2025, arXiv:2502.11371. [Google Scholar] [CrossRef]
- Peng, B.; Zhu, Y.; Liu, Y.; Bo, X.; Shi, H.; Hong, C.; Zhang, Y.; Tang, S. Graph Retrieval-Augmented Generation: A Survey. 2024. Available online: http://arxiv.org/pdf/2408.08921v2 (accessed on 8 January 2026).
- Jiang, X.; Zhang, R.; Xu, Y.; Qiu, R.; Fang, Y.; Wang, Z.; Tang, J.; Ding, H.; Chu, X.; Zhao, J.; et al. HyKGE: A Hypothesis Knowledge Graph Enhanced Framework for Accurate and Reliable Medical LLMs Responses. arXiv 2023, arXiv:2312.15883. [Google Scholar]
- Li, S.; Gao, Y.; Jiang, H.; Yin, Q.; Li, Z.; Yan, X.; Zhang, C.; Yin, B. Graph Reasoning for Question Answering with Triplet Retrieval. arXiv 2023, arXiv:2305.18742. [Google Scholar] [CrossRef]
- He, X.; Tian, Y.; Sun, Y.; Chawla, N.V.; Laurent, T.; LeCun, Y.; Bresson, X.; Hooi, B. G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering. Adv. Neural Inf. Process. Syst. 2024, 37, 132876–132907. [Google Scholar]
- Hu, Y.; Lei, Z.; Zhang, Z.; Pan, B.; Ling, C.; Zhao, L. GRAG: Graph Retrieval-Augmented Generation. arXiv 2024, arXiv:2405.16506. [Google Scholar] [CrossRef]
- Sarmah, B.; Hall, B.; Rao, R.; Patel, S.; Pasquali, S.; Mehta, D. HybridRAG: Integrating Knowledge Graphs and Vector Retrieval Augmented Generation for Efficient Information Extraction. arXiv 2024, arXiv:2408.04948. [Google Scholar] [CrossRef]
- Delile, J.; Mukherjee, S.; van Pamel, A.; Zhukov, L. Graph-Based Retriever Captures the Long Tail of Biomedical Knowledge. arXiv 2024, arXiv:2402.12352. [Google Scholar] [CrossRef]
- Jiang, J.; Zhou, K.; Dong, Z.; Ye, K.; Zhao, W.X.; Wen, J.-R. StructGPT: A General Framework for Large Language Model to Reason over Structured Data. arXiv 2023, arXiv:2305.09645. [Google Scholar] [CrossRef]
- Mavromatis, C.; Karypis, G. GNN-RAG: Graph Neural Retrieval for Large Language Model Reasoning. arXiv 2024, arXiv:2405.20139. [Google Scholar] [CrossRef]
- Gutiérrez, B.J.; Shu, Y.; Gu, Y.; Yasunaga, M.; Su, Y. HippoRAG: Neurobiologically Inspired Long-Term Memory for Large Language Models. Adv. Neural Inf. Process. Syst. 2024, 37, 59532–59569. [Google Scholar]
- Sun, H.; Bedrax-Weiss, T.; Cohen, W.W. PullNet: Open Domain Question Answering with Iterative Retrieval on Knowledge Bases and Text; Association for Computational Linguistics: Stroudsburg, PA, USA, 2019. [Google Scholar]
- Jiang, J.; Zhou, K.; Zhao, W.X.; Song, Y.; Zhu, C.; Zhu, H.; Wen, J.-R. KG-Agent: An Efficient Autonomous Agent Framework for Complex Reasoning over Knowledge Graph; Association for Computational Linguistics: Stroudsburg, PA, USA, 2024. [Google Scholar]
- Jin, B.; Xie, C.; Zhang, J.; Roy, K.K.; Zhang, Y.; Li, Z.; Li, R.; Tang, X.; Wang, S.; Meng, Y.; et al. Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs. arXiv 2024, arXiv:2404.07103. [Google Scholar] [CrossRef]
- Sun, L.; Tao, Z.; Li, Y.; Arakawa, H. ODA: Observation-Driven Agent for integrating LLMs and Knowledge Graphs. arXiv 2024, arXiv:2404.07677. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Q.; Qiu, Y.; Liang, J.; He, Q.; Gu, Z.; Xiao, Y.; Wang, W. KnowledGPT: Enhancing Large Language Models with Retrieval and Storage Access on Knowledge Bases. arXiv 2023, arXiv:2308.11761. [Google Scholar] [CrossRef]
- Munikoti, S.; Acharya, A.; Wagle, S.; Horawalavithana, S. ATLANTIC: Structure-Aware Retrieval-Augmented Language Model for Interdisciplinary Science. arXiv 2023, arXiv:2311.12289. [Google Scholar]
- Li, Z.; Guo, Q.; Shao, J.; Song, L.; Bian, J.; Zhang, J.; Wang, R. Graph Neural Network Enhanced Retrieval for Question Answering of LLMs. arXiv 2024, arXiv:2406.06572. [Google Scholar]
- Yang, R.; Liu, H.; Marrese-Taylor, E.; Zeng, Q.; Ke, Y.H.; Li, W.; Cheng, L.; Chen, Q.; Caverlee, J.; Matsuo, Y.; et al. KG-Rank: Enhancing Large Language Models for Medical QA with Knowledge Graphs and Ranking Techniques. arXiv 2024, arXiv:2403.05881. [Google Scholar] [CrossRef]
- Peng, Z.; Yang, Y. Connecting the Dots: Inferring Patent Phrase Similarity with Retrieved Phrase Graphs. arXiv 2024, arXiv:2403.16265. [Google Scholar] [CrossRef]
- Tewari, A.; Dixit, S.; Sahni, N.; Bordas, S.P. Machine learning approaches to identify and design low thermal conductivity oxides for thermoelectric applications. Data Centric Eng. 2020, 1, e8. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan, K.; Cao, Y. ReAct: Synergizing Reasoning and Acting in Language Models. arXiv 2022, arXiv:2210.03629. [Google Scholar]
- together.ai. Llama 3.3 70B API. Available online: https://www.together.ai/models/llama-3-3-70b (accessed on 17 November 2025).
- Google. Googel AI Studio. Available online: https://aistudio.google.com/ (accessed on 17 November 2025).







| Stage | Component | Options |
|---|---|---|
| G-Indexing | Indexing Method | Graph/Text/Vector/Hybrid |
| G-Retrieval | Retriever Type | Non-parametric/LM-based/GNN-based |
| Retrieval Paradigm | Once/Iterative (Non-adaptive)/Iterative (Adaptive)/Multi-stage | |
| Retrieval Granularity | Nodes/Triplets/Paths/Subgraphs/Hybrid | |
| Query Enhancement | Query Expansion/Decomposition | |
| G-Generation | Generator | GNN/LM/Hybrid |
| Graph Format | Graph Language/Graph Embedding |
| Component | Options | This Work |
|---|---|---|
| Indexing Method | Graph/Text/Vector/Hybrid | Hybrid |
| Retriever Type | Non-Parametric/LM-Based/GNN-Based | LM-based (Multi-Agent System) |
| Retrieval Paradigm | Once/Iterative (Non-Adaptive)/Iterative (Adaptive)/Multi-Stage | Iterative, Adaptive (ReAct pattern) |
| Retrieval Granularity | Nodes/Triplets/Paths/Subgraphs/Hybrid | Hybrid (All Granularities via Cypher) |
| Query Enhancement | Query Expansion/Decomposition | Query Decomposition (Supervisor Agent) |
| Generator | GNN/LM/Hybrid | LM (Same Model as Retriever) |
| Graph Format | Graph Language/Graph Embedding | Graph Language, Code-Like (Cypher, JSON) |
| Subcategory | Quantity |
|---|---|
| Zero-to-one-hop | 50 |
| Multi-hop | 50 |
| Question Category | Gemini 2.5 Flash | Gemini 2.0 Flash | Gemini 2.0 Flash Lite | Llama-3.3-70B-Instruct-Turbo |
|---|---|---|---|---|
| One-hop | 48 (96%) | 47 (94%) | 44 (88%) | 47 (94%) |
| Multi-hop | 45 (90%) | 41 (82%) | 32 (64%) | 25 (50%) |
| Average | 93 (93%) | 88 (88%) | 76 (76%) | 62 (62%) |
| Question Category | Gemini 2.5 Flash [s] | Gemini 2.0 Flash [s] | Gemini 2.0 Flash Lite [s] | Llama-3.3-70B-Instruct-Turbo [s] |
|---|---|---|---|---|
| One-hop | 10.03 | 5.79 | 5.23 | 28.96 |
| Multi-hop | 14.32 | 8.21 | 6.62 | 40.78 |
| Average | 11.29 | 8.54 | 6.15 | 40.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Quast, V.; Jacobs, G.; Dehn, S.; Höpfner, G. Enabling Humans and AI Systems to Retrieve Information from System Architectures in Model-Based Systems Engineering. Systems 2026, 14, 83. https://doi.org/10.3390/systems14010083
Quast V, Jacobs G, Dehn S, Höpfner G. Enabling Humans and AI Systems to Retrieve Information from System Architectures in Model-Based Systems Engineering. Systems. 2026; 14(1):83. https://doi.org/10.3390/systems14010083
Chicago/Turabian StyleQuast, Vincent, Georg Jacobs, Simon Dehn, and Gregor Höpfner. 2026. "Enabling Humans and AI Systems to Retrieve Information from System Architectures in Model-Based Systems Engineering" Systems 14, no. 1: 83. https://doi.org/10.3390/systems14010083
APA StyleQuast, V., Jacobs, G., Dehn, S., & Höpfner, G. (2026). Enabling Humans and AI Systems to Retrieve Information from System Architectures in Model-Based Systems Engineering. Systems, 14(1), 83. https://doi.org/10.3390/systems14010083

