Integrating Analyst-Forecasting Indicators into Business Intelligence Systems for Data-Driven Financial Distress Prediction
Abstract
1. Introduction
2. Literature Review
2.1. Traditional Financial Distress Prediction Models
2.2. Alternative and Text-Based Data Approaches
2.3. Analyst-Forecasting Indicators and Identified Research Gap
3. Method
4. Experimental Setup
4.1. Datasets
4.2. Benchmark Models and Parameter Settings
4.3. Evaluation Metric
5. Experiment Results from Two Perspectives
5.1. Validation Experiment from a Performance Comparison Perspective
5.2. Validation Experiment from a Feature Contribution Perspective
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
| 1 |
References
- Zhao, S.; Xu, K.; Wang, Z.; Liang, C.; Lu, W.; Chen, B. Financial Distress Prediction by Combining Sentiment Tone Features. Econ. Model. 2022, 106, 105709. [Google Scholar] [CrossRef]
- Wang, G.; Chen, G.; Chu, Y. A New Random Subspace Method Incorporating Sentiment and Textual Information for Financial Distress Prediction. Electron. Commer. Res. Appl. 2018, 29, 30–49. [Google Scholar] [CrossRef]
- Tsai, C.F.; Sue, K.L.; Hu, Y.H.; Chiu, A. Combining Feature Selection, Instance Selection, and Ensemble Classification Techniques for Improved Financial Distress Prediction. J. Bus. Res. 2021, 13, 200–209. [Google Scholar] [CrossRef]
- Song, Y.; Li, R.; Zhang, Z.; Sahut, J.-M. ESG Performance and Predicting Financial Distress in Energy Companies. Financ. Res. Lett. 2024, 65, 105546. [Google Scholar] [CrossRef]
- Mai, F.; Tian, S.; Lee, C.; Ma, L. Deep Learning Models for Bankruptcy Prediction Using Textual Disclosures. Eur. J. Oper. Res. 2019, 274, 743–758. [Google Scholar] [CrossRef]
- Hajek, P.; Munk, M. Corporate Financial Distress Prediction Using the Risk-Related Information Content of Annual Reports. Inf. Process. Manag. 2024, 61, 103820. [Google Scholar] [CrossRef]
- Prusak, B. Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries. Int. J. Financ. Stud. 2018, 6, 60. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, C.; Qu, S.; Chen, X. An Explainable Artificial Intelligence Approach for Financial Distress Prediction. Inf. Process. Manag. 2022, 59, 102988. [Google Scholar] [CrossRef]
- Wu, D.; Ma, X.; Olson, D.L. Financial Distress Prediction Using Integrated Z-Score and Multilayer Perceptron Neural Networks. Decis. Support Syst. 2022, 159, 113814. [Google Scholar] [CrossRef]
- Liang, D.; Tsai, C.F.; Lu, H.Y.; Chang, L.S. Combining Corporate Governance Indicators with Stacking Ensembles for Financial Distress Prediction. J. Bus. Res. 2020, 120, 137–146. [Google Scholar] [CrossRef]
- Yu, L.; Li, M. A Case-Based Reasoning Driven Ensemble Learning Paradigm for Financial Distress Prediction with Missing Data. Appl. Soft Comput. 2023, 137, 110163. [Google Scholar] [CrossRef]
- Yu, L.; Li, M.; Liu, X. A Two-Stage Case-Based Reasoning Driven Classification Paradigm for Financial Distress Prediction with Missing and Imbalanced Data. Expert Syst. Appl. 2024, 249, 123745. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, D.; Fujita, H. The Performance of Corporate Financial Distress Prediction Models with Features Selection Guided by Domain Knowledge and Data Mining Approaches. Knowl. Based Syst. 2015, 85, 52–61. [Google Scholar] [CrossRef]
- Lev, B.; Gu, F. The End of Accounting and the Path Forward for Investors and Managers; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Qiu, Y.; He, J.; Chen, Z.; Yao, Y.; Qu, Y. A Novel Semisupervised Learning Method with Textual Information for Financial Distress Prediction. J. Forecast. 2024, 43, 2478–2494. [Google Scholar] [CrossRef]
- Muñoz-Izquierdo, N.; Laitinen, E.K.; Camacho-Miñano, M.d.M.; Pascual-Ezama, D. Does Audit Report Information Improve Financial Distress Prediction over Altman’s Traditional Z-Score Model? J. Int. Financ. Manag. Account. 2020, 31, 65–97. [Google Scholar] [CrossRef]
- Zhang, Y.; He, M.; Liao, C.; Wang, Y. Climate Risk Exposure and the Cross-Section of Chinese Stock Returns. Financ. Res. Lett. 2023, 55, 103987. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, A.; Wang, J.; Zhang, Y. Detection of Fraud Statement Based on Word Vector: Evidence from Financial Companies in China. Financ. Res. Lett. 2022, 46, 102477. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ren, X.; Jin, M. Geopolitical Risk Exposure and Stock Returns: Evidence from China. Financ. Res. Lett. 2024, 64, 105479. [Google Scholar] [CrossRef]
- Citterio, A.; King, T. The Role of Environmental, Social, and Governance (ESG) in Predicting Bank Financial Distress. Financ. Res. Lett. 2023, 51, 103411. [Google Scholar] [CrossRef]
- Wu, C.; Jiang, C.; Wang, Z.; Ding, Y. Predicting Financial Distress Using Current Reports: A Novel Deep Learning Method Based on User-Response-Guided Attention. Decis. Support Syst. 2024, 179, 114176. [Google Scholar] [CrossRef]
- Che, W.; Wang, Z.; Jiang, C.; Abedin, M.Z. Predicting Financial Distress Using Multimodal Data: An Attentive and Regularized Deep Learning Method. Inf. Process. Manag. 2024, 61, 103703. [Google Scholar] [CrossRef]
- Li, S.; Shi, W.; Wang, J.; Zhou, H. A Deep Learning-Based Approach to Constructing a Domain Sentiment Lexicon: A Case Study in Financial Distress Prediction. Inf. Process. Manag. 2021, 58, 102673. [Google Scholar] [CrossRef]
- Liu, J.; Jia, M. Financial Distress Prediction with Annual Reports-Based Deep Textual Feature Extraction: A Hybrid Approach. Inf. Sci. 2025, 686, 121318. [Google Scholar] [CrossRef]
- Ni, J.; Xu, Y.; Shi, J.; Li, J. Product Innovation in a Supply Chain with Information Asymmetry: Is More Private Information Always Worse? Eur. J. Oper. Res. 2024, 314, 229–240. [Google Scholar] [CrossRef]
- Akerlof, G.A. The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 1970, 84, 488–500. [Google Scholar] [CrossRef]
- Altman, E.I. Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. J. Finance 1968, 23, 589. [Google Scholar] [CrossRef]
- Blum, M. Failing Company Discriminant Analysis. J. Account. Res. 1974, 12, 1–25. [Google Scholar] [CrossRef]
- Ohlson, J.A. Financial Ratios and the Probabilistic Prediction of Bankruptcy. J. Account. Res. 1980, 18, 109–131. [Google Scholar] [CrossRef]
- Lin, T.H. A Cross Model Study of Corporate Financial Distress Prediction in Taiwan: Multiple Discriminant Analysis, Logit, Probit and Neural Networks Models. Neurocomputing 2009, 72, 3507–3516. [Google Scholar] [CrossRef]
- Wang, S.; Chi, G. Cost-Sensitive Stacking Ensemble Learning for Company Financial Distress Prediction. Expert Syst. Appl. 2024, 255, 124525. [Google Scholar] [CrossRef]
- Korol, T. Early Warning Models against Bankruptcy Risk for Central European and Latin American Enterprises. Econ. Model. 2013, 31, 22–30. [Google Scholar] [CrossRef]
- Aydin, N.; Sahin, N.; Deveci, M.; Pamucar, D. Prediction of Financial Distress of Companies with Artificial Neural Networks and Decision Trees Models. Mach. Learn. Appl. 2022, 10, 100432. [Google Scholar] [CrossRef]
- Sun, J.; Fujita, H.; Zheng, Y.; Ai, W. Multi-Class Financial Distress Prediction Based on Support Vector Machines Integrated with the Decomposition and Fusion Methods. Inf. Sci. 2021, 559, 153–170. [Google Scholar] [CrossRef]
- Kim, S.; Mun, B.M.; Bae, S.J. Data Depth Based Support Vector Machines for Predicting Corporate Bankruptcy. Appl. Intell. 2018, 48, 791–804. [Google Scholar] [CrossRef]
- Sun, X.; Lei, Y. Research on Financial Early Warning of Mining Listed Companies Based on BP Neural Network Model. Resour. Policy 2021, 73, 102223. [Google Scholar] [CrossRef]
- Zhao, M.; Song, Y.; Huang, H.; Kim, E.-H. Attention-Based Fuzzy Neural Networks Designed for Early Warning of Financial Crises of Listed Companies. Inf. Sci. 2025, 686, 121374. [Google Scholar] [CrossRef]
- Chen, M.Y. Predicting Corporate Financial Distress Based on Integration of Decision Tree Classification and Logistic Regression. Expert Syst. Appl. 2011, 38, 11261–11272. [Google Scholar] [CrossRef]
- Wang, W.; Liang, Z. Financial Distress Early Warning for Chinese Enterprises from a Systemic Risk Perspective: Based on the Adaptive Weighted XGBoost-Bagging Model. Systems 2024, 12, 65. [Google Scholar] [CrossRef]
- Climent, F.; Momparler, A.; Carmona, P. Anticipating Bank Distress in the Eurozone: An Extreme Gradient Boosting Approach. J. Bus. Res. 2019, 101, 885–896. [Google Scholar] [CrossRef]
- Sun, J.; Li, H.; Fujita, H.; Fu, B.; Ai, W. Class-Imbalanced Dynamic Financial Distress Prediction Based on Adaboost-SVM Ensemble Combined with SMOTE and Time Weighting. Inf. Fusion 2020, 54, 128–144. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, W.; Ji, Y. Predicting Financial Distress of Chinese Listed Companies Using Machine Learning: To What Extent Does Textual Disclosure Matter? Int. Rev. Financ. Anal. 2023, 89, 102770. [Google Scholar] [CrossRef]
- Papíková, L.; Papík, M. Effects of Classification, Feature Selection, and Resampling Methods on Bankruptcy Prediction of Small and Medium-Sized Enterprises. Intell. Syst. Account. Financ. Manag. 2022, 29, 254–281. [Google Scholar] [CrossRef]
- Qian, H.; Wang, B.; Yuan, M.; Gao, S.; Song, Y. Financial Distress Prediction Using a Corrected Feature Selection Measure and Gradient Boosted Decision Tree. Expert Syst. Appl. 2022, 190, 116202. [Google Scholar] [CrossRef]
- Kim, S.Y.; Upneja, A. Predicting Restaurant Financial Distress Using Decision Tree and AdaBoosted Decision Tree Models. Econ. Model. 2014, 36, 354–362. [Google Scholar] [CrossRef]
- Wang, G.; Ma, J.; Chen, G.; Yang, Y. Financial Distress Prediction: Regularized Sparse-Based Random Subspace with ER Aggregation Rule Incorporating Textual Disclosures. Appl. Soft Comput. J. 2020, 90, 106152. [Google Scholar] [CrossRef]
- Huang, B.; Yao, X.; Luo, Y.; Li, J. Improving Financial Distress Prediction Using Textual Sentiment of Annual Reports. Ann. Oper. Res. 2023, 330, 457–484. [Google Scholar] [CrossRef]
- Borchert, P.; Coussement, K.; De Caigny, A.; De Weerdt, J. Extending Business Failure Prediction Models with Textual Website Content Using Deep Learning. Eur. J. Oper. Res. 2023, 306, 348–357. [Google Scholar] [CrossRef]
- Gandhi, P.; Loughran, T.; McDonald, B. Using Annual Report Sentiment as a Proxy for Financial Distress in U.S. Banks. J. Behav. Financ. 2019, 20, 424–436. [Google Scholar] [CrossRef]
- Stevenson, M.; Mues, C.; Bravo, C. The Value of Text for Small Business Default Prediction: A Deep Learning Approach. Eur. J. Oper. Res. 2021, 295, 758–771. [Google Scholar] [CrossRef]
- Nguyen, B.-H.; Huynh, V.-N. Textual Analysis and Corporate Bankruptcy: A Financial Dictionary-Based Sentiment Approach. J. Oper. Res. Soc. 2022, 73, 102–121. [Google Scholar] [CrossRef]
- Beatty, A.; Liao, S.; Yu, J.J. The Spillover Effect of Fraudulent Financial Reporting on Peer Firms’ Investments. J. Account. Econ. 2013, 55, 183–205. [Google Scholar] [CrossRef]
- Breuer, M. How Does Financial-Reporting Regulation Affect Industry-Wide Resource Allocation? J. Account. Res. 2021, 59, 59–110. [Google Scholar] [CrossRef]
- Li, L.; Li, G. Information Rigidity: Comparing Average and Individual Forecasts of Analysts of Chinese A-Share Listed Companies. Int. Rev. Econ. Financ. 2025, 104, 104732. [Google Scholar] [CrossRef]
- Chourou, L.; Purda, L.; Saadi, S. Economic Policy Uncertainty and Analysts’ Forecast Characteristics. J. Account. Public Policy 2021, 40, 106775. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, C.; Zhang, C. Analyst Forecast Behavior under Trade Uncertainty: Evidence from China. Financ. Res. Lett. 2025, 85, 108245. [Google Scholar] [CrossRef]
- Gavious, I.; Milo, O.; Weihs, H. Analysts’ Bankruptcy Prediction: Revisiting the Information Value Added by Financial Experts. Financ. Res. Lett. 2025, 85, 108138. [Google Scholar] [CrossRef]
- Zhu, S.; Wu, H.; Ngai, E.W.T.; Ren, J.; He, D.; Ma, T.; Li, Y. A Financial Fraud Prediction Framework Based on Stacking Ensemble Learning. Systems 2024, 12, 588. [Google Scholar] [CrossRef]
- Zhang, L.; Abedin, M.Z.; Liu, Z. Incorporating Media News to Predict Financial Distress: Case Study on Chinese Listed Companies. J. Forecast. 2024, 43, 1374–1398. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777. [Google Scholar]
- Sun, G.; Li, Y. Intraday and Post-Market Investor Sentiment for Stock Price Prediction: A Deep Learning Framework with Explainability and Quantitative Trading Strategy. Systems 2025, 13, 390. [Google Scholar] [CrossRef]
- Nugroho, D.S.; Dewayanto, T. Application of Statistics and Artificial Intelligence for Corporate Financial Distress Prediction Models: A Systematic Literature Review. J. Model. Manag. 2025, 20, 1999–2023. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Wu, C. Multi-Class Financial Distress Prediction Based on Hybrid Feature Selection and Improved Stacking Ensemble Model. Expert Syst. Appl. 2025, 282, 127832. [Google Scholar] [CrossRef]
- Chen, P.; Ji, M. Deep Learning-Based Financial Risk Early Warning Model for Listed Companies: A Multi-Dimensional Analysis Approach. Expert Syst. Appl. 2025, 283, 127746. [Google Scholar] [CrossRef]
- Tao, F.; Wang, W.; Lu, R. A Deep Learning-Based Sentiment Flow Analysis Model for Predicting Financial Risk of Listed Companies. Eng. Appl. Artif. Intell. 2025, 150, 110522. [Google Scholar] [CrossRef]
- Durana, P.; Poliak, M.; Kovalova, E.; Blazek, R. Prediction Models Reloaded: Advanced Insights for SMEs in the Bucharest Nine Countries. Oeconomia Copernic. 2025, 16, 689–760. [Google Scholar] [CrossRef]


| Financial indicators in last year | Leps | Earnings per share in last year |
| Lpe | Price to earnings ratio in last year | |
| Lnetpro | Net profit in last year | |
| Lebit | Earnings before interest and taxes in last year | |
| Lebitda | Earnings before interest, taxes, depreciation, and amortization in last year | |
| Lor | Operating revenue in last year | |
| Locfps | Operating cash flow per share in last year | |
| Lbm | Book to market ratio in last year | |
| Lnavs | Net asset value per share in last year | |
| Lroa | Return on assets in last year | |
| Lroe | Return on equity in last year | |
| Lpb | Price to book ratio in last year | |
| Ltat | Total asset turnover in last year | |
| Forecasting financial indicators | Feps | Forecasting earnings per share |
| Fpe | Forecasting price to earnings ratio | |
| Fnetpro | Forecasting net profit | |
| Febit | Forecasting earnings before interest and taxes | |
| Febitda | Forecasting earnings before interest, taxes, depreciation, and amortization | |
| For | Forecasting operating revenue | |
| Focfps | Forecasting operating cash flow per share | |
| Fnavs | Forecasting net asset value per share | |
| Froa | Forecasting return on assets | |
| Froe | Forecasting return on equity | |
| Fpb | Forecasting price to book ratio | |
| Ftat | Forecasting total asset turnover | |
| Fnpaopc | Forecasting net profit attributable to owners of the parent company | |
| Ftp | Forecasting total profit | |
| Fop | Forecasting operating profit |
| Model | Hyperparameters | Value |
|---|---|---|
| AdaBoost | Learning rate | [0.01, 0.25, 0.5, 0.75, 1] |
| The number of DTs | [50, 100, 150, 200] | |
| The min number of samples required to be at a leaf in DTs | [1, 25, 50, 75, 100] | |
| The max depth of DTs | [1, 2, 3, 4, 5] | |
| CART | The ratio of features considered for splitting in DTs | [0.01, 0.25, 0.5, 0.75, 1] |
| The max depth of DTs | [1, 2, 3, 4, 5] | |
| The min number of samples required to split a leaf in DTs | [2, 25, 50, 75, 100] | |
| The min number of samples required to be at a leaf in DTs | [1, 25, 50, 75, 100] | |
| CatBoost | The number of DTs | [50, 100, 150, 200] |
| Learning rate | [0.01, 0.25, 0.5, 0.75, 1] | |
| The depth of DTs | [1, 2, 3, 4, 5] | |
| ERT | The number of DTs | [50, 100, 150, 200] |
| The min number of samples required to split a leaf in DTs | [2, 25, 50, 75, 100] | |
| The max depth of DTs | [1, 2, 3, 4, 5] | |
| The min number of samples required to be at a leaf in DTs | [1, 25, 50, 75, 100] | |
| LightGBM | The number of DTs | [50, 100, 150, 200] |
| Learning rate | [0.01, 0.25, 0.5, 0.75, 1] | |
| The max depth of DTs | [1, 2, 3, 4, 5] | |
| MLP | Max iteration | 100 |
| Activation function | “relu” | |
| Solver | “adam” | |
| The size of batch | [16, 32, 64, 128] | |
| Initial learning rate | [0.01, 0.25, 0.5, 0.75, 1] | |
| The size of hidden layer | [1, 25, 50, 75, 100] | |
| RF | The number of DTs | [50, 100, 150, 200] |
| The min number of samples required to split a leaf in DTs | [2, 25, 50, 75, 100] | |
| The max depth of DTs | [1, 2, 3, 4, 5] | |
| The min number of samples required to be at a leaf in DTs | [1, 25, 50, 75, 100] |
| Dataset | Features | AdaBoost | CART | CatBoost | ERT | LightGBM | MLP | RF |
|---|---|---|---|---|---|---|---|---|
| Dataset 1 | Historical Indicators | 0.7252 (0.1067) | 0.8198 (0.0610) | 0.8311 (0.0493) | 0.8529 (0.0662) | 0.8332 (0.0975) | 0.6823 (0.1653) | 0.8552 (0.0708) |
| Forecasting Indicators | 0.7299 (0.1222) | 0.7192 (0.1028) | 0.7173 (0.1393) | 0.7711 (0.0608) | 0.6993 (0.1345) | 0.7102 (0.1061) | 0.7279 (0.0585) | |
| All Indicators | 0.7957 (0.1039) | 0.8414 (0.1300) | 0.8736 (0.1182) | 0.9313 (0.0465) | 0.8667 (0.1324) | 0.7798 (0.0694) | 0.8969 (0.1027) | |
| Dataset 2 | Historical Indicators | 0.7352 (0.1195) | 0.8123 (0.0594) | 0.8374 (0.0434) | 0.8671 (0.0508) | 0.8256 (0.0968) | 0.7019 (0.1816) | 0.8513 (0.0719) |
| Forecasting Indicators | 0.6985 (0.0993) | 0.6809 (0.0532) | 0.7190 (0.1405) | 0.7681 (0.0622) | 0.6588 (0.0820) | 0.7438 (0.0821) | 0.7505 (0.0671) | |
| All Indicators | 0.7908 (0.1022) | 0.8238 (0.1289) | 0.8344 (0.1274) | 0.9087 (0.0543) | 0.8387 (0.1186) | 0.7814 (0.0680) | 0.8650 (0.0940) | |
| Dataset 3 | Historical Indicators | 0.7346 (0.1193) | 0.7964 (0.0871) | 0.8308 (0.0513) | 0.8673 (0.0506) | 0.8279 (0.0948) | 0.6978 (0.1783) | 0.8604 (0.0571) |
| Forecasting Indicators | 0.7098 (0.1068) | 0.6926 (0.0367) | 0.7021 (0.1396) | 0.7471 (0.0489) | 0.6773 (0.0776) | 0.7010 (0.0467) | 0.7530 (0.0645) | |
| All Indicators | 0.8043 (0.1111) | 0.8139 (0.1250) | 0.8432 (0.1337) | 0.9125 (0.0576) | 0.8549 (0.1287) | 0.7874 (0.0780) | 0.8721 (0.0970) | |
| Dataset 4 | Historical Indicators | 0.7611 (0.1505) | 0.7607 (0.0637) | 0.8218 (0.0378) | 0.8471 (0.0202) | 0.8277 (0.0945) | 0.7245 (0.1493) | 0.8510 (0.0437) |
| Forecasting Indicators | 0.7292 (0.0680) | 0.6599 (0.0593) | 0.7209 (0.1303) | 0.7289 (0.0788) | 0.7025 (0.0277) | 0.6853 (0.0738) | 0.7471 (0.0670) | |
| All Indicators | 0.8660 (0.0450) | 0.8429 (0.0754) | 0.8875 (0.0950) | 0.9224 (0.0480) | 0.8876 (0.0711) | 0.8265 (0.0722) | 0.8927 (0.0662) | |
| Dataset 5 | Historical Indicators | 0.8044 (0.1212) | 0.7595 (0.0629) | 0.8143 (0.0456) | 0.8451 (0.0203) | 0.8521 (0.0691) | 0.7802 (0.0851) | 0.8473 (0.0451) |
| Forecasting Indicators | 0.7207 (0.0693) | 0.6579 (0.0598) | 0.7519 (0.0886) | 0.7439 (0.0864) | 0.7145 (0.0412) | 0.6831 (0.0732) | 0.7724 (0.0589) | |
| All Indicators | 0.8860 (0.0482) | 0.8255 (0.0454) | 0.8841 (0.0908) | 0.9234 (0.0492) | 0.8871 (0.0704) | 0.8579 (0.0799) | 0.8892 (0.0602) | |
| Dataset 6 | Historical Indicators | 0.8541 (0.0634) | 0.7608 (0.0640) | 0.8228 (0.0589) | 0.8455 (0.0210) | 0.8443 (0.0601) | 0.7762 (0.0831) | 0.8457 (0.0428) |
| Forecasting Indicators | 0.7105 (0.0591) | 0.6464 (0.0466) | 0.7127 (0.0494) | 0.7415 (0.0835) | 0.7225 (0.0511) | 0.6799 (0.0707) | 0.7546 (0.0526) | |
| All Indicators | 0.8743 (0.0570) | 0.8111 (0.0431) | 0.8556 (0.1103) | 0.8997 (0.0677) | 0.8663 (0.0892) | 0.8409 (0.0953) | 0.8749 (0.0654) | |
| Dataset 7 | Historical Indicators | 0.8629 (0.0692) | 0.7733 (0.0796) | 0.8392 (0.0671) | 0.8525 (0.0260) | 0.8541 (0.0586) | 0.7937 (0.1092) | 0.8517 (0.0417) |
| Forecasting Indicators | 0.6867 (0.0833) | 0.6138 (0.0656) | 0.6781 (0.0315) | 0.6986 (0.1277) | 0.7013 (0.0810) | 0.6314 (0.0860) | 0.7223 (0.0559) | |
| All Indicators | 0.8986 (0.0480) | 0.8271 (0.0499) | 0.8845 (0.0865) | 0.9149 (0.0619) | 0.8672 (0.0888) | 0.8685 (0.0737) | 0.8912 (0.0590) |
| Model Group | Friedman Test: p-Value | Holm Post Hoc Test: Rank (Corrected p-Value) | ||
|---|---|---|---|---|
| Benchmark Set | Control Set | |||
| Historical Indicators | Forecasting Indicators | All Indicators | ||
| All Models | 0.0000 | 1.9388 (0.0000) | 1.0816 (0.0000) | 2.9796 |
| AdaBoost | 0.0000 | 1.8571 (0.0325) | 1.1429 (0.0010) | 3.0000 |
| CART | 0.0000 | 2.0000 (0.0614) | 1.0000 (0.0004) | 3.0000 |
| CatBoost | 0.0000 | 2.1429 (0.1814) | 1.0000 (0.0010) | 2.8571 |
| ERT | 0.0000 | 2.0000 (0.0614) | 1.0000 (0.0004) | 3.0000 |
| LightGBM | 0.0000 | 2.0000 (0.0614) | 1.0000 (0.0004) | 3.0000 |
| MLP | 0.0002 | 1.5714 (0.0075) | 1.4286 (0.0066) | 3.0000 |
| RF | 0.0000 | 2.0000 (0.0614) | 1.0000 (0.0004) | 3.0000 |
| Model Group | Historical Indicators | Forecasting Indicators | All Indicators |
|---|---|---|---|
| All Models | 0.00% (0.9818) | 0.00% (1.7888) | 100.00% (0.0000) |
| AdaBoost | 0.37% (0.7990) | 0.03% (1.2994) | 99.61% (0.0005) |
| CART | 0.73% (0.7000) | 0.00% (1.3988) | 99.28% (0.0009) |
| CatBoost | 3.47% (0.5067) | 0.02% (1.3041) | 96.52% (0.0045) |
| ERT | 0.73% (0.7000) | 0.00% (1.3988) | 99.28% (0.0009) |
| LightGBM | 0.73% (0.7000) | 0.00% (1.3988) | 99.28% (0.0009) |
| MLP | 0.09% (1.0003) | 0.07% (1.1003) | 99.84% (0.0002) |
| RF | 0.73% (0.7000) | 0.00% (1.3988) | 99.28% (0.0009) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Liu, Z.; Wang, M.; Liu, D.; Du, Z.; Zhang, L.; Wang, J. Integrating Analyst-Forecasting Indicators into Business Intelligence Systems for Data-Driven Financial Distress Prediction. Systems 2026, 14, 29. https://doi.org/10.3390/systems14010029
Liu Z, Wang M, Liu D, Du Z, Zhang L, Wang J. Integrating Analyst-Forecasting Indicators into Business Intelligence Systems for Data-Driven Financial Distress Prediction. Systems. 2026; 14(1):29. https://doi.org/10.3390/systems14010029
Chicago/Turabian StyleLiu, Zhenkun, Mu Wang, Dansheng Liu, Zhiyuan Du, Lifang Zhang, and Jianzhou Wang. 2026. "Integrating Analyst-Forecasting Indicators into Business Intelligence Systems for Data-Driven Financial Distress Prediction" Systems 14, no. 1: 29. https://doi.org/10.3390/systems14010029
APA StyleLiu, Z., Wang, M., Liu, D., Du, Z., Zhang, L., & Wang, J. (2026). Integrating Analyst-Forecasting Indicators into Business Intelligence Systems for Data-Driven Financial Distress Prediction. Systems, 14(1), 29. https://doi.org/10.3390/systems14010029

