Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse
Abstract
1. Introduction
2. Materials and Methods
Sensitivity Analysis
3. Results
3.1. Change in Temperature
3.2. Time to Population Collapse
4. Discussion
4.1. Summary of Findings
4.2. Paradox of Resilience
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
HANDY | Human and Nature Dynamics |
Appendix A
Appendix A.1. Predator-Prey Model
Appendix A.2. HANDY Model
Appendix A.3. Climate Model
Appendix B
Supplemental Results
Parameter | IC | σ | r | SrM |
---|---|---|---|---|
Sample range | {0, 1} | {1, 5} | {0.01, 1, 30} | {0, 0.01} |
Justification | After running shortened simulations from 1850 to 2022, we found that a value of 0.4–0.5 led to similar anthropogenic emissions to observed data since the industrial revolution. Therefore, we made 0.5 the mean value of CI. We chose 0 as a lower bound to show the impact of net-zero GHG emissions, and 1 as the upper bound to show extreme GHG emission scenarios and keep the mean sample at 0.5. | We chose this range to represent realistic warming scenarios over the next 1000 years. We also use this range to test a variety of possible “tipping point” temperatures (at which reinforcing ecological feedbacks begin) proposed by Armstrong McKay et al., (2022). | The range of r designates the functional form of the relationship between temperature and ecosystem function. We use photosynthetic capacity, as we are specifically interested in how climate change might limit carbon sequestration. The three values represent extreme possibilities of this functional relationship, including steep exponential decay with increasing temperatures, linear decay, and gradual logistic decay. | The maximum sequestration rate, or the rate at which natural resources can sequester carbon, is a representation of the maximum functional capacity of ecosystem services in terms of carbon sequestration. We bookended the range of tested values with 0, or no carbon sequestration, and 0.01, which often yielded unrealistically low atmospheric carbon concentrations |
Source | [22] | [12,30] | None | [30] |
Appendix C
Supplemental Results
Carbon Intensity | |||
---|---|---|---|
Niche Breadth | 0.2 | 0.6 | 1 |
1 | 2466.6 | 2421.1 | 2427.7 |
2.6 | 2654.9 | 2497.7 | 2423.9 |
5 | 2845.3 | 2667.2 | 2591.6 |
References
- Motesharrei, S.; Rivas, J.; Kalnay, E. Human and nature dynamics (HANDY): Modeling inequality and use of resources in the collapse or sustainability of societies. Ecol. Econ. 2014, 101, 90–102. [Google Scholar] [CrossRef]
- Meadows, D. Thinking in Systems; Chelsea Green Publishing: White River Junction, VT, USA, 2008. [Google Scholar]
- Daily, G.C.; Ehrlich, P.R. Population, Sustainability, and Earth’s Carrying Capacity; Springer: New York, NY, USA, 1992. [Google Scholar]
- Diamond, J.M. Collapse: How Societies Choose to Fail or Succeed; Viking: New York, NY, USA, 2005. [Google Scholar]
- Tainter, J.A. The Collapse of Complex Societies; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Malthus, T. An Essay on the Principle of Population; Oxford University Press: London, UK, 1798. [Google Scholar]
- Hardin, G. The Tragedy of the Commons. Sci. New Ser. 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Catton, W.R. Overshoot: The Ecological Basis of Revolutionary Change; Board of Trustees of the University of Illinois Press: Champaign, UK, 1980. [Google Scholar]
- McKibben, B. Eaarth: Making a Life on a Tough New Planet, 1st ed.; Martin’s Griffin: New York, NY, USA, 2011. [Google Scholar]
- Kolbert, E. The Sixth Extinction: An Unnatural History; Henry Holt and Company: New York, NY, USA, 2014. [Google Scholar]
- Steel, D.; DesRoches, C.T.; Mintz-Woo, K. Climate change and the threat to civilization. Proc. Natl. Acad. Sci. USA 2022, 119, e2210525119. [Google Scholar] [CrossRef] [PubMed]
- Armstrong McKay, D.I.A.; Staal, A.; Abrams, J.F.; Winkelmann, R.; Sakschewski, B.; Loriani, S.; Fetzer, I.; Cornell, S.E.; Rockström, J.; Lenton, T.M. Exceeding 1.5 °C global warming could trigger multiple climate tipping points. Science 2022, 377, eabn7950. [Google Scholar] [CrossRef] [PubMed]
- Parker, L.E.; McElrone, A.J.; Ostoja, S.M.; Forrestel, E.J. Extreme heat effects on perennial crops and strategies for sustaining future production. Plant Sci. 2020, 295, 110397. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Cannell, M.G.R.; Friend, A.D. Climate change impacts on ecosystems and the terrestrial carbon sink: A new assessment. Glob. Environ. Chang. 1999, 9, S21–S30. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Fowler, C.; Westengen, O.T. Climate change, food and biodiversity. In Biodiversity and Climate Change: Transforming the Biosphere; Lovejoy, T.E., Hannah, L., Eds.; Yale University Press: New Haven, CT, USA, 2019; pp. 347–355. [Google Scholar]
- Richards, C.E.; Lupton, R.C.; Allwood, J.M. Re-framing the threat of global warming: An empirical causal loop diagram of climate change, food insecurity and societal collapse. Clim. Change 2021, 164, 49. [Google Scholar] [CrossRef]
- Lenton, T.M. Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model. Tellus B Chem. Phys. Meteorol. 2000, 52, 1159. [Google Scholar] [CrossRef]
- Lotka, A.J. Elements of Physical Biology; Williams & Wilkins: Philadelphia, PA, USA, 1925. [Google Scholar]
- Volterra, V. Variazioni e Fluttuazioni del Numero D’individui in Specie Animali Conviventi; Società anonima tipografica Leonardo da Vinci: Città di Castello, Italy, 1926. [Google Scholar]
- Zahra, N.; Hafeez, M.B.; Ghaffar, A.; Kausar, A.; Zeidi, M.A.; Siddique, K.H.M.; Farooq, M. Plant photosynthesis under heat stress: Effects and management. Environ. Exp. Bot. 2023, 206, 105178. [Google Scholar] [CrossRef]
- Thoning, K.W.; Crotwell, A.M.; Mund, J.W. Atmospheric Carbon Dioxide Dry Air Mole Fractions from Continuous Measurements at Mauna Loa, Hawaii, Barrow, Alaska, American Samoa and South Pole, 1973–Present; Version 2025-04-26; National Oceanic and Atmospheric Administration (NOAA), Global Monitoring Laboratory (GML): Boulder, CO, USA, 2025. [Google Scholar] [CrossRef]
- Schöngart, S.; Nicholls, Z.; Hoffmann, R.; Pelz, S.; Schleussner, C.-F. High-income groups disproportionately contribute to climate extremes worldwide. Nat. Clim. Change 2025, 15, 627–633. [Google Scholar] [CrossRef]
- Lafferty, K.D. The ecology of climate change and infectious diseases. Ecology 2009, 90, 888–900. [Google Scholar] [CrossRef] [PubMed]
- Van Aalst, M.K. The impacts of climate change on the risk of natural disasters. Disasters 2006, 30, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; PGuillod, B.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing human mortality during extreme heat waves to anthropogenic climate change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- Beckage, B.; Gross, L.J.; Lacasse, K.; Carr, E.; Metcalf, S.S.; Winter, J.M.; Howe, P.D.; Fefferman, N.; Franck, T.; Zia, A.; et al. Linking models of human behaviour and climate alters projected climate change. Nat. Clim. Chang. 2018, 8, 79–84. [Google Scholar] [CrossRef]
- Beckage, B.; Lacasse, K.; Raimi, K.T.; Visioni, D. Models and scenarios for solar radiation modification need to include human perceptions of risk. Environ. Res. Clim. 2025, 4, 023003. [Google Scholar] [CrossRef]
- Nordhaus, W.D. The ‘DICE’ Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming; Cowles Foundation Discussion Papers 1009, Cowles Foundation for Research in Economics; Yale University: New Haven, CT, USA, 1992. [Google Scholar]
- Foster, G.; Ahn, J.; Hall, B.; Quaas, J. Technical Summary of the Working Group I Contribution to the IPCC Sixth Assessment Report—Data for Figure TS.9 v20220922. NERC EDS Centre for Environmental Data Analysis, 27 July 2023. Available online: https://doi.org/10.5285/f99ec964a6f345beadb000e295ac2e5b (accessed on 9 May 2025).
Parameter | IC | σ | r | SrM |
---|---|---|---|---|
Process Represented | Anthropogenic emissions | Critical Thermal Maximum | Decreased photosynthetic Capacity | Carbon Sequestration |
Affects | Atmospheric Carbon (Climate) | Adjusted carrying capacity (HANDY) | Atmospheric Carbon (Climate) | Atmospheric Carbon (Climate) |
Number of Samples | 6 | 6 | 3 | 6 |
Sample range | {0, 1} | {1, 5} | {0.01, 1, 30} | {0, 0.01} |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savitsky, G.; Burnett, G.; Beckage, B. Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse. Systems 2025, 13, 727. https://doi.org/10.3390/systems13090727
Savitsky G, Burnett G, Beckage B. Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse. Systems. 2025; 13(9):727. https://doi.org/10.3390/systems13090727
Chicago/Turabian StyleSavitsky, Greta, Grace Burnett, and Brian Beckage. 2025. "Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse" Systems 13, no. 9: 727. https://doi.org/10.3390/systems13090727
APA StyleSavitsky, G., Burnett, G., & Beckage, B. (2025). Carbon, Climate, and Collapse: Coupling Climate Feedbacks and Resource Dynamics to Predict Societal Collapse. Systems, 13(9), 727. https://doi.org/10.3390/systems13090727