Artificial Intelligence Usage and Supply Chain Resilience: An Organizational Information Processing Theory Perspective
Abstract
1. Introduction
2. Literature Review
2.1. Organizational Information Processing Theory
2.2. Supply Chain Resilience
2.3. AI Usage in Supply Chain Management
3. Hypothesis Development
3.1. The Impact of AIU on SCR
3.2. The Mediating Effect of SCC and SCE
3.3. The Moderating Effect of DITC
4. Research Methodology
4.1. Data Collection
4.2. Research Design and Measure
5. Results Analysis
5.1. Measurement Validation
5.2. Common Method Bias
5.3. Hypothesis Testing
6. Discussion
6.1. Theoretical Implications
6.2. Practical Implications
6.3. Limitations and Future Research Directions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
AIU | Artificial Intelligence Usage |
AVE | Average Variance Extracted |
CR | Composite Reliability |
DITC | Digital Information Technology Capabilities |
OIPT | Organizational Information Processing Theory |
PLS-SEM | Partial Least Squares Structural Equation Modeling |
SCR | Supply Chain Resilience |
SCC | Supply Chain Collaboration |
SCE | Supply Chain Efficiency |
SEM | Structural Equation Modeling |
SPSS | Statistical Package for the Social Sciences |
VIF | Variance Inflation Factor |
References
- Rashid, A.; Rasheed, R.; Ngah, A.H.; Amirah, N.A. Unleashing the Power of Cloud Adoption and Artificial Intelligence in Optimizing Resilience and Sustainable Manufacturing Supply Chain in the USA. J. Manuf. Technol. Manag. 2024, 35, 1329–1353. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, X.; Zhang, M.; Wang, Q. Developing Supply Chain Resilience through Integration: An Empirical Study on an E-commerce Platform. J. Oper. Manag. 2023, 69, 477–496. [Google Scholar] [CrossRef]
- Lin, J.; Lin, S.; Benitez, J.; Luo, X.R.; Ajamieh, A. How to Build Supply Chain Resilience: The Role of Fit Mechanisms between Digitally-Driven Business Capability and Supply Chain Governance. Inf. Manag. 2023, 60, 103747. [Google Scholar] [CrossRef]
- Alkhatib, S.F.; Momani, R.A. Supply Chain Resilience and Operational Performance: The Role of Digital Technologies in Jordanian Manufacturing Firms. Adm. Sci. 2023, 13, 40. [Google Scholar] [CrossRef]
- Reischauer, G. Industry 4.0 as Policy-Driven Discourse to Institutionalize Innovation Systems in Manufacturing. Technol. Forecast. Soc. Chang. 2018, 132, 26–33. [Google Scholar] [CrossRef]
- Mannuru, N.R.; Shahriar, S.; Teel, Z.A.; Wang, T.; Lund, B.D.; Tijani, S.; Pohboon, C.O.; Agbaji, D.; Alhassan, J.; Galley, J.; et al. Artificial Intelligence in Developing Countries: The Impact of Generative Artificial Intelligence (AI) Technologies for Development. Inf. Dev. 2023, 41, 1036–1054. [Google Scholar] [CrossRef]
- Zamani, E.D.; Smyth, C.; Gupta, S.; Dennehy, D. Artificial Intelligence and Big Data Analytics for Supply Chain Resilience: A Systematic Literature Review. Ann. Oper. Res. 2023, 327, 605–632. [Google Scholar] [CrossRef]
- Wong, C.Y.; Boon-itt, S.; Wong, C.W.Y. The Contingency Effects of Environmental Uncertainty on the Relationship between Supply Chain Integration and Operational Performance. J. Oper. Manag. 2011, 29, 604–615. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Fosso Wamba, S.; Roubaud, D.; Foropon, C. Empirical Investigation of Data Analytics Capability and Organizational Flexibility as Complements to Supply Chain Resilience. Int. J. Prod. Res. 2021, 59, 110–128. [Google Scholar] [CrossRef]
- Galbraith, J.R. Organization Design: An Information Processing View. Interfaces 1974, 4, 28–36. [Google Scholar] [CrossRef]
- Srinivasan, R.; Swink, M. An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective. Prod. Oper. Manag. 2018, 27, 1849–1867. [Google Scholar] [CrossRef]
- Benzidia, S.; Makaoui, N.; Bentahar, O. The Impact of Big Data Analytics and Artificial Intelligence on Green Supply Chain Process Integration and Hospital Environmental Performance. Technol. Forecast. Soc. Chang. 2021, 165, 120557. [Google Scholar] [CrossRef]
- Xie, X.; Wu, Y.; Palacios-Marqués, D.; Ribeiro-Navarrete, S. Business Networks and Organizational Resilience Capacity in the Digital Age during COVID-19: A Perspective Utilizing Organizational Information Processing Theory. Technol. Forecast. Soc. Chang. 2022, 177, 121548. [Google Scholar] [CrossRef]
- Culot, G.; Podrecca, M.; Nassimbeni, G. Artificial Intelligence in Supply Chain Management: A Systematic Literature Review of Empirical Studies and Research Directions. Comput. Ind. 2024, 162, 104132. [Google Scholar] [CrossRef]
- Proksch, D.; Rosin, A.F.; Stubner, S.; Pinkwart, A. The Influence of a Digital Strategy on the Digitalization of New Ventures: The Mediating Effect of Digital Capabilities and a Digital Culture. J. Small Bus. Manag. 2024, 62, 1–29. [Google Scholar] [CrossRef]
- Arroyabe, M.F.; Arranz, C.F.A.; Fernandez De Arroyabe, I.; Fernandez De Arroyabe, J.C. Analyzing AI Adoption in European SMEs: A Study of Digital Capabilities, Innovation, and External Environment. Technol. Soc. 2024, 79, 102733. [Google Scholar] [CrossRef]
- Brock, J.K.-U.; Von Wangenheim, F. Demystifying AI: What Digital Transformation Leaders Can Teach You about Realistic Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 110–134. [Google Scholar] [CrossRef]
- Demlehner, Q.; Schoemer, D.; Laumer, S. How Can Artificial Intelligence Enhance Car Manufacturing? A Delphi Study-Based Identification and Assessment of General Use Cases. Int. J. Inf. Manag. 2021, 58, 102317. [Google Scholar] [CrossRef]
- Bokrantz, J.; Subramaniyan, M.; Skoogh, A. Realising the Promises of Artificial Intelligence in Manufacturing by Enhancing CRISP-DM. Prod. Plan. Control 2024, 35, 2234–2254. [Google Scholar] [CrossRef]
- Qiao-Franco, G.; Zhu, R. China’s Artificial Intelligence Ethics: Policy Development in an Emergent Community of Practice. J. Contemp. 2024, 33, 189–205. [Google Scholar] [CrossRef]
- Li, L.; Zhu, W.; Chen, L.; Liu, Y. Generative AI Usage and Sustainable Supply Chain Performance: A Practice-Based View. Transp. Res. Part E Logist. Transp. Rev. 2024, 192, 103761. [Google Scholar] [CrossRef]
- Zhu, S.; Song, J.; Hazen, B.T.; Lee, K.; Cegielski, C. How Supply Chain Analytics Enables Operational Supply Chain Transparency: An Organizational Information Processing Theory Perspective. Int. J. Phys. Distrib. Logist. Manag. 2018, 48, 47–68. [Google Scholar] [CrossRef]
- Wong, C.W.Y.; Lirn, T.-C.; Yang, C.-C.; Shang, K.-C. Supply Chain and External Conditions under Which Supply Chain Resilience Pays: An Organizational Information Processing Theorization. Int. J. Prod. Econ. 2020, 226, 107610. [Google Scholar] [CrossRef]
- Tushman, M.L.; Nadler, D.A. Information Processing as an Integrating Concept in Organizational Design. Acad. Manag. Rev. 1978, 3, 613. [Google Scholar] [CrossRef]
- Cousins, P.D.; Lawson, B.; Petersen, K.J.; Handfield, R.B. Breakthrough Scanning, Supplier Knowledge Exchange, and New Product Development Performance. J. Prod. Innov. Manag. 2011, 28, 930–942. [Google Scholar] [CrossRef]
- Han, Y. Navigating Supply Chain Resilience in the Knowledge Economy: Insights from Digital Technologies and Organizational Information Processing. J. Knowl. Econ. 2024, 16, 9898–9931. [Google Scholar] [CrossRef]
- Tian, S.; Wu, L.; Ciano, M.P.; Ardolino, M.; Pawar, K.S. Enhancing Innovativeness and Performance of the Manufacturing Supply Chain through Datafication: The Role of Resilience. Comput. Ind. Eng. 2024, 188, 109841. [Google Scholar] [CrossRef]
- Belhadi, A.; Mani, V.; Kamble, S.S.; Khan, S.A.R.; Verma, S. Artificial Intelligence-Driven Innovation for Enhancing Supply Chain Resilience and Performance under the Effect of Supply Chain Dynamism: An Empirical Investigation. Ann. Oper. Res. 2024, 333, 627–652. [Google Scholar] [CrossRef]
- Hohenstein, N.-O.; Feisel, E.; Hartmann, E.; Giunipero, L. Research on the Phenomenon of Supply Chain Resilience: A Systematic Review and Paths for Further Investigation. Int. J. Phys. Distrib. Logist. Manag. 2015, 45, 90–117. [Google Scholar] [CrossRef]
- Tukamuhabwa, B.R.; Stevenson, M.; Busby, J.; Zorzini, M. Supply Chain Resilience: Definition, Review and Theoretical Foundations for Further Study. Int. J. Prod. Res. 2015, 53, 5592–5623. [Google Scholar] [CrossRef]
- Sturm, S.; Hohenstein, N.-O.; Hartmann, E. Linking Entrepreneurial Orientation and Supply Chain Resilience to Strengthen Business Performance: An Empirical Analysis. Int. J. Oper. Prod. Manag. 2023, 43, 1357–1386. [Google Scholar] [CrossRef]
- Yue, X.; Kang, M.; Zhang, Y. The Impact of Artificial Intelligence Usage on Supply Chain Resilience in Manufacturing Firms: A Moderated Mediation Model. J. Manuf. Technol. Manag. 2025, 36, 759–776. [Google Scholar] [CrossRef]
- El Baz, J.; Ruel, S. Can Supply Chain Risk Management Practices Mitigate the Disruption Impacts on Supply Chains’ Resilience and Robustness? Evidence from an Empirical Survey in a COVID-19 Outbreak Era. Int. J. Prod. Econ. 2021, 233, 107972. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, J.; He, C.; Jiang, X.; An, Q. Sewage Treatment Equipment Supply Chain Collaboration and Resilience Improvement Path Analysis: Collaborative Decision-Making, Information Sharing, Risk Management. Sustainability 2024, 16, 9031. [Google Scholar] [CrossRef]
- Chowdhury, M.M.H.; Islam, M.T.; Ali, I.; Quaddus, M. The Role of Social Capital, Resilience, and Network Complexity in Attaining Supply Chain Sustainability. Bus. Strategy Environ. 2024, 33, 2621–2639. [Google Scholar] [CrossRef]
- Eller, R.; Alford, P.; Kallmünzer, A.; Peters, M. Antecedents, Consequences, and Challenges of Small and Medium-Sized Enterprise Digitalization. J. Bus. Res. 2020, 112, 119–127. [Google Scholar] [CrossRef]
- Kamble, S.; Gunasekaran, A.; Dhone, N.C. Industry 4.0 and Lean Manufacturing Practices for Sustainable Organisational Performance in Indian Manufacturing Companies. Int. J. Prod. Res. 2020, 58, 1319–1337. [Google Scholar] [CrossRef]
- Li, Y.; Li, D.; Liu, Y.; Shou, Y. Digitalization for Supply Chain Resilience and Robustness: The Roles of Collaboration and Formal Contracts. Front. Eng. Manag. 2023, 10, 5–19. [Google Scholar] [CrossRef]
- Simon, H.A. Artificial Intelligence: An Empirical Science. Artif. Intell. 1995, 77, 95–127. [Google Scholar] [CrossRef]
- Alfawaz, K.M.; Alshehri, A.A. Applying Artificial Intelligence in Supply Chain Management. Commun. Math. Appl. 2022, 13, 367–377. [Google Scholar] [CrossRef]
- Perez, H.D.; Hubbs, C.D.; Li, C.; Grossmann, I.E. Algorithmic Approaches to Inventory Management Optimization. Processes 2021, 9, 102. [Google Scholar] [CrossRef]
- Wang, F.; Lin, L. Spare Parts Supply Chain Network Modeling Based on a Novel Scale-Free Network and Replenishment Path Optimization with Q Learning. Comput. Ind. Eng. 2021, 157, 107312. [Google Scholar] [CrossRef]
- Puskás, E.; Budai, Á.; Bohács, G. Optimization of a Physical Internet Based Supply Chain Using Reinforcement Learning. Eur. Transp. Res. Rev. 2020, 12, 47. [Google Scholar] [CrossRef]
- Cavalcante, I.M.; Frazzon, E.M.; Forcellini, F.A.; Ivanov, D. A Supervised Machine Learning Approach to Data-Driven Simulation of Resilient Supplier Selection in Digital Manufacturing. Int. J. Inf. Manag. 2019, 49, 86–97. [Google Scholar] [CrossRef]
- Vanvuchelen, N.; Gijsbrechts, J.; Boute, R. Use of Proximal Policy Optimization for the Joint Replenishment Problem. Comput. Ind. 2020, 119, 103239. [Google Scholar] [CrossRef]
- Carbonneau, R.; Laframboise, K.; Vahidov, R. Application of Machine Learning Techniques for Supply Chain Demand Forecasting. Eur. J. Oper. Res. 2008, 184, 1140–1154. [Google Scholar] [CrossRef]
- Castañé, G.; Dolgui, A.; Kousi, N.; Meyers, B.; Thevenin, S.; Vyhmeister, E.; Östberg, P.-O. The ASSISTANT Project: AI for High Level Decisions in Manufacturing. Int. J. Prod. Res. 2023, 61, 2288–2306. [Google Scholar] [CrossRef]
- Albert, Y.; Alijoyo, A. Systematical Review: How Artificial Intelligence Impact Supply Chain Capability and Capacity in Emerging Markets. INOBIS J. Inov. Bisnis Dan Manaj. 2024, 7, 429–441. [Google Scholar] [CrossRef]
- Yamin, M.A.; Almuteri, S.D.; Bogari, K.J.; Ashi, A.K. The Influence of Strategic Human Resource Management and Artificial Intelligence in Determining Supply Chain Agility and Supply Chain Resilience. Sustainability 2024, 16, 2688. [Google Scholar] [CrossRef]
- Baryannis, G.; Validi, S.; Dani, S.; Antoniou, G. Supply Chain Risk Management and Artificial Intelligence: State of the Art and Future Research Directions. Int. J. Prod. Res. 2019, 57, 2179–2202. [Google Scholar] [CrossRef]
- Rodríguez-Espíndola, O.; Chowdhury, S.; Beltagui, A.; Albores, P. The Potential of Emergent Disruptive Technologies for Humanitarian Supply Chains: The Integration of Blockchain, Artificial Intelligence and 3D Printing. Int. J. Prod. Res. 2020, 58, 4610–4630. [Google Scholar] [CrossRef]
- Modgil, S.; Gupta, S.; Stekelorum, R.; Laguir, I. AI Technologies and Their Impact on Supply Chain Resilience during COVID-19. Int. J. Phys. Distrib. Logist. Manag. 2022, 52, 130–149. [Google Scholar] [CrossRef]
- Pires Ribeiro, J.; Barbosa-Povoa, A. Supply Chain Resilience: Definitions and Quantitative Modelling Approaches – A Literature Review. Comput. Ind. Eng. 2018, 115, 109–122. [Google Scholar] [CrossRef]
- Smyth, C.; Dennehy, D.; Fosso Wamba, S.; Scott, M.; Harfouche, A. Artificial Intelligence and Prescriptive Analytics for Supply Chain Resilience: A Systematic Literature Review and Research Agenda. Int. J. Prod. Res. 2024, 62, 8537–8561. [Google Scholar] [CrossRef]
- Daft, R.L.; Lengel, R.H. Organizational Information Requirements, Media Richness and Structural Design. Manag. Sci. 1986, 32, 554–571. [Google Scholar] [CrossRef]
- Van Der Vorst, J.G.A.J.; Beulens, A.J.M. Identifying Sources of Uncertainty to Generate Supply Chain Redesign Strategies. Int. J. Phys. Distrib. Logist. Manag. 2002, 32, 409–430. [Google Scholar] [CrossRef]
- Ponomarov, S.Y.; Holcomb, M.C. Understanding the Concept of Supply Chain Resilience. Int. J. Logist. Manag. 2009, 20, 124–143. [Google Scholar] [CrossRef]
- Aboutorab, H.; Hussain, O.K.; Saberi, M.; Hussain, F.K. A Reinforcement Learning-Based Framework for Disruption Risk Identification in Supply Chains. Future Gener. Comput. Syst. 2022, 126, 110–122. [Google Scholar] [CrossRef]
- Guntuka, L.; Corsi, T.M.; Cantor, D.E. Recovery from Plant-Level Supply Chain Disruptions: Supply Chain Complexity and Business Continuity Management. Int. J. Oper. Prod. Manag. 2024, 44, 1–31. [Google Scholar] [CrossRef]
- Jain, V.; Kumar, S.; Soni, U.; Chandra, C. Supply Chain Resilience: Model Development and Empirical Analysis. Int. J. Prod. Res. 2017, 55, 6779–6800. [Google Scholar] [CrossRef]
- Mosch, P.; Schweikl, S.; Obermaier, R. Trapped in the Supply Chain? Digital Servitization Strategies and Power Relations in the Case of an Industrial Technology Supplier. Int. J. Prod. Econ. 2021, 236, 108141. [Google Scholar] [CrossRef]
- Weisz, E.; Herold, D.M.; Ostern, N.K.; Payne, R.; Kummer, S. Artificial Intelligence (AI) for Supply Chain Collaboration: Implications on Information Sharing and Trust. Online Inf. Rev. 2025, 49, 164–181. [Google Scholar] [CrossRef]
- Qi, M.; Mak, H.; Shen, Z.M. Data-driven Research in Retail Operations—A Review. Nav. Res. Logist. NRL 2020, 67, 595–616. [Google Scholar] [CrossRef]
- Baah, C.; Opoku Agyeman, D.; Acquah, I.S.K.; Agyabeng-Mensah, Y.; Afum, E.; Issau, K.; Ofori, D.; Faibil, D. Effect of Information Sharing in Supply Chains: Understanding the Roles of Supply Chain Visibility, Agility, Collaboration on Supply Chain Performance. Benchmarking Int. J. 2022, 29, 434–455. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Ketchen, D.J.; Slater, S.F. Information processing, knowledge development, and strategic supply chain performance. Acad. Manag. J. 2004, 47, 241–253. [Google Scholar] [CrossRef]
- Pereira, E.T.; Shafique, M.N. The Role of Artificial Intelligence in Supply Chain Agility: A Perspective of Humanitarian Supply Chain. Eng. Econ. 2024, 35, 77–89. [Google Scholar] [CrossRef]
- Hendricks, K.B.; Singhal, V.R. Association Between Supply Chain Glitches and Operating Performance. Manag. Sci. 2005, 51, 695–711. [Google Scholar] [CrossRef]
- Preil, D.; Krapp, M. Artificial Intelligence-Based Inventory Management: A Monte Carlo Tree Search Approach. Ann. Oper. Res. 2022, 308, 415–439. [Google Scholar] [CrossRef]
- Ma, L.; Wang, H.; He, C.; Sui, X. Can Intelligent Development Improve Manufacturing Firms’ Supply Chain Resilience? Int. Rev. Econ. Finance 2025, 97, 103753. [Google Scholar] [CrossRef]
- Jiang, G.; Chen, F.; Gu, M. Supply Chain Digitization and Energy Resilience: Evidence from China. Energy Econ. 2025, 144, 108420. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, H.; Zhang, M. The Impact of Supply Chain Digitalization on Financing Efficiency of Small and Medium Enterprises: A Perspective of Supply Chain Resilience. Procedia Comput. Sci. 2024, 242, 35–42. [Google Scholar] [CrossRef]
- Tippins, M.J.; Sohi, R.S. IT Competency and Firm Performance: Is Organizational Learning a Missing Link? Strateg. Manag. J. 2003, 24, 745–761. [Google Scholar] [CrossRef]
- BarNir, A.; Gallaugher, J.M.; Auger, P. Business Process Digitization, Strategy, and the Impact of Firm Age and Size: The Case of the Magazine Publishing Industry. J. Bus. Ventur. 2003, 18, 789–814. [Google Scholar] [CrossRef]
- Zhang, H.; Song, M.; Wang, Y. Does AI-Infused Operations Capability Enhance or Impede the Relationship between Information Technology Capability and Firm Performance? Technol. Forecast. Soc. Chang. 2023, 191, 122517. [Google Scholar] [CrossRef]
- Awamleh, F.T.; Bustami, A.N. Examine the Mediating Role of the Information Technology Capabilities on the Relationship Between Artificial Intelligence and Competitive Advantage During the COVID-19 Pandemic. Sage Open 2022, 12, 21582440221119478. [Google Scholar] [CrossRef]
- Chu, Y.; Chi, M.; Wang, W.; Luo, B. The Impact of Information Technology Capabilities of Manufacturing Enterprises on Innovation Performance: Evidences from SEM and fsQCA. Sustainability 2019, 11, 5946. [Google Scholar] [CrossRef]
- Helo, P.; Hao, Y. Artificial Intelligence in Operations Management and Supply Chain Management: An Exploratory Case Study. Prod. Plan. Control 2022, 33, 1573–1590. [Google Scholar] [CrossRef]
- Zhang, Y.; Huo, B.; Haney, M.H.; Kang, M. The Effect of Buyer Digital Capability Advantage on Supplier Unethical Behavior: A Moderated Mediation Model of Relationship Transparency and Relational Capital. Int. J. Prod. Econ. 2022, 253, 108603. [Google Scholar] [CrossRef]
- Ueasangkomsate, P. Empowering Thai SMEs through IT Competency, Digitalization and Digital Transformation for New Product Development. Cogent Bus. Manag. 2025, 12, 2458758. [Google Scholar] [CrossRef]
- Wang, J.; Cui, L.; Xu, M. Impact of Digital Transformation on Supply Chain Efficiency: A Parallel Mediation Model. J. Organ. Chang. Manag. 2024, 37, 945–964. [Google Scholar] [CrossRef]
- Brandon-Jones, E.; Squire, B.; Autry, C.W.; Petersen, K.J. A Contingent Resource-Based Perspective of Supply Chain Resilience and Robustness. J. Supply Chain Manag. 2014, 50, 55–73. [Google Scholar] [CrossRef]
- Jin, S.; Vegelius, J.; Yang-Wallentin, F. A Marginal Maximum Likelihood Approach for Extended Quadratic Structural Equation Modeling with Ordinal Data. Struct. Equ. Model. Multidiscip. J. 2020, 27, 864–873. [Google Scholar] [CrossRef]
- Zeng, N.; Liu, Y.; Gong, P.; Hertogh, M.; König, M. Do Right PLS and Do PLS Right: A Critical Review of the Application of PLS-SEM in Construction Management Research. Front. Eng. Manag. 2021, 8, 356–369. [Google Scholar] [CrossRef]
- Huang, Y.-F.; Phan, V.-D.-V.; Do, M.-H. The Impacts of Supply Chain Capabilities, Visibility, Resilience on Supply Chain Performance and Firm Performance. Adm. Sci. 2023, 13, 225. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Taber, K.S. The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Res. Sci. Educ. 2018, 48, 1273–1296. [Google Scholar] [CrossRef]
- Hair, J.F.; Ringle, C.M.; Sarstedt, M. Partial Least Squares Structural Equation Modeling: Rigorous Applications, Better Results and Higher Acceptance. Long Range Plann. 2013, 46, 1–12. [Google Scholar] [CrossRef]
- Diamantopoulos, A.; Siguaw, J.A. Formative Versus Reflective Indicators in Organizational Measure Development: A Comparison and Empirical Illustration. Br. J. Manag. 2006, 17, 263–282. [Google Scholar] [CrossRef]
- Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R.; Hair, J.F. Partial Least Squares Structural Equation Modeling (PLS-SEM): A Useful Tool for Family Business Researchers. J. Fam. Bus. Strategy 2014, 5, 105–115. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: New York, NY, USA, 1988. [Google Scholar]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Bryde, D.J.; Giannakis, M.; Foropon, C.; Roubaud, D.; Hazen, B.T. Big Data Analytics and Artificial Intelligence Pathway to Operational Performance under the Effects of Entrepreneurial Orientation and Environmental Dynamism: A Study of Manufacturing Organisations. Int. J. Prod. Econ. 2020, 226, 107599. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Liang, H.; Saraf, N.; Hu, Q.; Xue, Y. Assimilation of Enterprise Systems: The Effect of Institutional Pressures and the Mediating Role of Top Management. MIS Q. 2007, 31, 59. [Google Scholar] [CrossRef]
- Islam, S.; Hassan, S.; Hossain, S.; Ahmed, T.; Karmaker, C.L.; Bari, A.B.M.M. Exploring the Influence of Circular Economy on Big Data Analytics and Supply Chain Resilience Nexus: A Structural Equation Modeling Approach. Green Technol. Sustain. 2025, 3, 100219. [Google Scholar] [CrossRef]
- Kock, N. Hypothesis Testing with Confidence Intervals and P Values in PLS-SEM. Int. J. E-Collab. 2016, 12, 1–6. [Google Scholar] [CrossRef]
- Zaman, J.; Shoomal, A.; Jahanbakht, M.; Ozay, D. Driving Supply Chain Transformation with IoT and AI Integration: A Dual Approach Using Bibliometric Analysis and Topic Modeling. IoT 2025, 6, 21. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, T. Supply Chain Resilience, Logistics Efficiency, and Enterprise Competitiveness. Finance Res. Lett. 2025, 79, 107335. [Google Scholar] [CrossRef]
- Ke, J.; Cho, W.; Su, H. Flying through Uncertainty: Air Transportation’s Impact on Supply Chain Resilience and Inventory Efficiency. Transp. Res. Part E Logist. Transp. Rev. 2025, 197, 104042. [Google Scholar] [CrossRef]
- Galbusera, F.; Cina, A. Image Annotation and Curation in Radiology: An Overview for Machine Learning Practitioners. Eur. Radiol. Exp. 2024, 8, 11. [Google Scholar] [CrossRef]
- Teixeira, A.R.; Ferreira, J.V.; Ramos, A.L. Intelligent Supply Chain Management: A Systematic Literature Review on Artificial Intelligence Contributions. Information 2025, 16, 399. [Google Scholar] [CrossRef]
- Delgado, F.; Garrido, S.; Bezerra, B.S. Barriers to Visibility in Supply Chains: Challenges and Opportunities of Artificial Intelligence Driven by Industry 4.0 Technologies. Sustainability 2025, 17, 2998. [Google Scholar] [CrossRef]
- Shen, J.; Bu, F.; Ye, Z.; Zhang, M.; Ma, Q.; Yan, J.; Huang, T. Management of Drug Supply Chain Information Based on “Artificial Intelligence + Vendor Managed Inventory” in China: Perspective Based on a Case Study. Front. Pharmacol. 2024, 15, 1373642. [Google Scholar] [CrossRef]
- Shatat, A.S.; Shatat, A.S. Artificial Intelligence Competencies in Logistics Management: An Empirical Insight from Bahrain. J. Inf. Knowl. Manag. 2024, 23, 2350059. [Google Scholar] [CrossRef]
- Ciccone, F.; Bacciaglia, A.; Ceruti, A. Optimization with Artificial Intelligence in Additive Manufacturing: A Systematic Review. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 303. [Google Scholar] [CrossRef]
Constructs | Items | Descriptions | Resources |
---|---|---|---|
AI usage (AIU) | AIU1 | Please indicate how often AI tools are used in your organization. | [21,32] |
AIU2 | Please indicate to what extent AI tools are used in your organization. | ||
AIU3 | On average, please specify the duration to which AI users employ such tools in your organization. | ||
Digital IT capabilities (DITC) | DITC1 | We adapt our digital offerings whenever changing business needs arise. | [15,79] |
DITC2 | We implement new digital products and services on a regular basis. | ||
DITC3 | Our IT integrates the most current digital offerings by third parties like digital payments, customer relationship management systems, and others. | ||
DITC4 | Our company provides access to a variety of digital devices. | ||
DITC5 | We store all data digitally. | ||
DITC6 | We have Internet access with gigabit speed. | ||
Supply chain collaboration (SCC) | SCC1 | We continuously share our resources (i.e., data, information, knowledge, and infrastructure) with our suppliers, partners, etc. | [28] |
SCC2 | We cooperate tightly with our partners to define and implement response strategies. | ||
SCC3 | We share our risks and benefits. | ||
Supply chain efficiency (SCE) | SCE1 | Our supply chain has a high on-time delivery rate | [80] |
SCE2 | Our supply chain keeps a lower transportation cost | ||
SCE3 | Our supply chain keeps a lower inventory level | ||
SCE4 | Our supply chain has high labor efficiency | ||
SCE5 | Our supply chain has the ability to manage itself effectively to drive cooperation | ||
Supply chain resilience (SCR) | SCR1 | Material flow would be quickly restored. | [81] |
SCR2 | It would not take long to recover normal operating performance. | ||
SCR3 | The supply chain would easily recover to its original state. | ||
SCR4 | Disruptions would be dealt with quickly. |
Demographic Characteristics | Frequency | Percentages (%) |
---|---|---|
Gender | ||
Male | 157 | 0.68 |
Female | 74 | 0.32 |
Industry | ||
Electronic Manufacturing | 64 | 0.28 |
Textile Manufacturing | 58 | 0.25 |
Food Manufacturing | 40 | 0.17 |
Pharmaceutical Manufacturing | 33 | 0.14 |
Others | 36 | 0.16 |
Position | ||
Senior executives | 48 | 0.21 |
Supply chain manager | 183 | 0.79 |
Managerial experience | ||
Less than 5 years | 25 | 0.11 |
5–10 years | 175 | 0.76 |
Above 10 years | 31 | 0.13 |
Number of employees | ||
Less than 50 | 12 | 0.05 |
50–200 | 34 | 0.15 |
201–500 | 73 | 0.32 |
Above 500 | 112 | 0.48 |
Total | 231 | 1.00 |
Construct | Item | Loadings | VIF | Cronbach’s Alpha | Construct Reliability | AVE |
---|---|---|---|---|---|---|
(<3) | (>0.7) | (C.R > 0.7) | (AVE > 0.5) | |||
AIU | AIU1 | 0.929 | 2.886 | 0.823 | 0.835 | 0.740 |
AIU2 | 0.806 | 1.878 | ||||
AIU3 | 0.842 | 1.927 | ||||
DITC | DITC1 | 0.816 | 2.222 | 0.891 | 0.909 | 0.645 |
DITC2 | 0.842 | 2.113 | ||||
DITC3 | 0.783 | 1.913 | ||||
DITC4 | 0.771 | 1.931 | ||||
DITC5 | 0.791 | 2.107 | ||||
DITC6 | 0.815 | 2.101 | ||||
SCC | SCC1 | 0.872 | 1.672 | 0.798 | 0.823 | 0.709 |
SCC2 | 0.804 | 1.634 | ||||
SCC3 | 0.849 | 1.849 | ||||
SCE | SCE1 | 0.759 | 1.767 | 0.839 | 0.852 | 0.607 |
SCE2 | 0.744 | 2.176 | ||||
SCE3 | 0.774 | 2.305 | ||||
SCE4 | 0.821 | 1.875 | ||||
SCE5 | 0.795 | 1.874 | ||||
SCR | SCR1 | 0.713 | 1.428 | 0.776 | 0.785 | 0.599 |
SCR2 | 0.775 | 1.595 | ||||
SCR3 | 0.781 | 1.477 | ||||
SCR4 | 0.823 | 1.741 |
Constructs | AIU | DITC | SCC | SCE | SCR |
---|---|---|---|---|---|
AIU | 0.860 | ||||
DITC | 0.276 | 0.803 | |||
SCC | 0.378 | 0.357 | 0.842 | ||
SCE | 0.347 | 0.239 | 0.271 | 0.779 | |
SCR | 0.329 | 0.277 | 0.337 | 0.386 | 0.774 |
Path | β | STDEV | T Statistics | p-Values |
---|---|---|---|---|
AIU → SCR | 0.230 | 0.071 | 3.221 | 0.001 |
AIU → SCC | 0.378 | 0.085 | 4.433 | 0.000 |
SCC → SCR | 0.190 | 0.058 | 3.294 | 0.001 |
AIU → SCE | 0.347 | 0.068 | 5.095 | 0.000 |
SCE → SCR | 0.231 | 0.068 | 3.378 | 0.001 |
Path | β | STDEV | T Statistics | p-Values | 95% BC Confidence Interval |
---|---|---|---|---|---|
AIU → SCC → SCR | 0.072 | 0.028 | 2.572 | 0.010 | [0.027–0.135] |
AIU → SCE → SCR | 0.080 | 0.036 | 2.238 | 0.025 | [0.029–0.164] |
Path | β | STDEV | T Statistics | p-Values |
---|---|---|---|---|
DITC x AIU → SCR | 0.170 | 0.083 | 2.045 | 0.041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, H.; Zou, N.; Wang, R.; Ma, J.; Liu, D. Artificial Intelligence Usage and Supply Chain Resilience: An Organizational Information Processing Theory Perspective. Systems 2025, 13, 724. https://doi.org/10.3390/systems13090724
Pan H, Zou N, Wang R, Ma J, Liu D. Artificial Intelligence Usage and Supply Chain Resilience: An Organizational Information Processing Theory Perspective. Systems. 2025; 13(9):724. https://doi.org/10.3390/systems13090724
Chicago/Turabian StylePan, Heng, Ning Zou, Rouyue Wang, Jingchen Ma, and Danping Liu. 2025. "Artificial Intelligence Usage and Supply Chain Resilience: An Organizational Information Processing Theory Perspective" Systems 13, no. 9: 724. https://doi.org/10.3390/systems13090724
APA StylePan, H., Zou, N., Wang, R., Ma, J., & Liu, D. (2025). Artificial Intelligence Usage and Supply Chain Resilience: An Organizational Information Processing Theory Perspective. Systems, 13(9), 724. https://doi.org/10.3390/systems13090724