AI-Powered Insights: How Digital Supply Networks and Public–Private Alliances Shape Socio-Economic Paths to Sustainability
Abstract
1. Introduction
- What is the effect of school enrollment on the ecological footprint?
- What is the effect of AI robots on the ecological footprint?
- What is the effect of global supply chain management on the ecological footprint?
- What is the effect of public–private partnership investment in energy on the ecological footprint?
- What is the effect of economic growth on the ecological footprint?
1.1. Contribution of the Study
1.1.1. Contribution 1 (Linked to RQ3)
1.1.2. Contribution 2 (Jointly Linked to RQ2 and RQ4)
1.1.3. Contribution 3 (Method; Supports All RQs, Especially Policy Targeting)
2. Theoretical Framework and Synopsis of Studies
2.1. Theoretical Framework
2.2. Synopsis of Studies
2.3. Gap in the Literature
3. Data and Methods
3.1. Data
3.2. Methods
4. Findings and Discussion
4.1. Descriptive Statistics
4.2. Nonlinearity and Normality Test Results
4.3. Kernel Plot Results
4.4. ANN Models Results
4.5. ANN Wavelet Quantile Regression Results
5. Conclusions and Policy Initiatives
5.1. Conclusions
5.2. Policy Recommendations
5.3. Managerial Implications
5.4. Limitations and Future Suggestions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Guo, J. Research on the impact mechanism of multiple environmental regulations on carbon emissions under the perspective of carbon peaking pressure: A case study of China’s coastal regions. Ocean Coast. Manag. 2024, 249, 106985. [Google Scholar] [CrossRef]
- Climate Tracker. Climate Tracker China. 2025. Available online: https://climateactiontracker.org/countries/china/ (accessed on 30 July 2025).
- Irfan, M.; Ullah, S.; Razzaq, A.; Cai, J.; Adebayo, T.S. Unleashing the dynamic impact of tourism industry on energy consumption, economic output, and environmental quality in China: A way forward towards environmental sustainability. J. Clean. Prod. 2023, 387, 135778. [Google Scholar] [CrossRef]
- Ahmed, A.D.; Huo, R. Volatility transmissions across international oil market, commodity futures and stock markets: Empirical evidence from China. Energy Econ. 2021, 93, 104741. [Google Scholar] [CrossRef]
- Olanrewaju, V.O.; Kirikkaleli, D. Analyzing gas and oil efficiency’s role in environmental management: Does political risk matter? Energy Environ. 2024, 0958305X241262428. [Google Scholar] [CrossRef]
- Tiwari, S.; Mohammed, K.S.; Mentel, G.; Majewski, S.; Shahzadi, I. Role of circular economy, energy transition, environmental policy stringency, and supply chain pressure on CO2 emissions in emerging economies. Geosci. Front. 2024, 15, 101682. [Google Scholar] [CrossRef]
- Maeno, K.; Tokito, S.; Kagawa, S. CO2 mitigation through global supply chain restructuring. Energy Econ. 2022, 105, 105768. [Google Scholar] [CrossRef]
- Memari, A.; Rahim, A.R.A.; Ahmad, R.; Hassan, A. A literature review on green supply chain modelling for optimising CO2 emission. Int. J. Oper. Res. 2016, 26, 509–525. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, R.; Yao, K.; Ma, X. Does artificial intelligence affect the ecological footprint?—Evidence from 30 provinces in China. J. Environ. Manag. 2024, 370, 122458. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, F.; Li, R.; Sun, J. Does artificial intelligence promote energy transition and curb carbon emissions? The role of trade openness. J. Clean. Prod. 2024, 447, 141298. [Google Scholar] [CrossRef]
- Chen, P.; Gao, J.; Ji, Z.; Liang, H.; Peng, Y. Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities. Energies 2022, 15, 15. [Google Scholar] [CrossRef]
- van der Woude, D.; Castro Nieto, G.Y.; Moros Ochoa, M.A.; Portillo, C.L.; Quintero, A. Artificial intelligence in biocapacity and ecological footprint prediction in Latin America and the Caribbean. Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Anwar, A.; Sharif, A.; Fatima, S.; Ahmad, P.; Sinha, A.; Khan, S.A.R.; Jermsittiparsert, K. The asymmetric effect of public private partnership investment on transport CO2 emission in China: Evidence from quantile ARDL approach. J. Clean. Prod. 2021, 288, 125282. [Google Scholar] [CrossRef]
- Ning, L.; Abbasi, K.R.; Hussain, K.; Alvarado, R.; Ramzan, M. Analyzing the role of green innovation and public-private partnerships in achieving sustainable development goals: A novel policy framework. Environ. Sci. Pollut. Res. 2023. [Google Scholar] [CrossRef]
- Wen, Y.; Qu, C.; Gao, C.; Song, P.; Yang, D. The effect of public–private partnership investment, financial development, and renewable energy consumption on the ecological footprint in South Asia and the Pacific region. Front. Environ. Sci. 2022, 10, 1022046. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Ali, M.; Altuntaş, M. Environmental sustainability and public–private partnerships investment in energy in Bangladesh. Environ. Sci. Pollut. Res. 2022, 29, 56068–56078. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Hashmi, S.H.; Habib, Y.; Kirikkaleli, D. The asymmetric impact of public–private partnership investment in energy on CO2 emissions in Pakistan. Energy Environ. 2023, 35, 0958305X221149483. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Percival, D.B.; Walden, A.T. Wavelet Methods for Time Series Analysis; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Rasheed, M.Q.; Yuhuan, Z.; Ahmed, Z.; Haseeb, A.; Saud, S. Information communication technology, economic growth; natural resources, and renewable energy production: Evaluating the asymmetric and symmetric impacts of artificial intelligence in robotics and innovative economies. J. Clean. Prod. 2024, 447, 141466. [Google Scholar] [CrossRef]
- Li, Z.; Liu, J. Impact of supply chain digitalization, business enterprise R&D expenditure and government budget allocations for R&D: A roadmap towards carbon neutrality. Energy Econ. 2025, 141, 108057. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Opoku, E.E.O.; Amankwaa, A.; Dzator, J. Energy poverty and gender equality in education: Unpacking the transmission channels. Technol. Forecast. Soc. Change 2024, 202, 123274. [Google Scholar] [CrossRef]
- Balducci, M. Linking gender differences with gender equality: A systematic-narrative literature review of basic skills and personality. Front. Psychol. 2023, 14, 1105234. [Google Scholar] [CrossRef]
- Adebayo, T.S. Overcoming barriers to clean cooking solutions: Political risk, financial development, and their implications for achieving SDG 7 in Nigeria. Environ. Prog. Sustain. Energy 2025, 44, e14592. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Özkan, O.; Olanrewaju, V.O.; Uzun, B. Do fossil-fuel subsidies, Fintech innovation, and digital ICT transform ecological quality in Turkey? Evidence from modified cross-quantile regression. Appl. Econ. 2025. Available online: https://www.tandfonline.com/doi/abs/10.1080/00036846.2025.2520578 (accessed on 27 June 2025). [CrossRef]
- Magazzino, C.; Mutascu, M.; Mele, M.; Sarkodie, S.A. Energy consumption and economic growth in Italy: A wavelet analysis. Energy Rep. 2021, 7, 1520–1528. [Google Scholar] [CrossRef]
- Roumiani, A.; Mofidi, A. Predicting ecological footprint based on global macro indicators in G-20 countries using machine learning approaches. Environ. Sci. Pollut. Res. 2022, 29, 11736–11755. [Google Scholar] [CrossRef]
- Chunling, L.; Memon, J.A.; Thanh, T.L.; Ali, M.; Kirikkaleli, D. The Impact of Public-Private Partnership Investment in Energy and Technological Innovation on Ecological Footprint: The Case of Pakistan. Sustainability 2021, 13, 10085. [Google Scholar] [CrossRef]
- Udeagha, M.C.; Ngepah, N. Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: Fresh evidence from the novel dynamic ARDL simulations approach. Econ. Change Restruct. 2022, 55, 1767–1814. [Google Scholar] [CrossRef]
- Işık, C.; Bulut, U.; Ongan, S.; Islam, H.; Irfan, M. Exploring how economic growth, renewable energy, internet usage, and mineral rents influence CO2 emissions: A panel quantile regression analysis for 27 OECD countries. Resour. Policy 2024, 92, 105025. [Google Scholar] [CrossRef]
- Alam, M.B.; Hossain, M.S. Investigating the connections between China’s economic growth, use of renewable energy, and research and development concerning CO2 emissions: An ARDL Bound Test Approach. Technol. Forecast. Soc. Change 2024, 201, 123220. [Google Scholar] [CrossRef]
- Huang, Z.; Ren, X. Impact of natural resources, resilient economic growth, and energy consumption on CO2 emissions. Resour. Policy 2024, 90, 104714. [Google Scholar] [CrossRef]
- Naseem, S.; Hu, X.; Sarfraz, M.; Mohsin, M. Strategic assessment of energy resources, economic growth, and CO2 emissions in G-20 countries for a sustainable future. Energy Strategy Rev. 2024, 52, 101301. [Google Scholar] [CrossRef]
- OWD. Our Worldindata. 2024. Available online: https://ourworldindata.org/ (accessed on 20 October 2024).
- WDI. World Development Indicator. 2024. Available online: https://data.worldbank.org (accessed on 1 April 2024).
- GFN. Global Fooprint Network. 2024. Available online: https://data.footprintnetwork.org/#/countryTrends?cn=110&type=BCpc,EFCpc (accessed on 12 September 2024).
- GSCM. Global Supply Chain Management. 2025. Available online: https://www.newyorkfed.org/research/policy/gscpi#/overview (accessed on 5 February 2025).
- Adebayo, T.S.; Özkan, O. Investigating the influence of socioeconomic conditions, renewable energy and eco-innovation on environmental degradation in the United States: A wavelet quantile-based analysis. J. Clean. Prod. 2024, 434, 140321. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Nazir, M.S.; Tao, H.; Cao, S.; Ji, R.; Jiang, M.; Yao, L. Integration of energy storage system and renewable energy sources based on artificial intelligence: An overview. J. Energy Storage 2021, 40, 102811. [Google Scholar] [CrossRef]
- Hu, G.; Gozgor, G.; Lu, Z.; Mahalik, M.K.; Pal, S. Determinants of renewable stock returns: The role of global supply chain pressure. Renew. Sustain. Energy Rev. 2024, 191, 114182. Available online: https://ideas.repec.org//a/eee/rensus/v191y2024ics1364032123010407.html (accessed on 12 June 2024). [CrossRef]
- Fernström Nåtby, K.; Rönnerfalk, H. Gender Equality and CO2-Emissions: A Panel Data Study. 2018. Available online: http://lup.lub.lu.se/student-papers/record/8934039 (accessed on 12 July 2025).
- Ganda, F. Gender empowerment and environmental impact: A quantile regression analysis in BRICS economies. Heliyon 2024, 10, e40056. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Murshed, M.; Shehzad, K.; Akram, R.; Cui, L.; Khan, Z. Modelling the dynamic linkages between eco-innovation, urbanization, economic growth and ecological footprints for G7 countries: Does financial globalization matter? Sustain. Cities Soc. 2021, 70, 102881. [Google Scholar] [CrossRef]
Author(s) | Nations | Timeframe | Method(s) | Findings |
---|---|---|---|---|
AI Robot (ROBOT) and Ecological Footprint (EF) | ||||
[10] | Global Economy | 2010–2019 | Entropy method | ROBOT ↓ EF |
[10] | 67 countries | 1993–2019 | SYS-GMM | ROBOT ↓ EF |
[20] | seven Asian developing countries | 1990–2020 | NARDL | ROBOT ↓ EF |
[12] | 128 countries | Undefined | Panel Estimator | ROBOT → EF |
[9] | China | 2018–2022 | Panel threshold | ROBOT ↑↓ EF |
[27] | G20 countries | 1999–2018 | Artificial neural network | ROBOT → EF |
Public Private Investment in Energy (PPE) and Ecological Footprint (EF) | ||||
[28] | Pakistan | 1992–2018 | ARDL | PPE ↑ EF |
[14] | Pakistan | 1980–2019 | FMOLS | PPE ↓ EF |
[16] | Bangladesh | 1997–2019 | FMOLS | PPE ↑ CO2 |
[15] | South Asia and the Pacific region | 1990–2017 | ARDL | PPE ↑ EF |
[29] | South Africa | 1960–2020 | ARDL | PPE ↑ EF |
Global Supply Chain Management (GSCM) and Ecological Footprint (EF) | ||||
[6] | 1997–2020 | emerging economies | QARDL | GSC ↑ CO2 |
[8] | Undefined | Global | Undefined | GSC ↑ CO2 |
[7] | Undefined | Japan | SEM | GSC ↑ CO2 |
[21] | 2000Q1–2022Q4 | United States | WQQR | GSC ↑ CO2 |
Economic Growth (EG) and Ecological Footprint (EF) | ||||
[30] | OECD countries | 2001–2020 | Panel quantile regression | EG ↑ EF |
[31] | China | 1990–2019 | ARDL | EG ↑ EF |
[32] | 160 developing countries | 2001–2022 | Panel Regression | EG ↑ EF |
[33] | G20 countries | 1990–2020 | DOLS | EG ↑ EF |
[26] | Russia | 1970–2017 | New D2C algorithm | EG ↑ EF |
Variables | Measurement | Abbreviation | Sources |
---|---|---|---|
AI Robot ** | Annual industrial robots installed | ROBOT | [34] |
Global supply chain management ** | Index | GSCM | [37] |
School enrollment ** | School enrollment, tertiary (gross), gender parity index (GPI) | SE | [35] |
Public–private partnerships investment in energy ** | Current USD ($) | PPE | [35] |
Ecological Footprint * | Gha Per Capita | EF | [36] |
Economic Growth ** | GDP Per Capita Constant USD ($) 2015 | EG | [35] |
Panel A. Normality test results | |||||||
Bartels test | Robust Jarque–Bera test | Test of normality SJ test | Bootstrap symmetry test | Difference sign test | Mann–Kendall rank test | Runs test | |
GSCM | −5.126 *** | 25.642 *** | 3.131 ** | 4.473 *** | 2.523 ** | 3.908 *** | −4.855 *** |
EF | −7.364 *** | 2.6422 | −0.881 | 1.1971 | 5.735 *** | 7.767 *** | −6.743 *** |
EG | −7.462 *** | 2.5611 | −1.877 | −0.879 | 11.700 *** | 10.820 *** | −7.282 *** |
PPE | −6.880 *** | 20.471 *** | 4.150 *** | −3.400 *** | 0.229 | −0.657 | −6.203 *** |
ROBOT | −7.386 *** | 3.7984 | −0.53336 | −3.649 *** | 6.017 *** | 9.252 *** | −6.743 *** |
SE | −7.380 *** | 2.4399 | −1.7813 | −0.214 | 4.358 *** | 2.509 ** | −7.012 *** |
Panel B. Nonlinearity test results | |||||||
Tsay Test | White NN test | Keenan test | Teraesvirta NN test | ||||
GSCM | 2.004 | 9.941 **** | 1.978 | 5.213 * | |||
EF | 0.060 | 29.08 *** | 0.042 | 22.455 *** | |||
EG | 0.016 | 96.59 *** | 0.001 | 92.151 *** | |||
PPE | 0.696 | 155.49 *** | 0.607 | 144.21 *** | |||
ROBOT | 7.771 *** | 62.027 *** | 4.614 *** | 62.315 *** | |||
SE | 0.413 | 159.97 *** | 0.384 | 129.28 *** |
Driver | Direction | Short-Run | Medium-Run | Long-Run | Distributional Emphasis (Quantiles) |
---|---|---|---|---|---|
ROBOT | Positive | Positive | Positive | Positive | Broadly across τ; pockets of stronger effects at mid–high τ in long horizon |
GSCM | Positive | Weak/near zero | Positive (selective) | Positive (clearer, especially mid–high τ) | Signals at low τ ≈ 0.01–0.05 and mid–high τ ≈ 0.50–0.95 depending on horizon |
PPE | Mixed (context-dependent) | Weak/negative at very low τ (≈0.01), otherwise small | Positive at mid τ (≈0.20–0.50) | Positive at high τ (≈0.90–0.99) | Tail emphasis: very low and very high τ show clearer signals |
SE | Positive | Positive | Positive | Positive | Significant across almost all τ; strong cells at upper τ (e.g., τ ≈ 0.99) |
EG | Positive | Positive | Positive | Positive (strengthens at upper τ) | Broad distribution; strengthening at τ ≈ 0.90–0.95 in long horizon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuammari, K.; Iyiola, K.; Alzubi, A.; Aljuhmani, H.Y. AI-Powered Insights: How Digital Supply Networks and Public–Private Alliances Shape Socio-Economic Paths to Sustainability. Systems 2025, 13, 691. https://doi.org/10.3390/systems13080691
Almuammari K, Iyiola K, Alzubi A, Aljuhmani HY. AI-Powered Insights: How Digital Supply Networks and Public–Private Alliances Shape Socio-Economic Paths to Sustainability. Systems. 2025; 13(8):691. https://doi.org/10.3390/systems13080691
Chicago/Turabian StyleAlmuammari, Khayriyah, Kolawole Iyiola, Ahmad Alzubi, and Hasan Yousef Aljuhmani. 2025. "AI-Powered Insights: How Digital Supply Networks and Public–Private Alliances Shape Socio-Economic Paths to Sustainability" Systems 13, no. 8: 691. https://doi.org/10.3390/systems13080691
APA StyleAlmuammari, K., Iyiola, K., Alzubi, A., & Aljuhmani, H. Y. (2025). AI-Powered Insights: How Digital Supply Networks and Public–Private Alliances Shape Socio-Economic Paths to Sustainability. Systems, 13(8), 691. https://doi.org/10.3390/systems13080691