How Does Artificial Intelligence Technology Influence Labor Share: The Role of Labor Structure Upgrading
Abstract
1. Introduction
2. Literature Review and Research Hypotheses
2.1. Literature Review
2.2. Theoretical Background and Research Hypotheses
2.2.1. Skill-Biased Technical Change
2.2.2. AI Technology and Labor Share
2.2.3. The Mediating Role of Labor Structure Upgrading
3. Research Design
3.1. Data Sources
3.2. Variable Selection
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Mediating Variables
3.2.4. Control Variables
3.3. Regression Model Construction
4. Empirical Results and Analyses
4.1. Descriptive Statistics
4.2. Baseline Regression
4.3. Endogeneity Tests
4.3.1. Instrumental Variable Method
4.3.2. Propensity Score Matching (PSM)
4.4. Robustness Tests
4.4.1. Replacing the Labor Share Metrics
4.4.2. Replacing the AI Technology Indicators
4.4.3. Considering the Lagging Effect of AI Technology
4.4.4. Excluding Samples from Special Years
4.5. Mediating Effect Test
5. Further Analysis
5.1. Heterogeneity Analysis
5.1.1. Heterogeneity Analysis of External Environments
5.1.2. Heterogeneity Analysis of Enterprise Characteristics
5.2. Economic Effects Test
6. Theoretical and Practical Implications
6.1. Theoretical Implications
6.2. Practical Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Xia, L.; Han, Q.; Yu, S. Industrial intelligence and industrial structure change: Effect and mechanism. Int. Rev. Econ. Financ. 2024, 93, 1494–1506. [Google Scholar] [CrossRef]
- The State of AI in 2022 and a Half Decade in Review. Available online: http://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai-in-2022-and-a-half-decade-in-review (accessed on 20 June 2025).
- Damioli, G.; Van Roy, V.; Vertesy, D. The impact of artificial intelligence on labor productivity. Eurasian Bus. Rev. 2021, 11, 1–25. [Google Scholar] [CrossRef]
- Qian, C.; Zhu, C.; Huang, D.H.; Zhang, S. Examining the influence mechanism of artificial intelligence development on labor income share through numerical simulations. Technol. Forecast. Soc. Change 2023, 188, 122315. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Hui, X.; Liu, M. Does machine translation affect international trade? Evidence from a large digital platform. Manag. Sci. 2019, 65, 5449–5460. [Google Scholar] [CrossRef]
- Agrawal, A.; Gans, J.S.; Goldfarb, A. Artificial intelligence: The ambiguous labor market impact of automating prediction. J. Econ. Perspect. 2019, 33, 31–49. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus. Horiz. 2019, 62, 15–25. [Google Scholar] [CrossRef]
- Rammer, C.; Fernández, G.P.; Czarnitzki, D. Artificial intelligence and industrial innovation: Evidence from German firm-level data. Res. Policy 2022, 51, 104555. [Google Scholar] [CrossRef]
- Xi, K.; Shao, X. Impact of AI applications on corporate green innovation. Int. Rev. Econ. Financ. 2025, 99, 104007. [Google Scholar] [CrossRef]
- Yang, C.H. How artificial intelligence technology affects productivity and employment: Firm-level evidence from Taiwan. Res. Policy 2022, 51, 104536. [Google Scholar] [CrossRef]
- Wamba, S.F. Impact of artificial intelligence assimilation on firm performance: The mediating effects of organizational agility and customer agility. Int. J. Inf. Manag. 2022, 67, 102544. [Google Scholar] [CrossRef]
- Wang, J.; Xing, Z.; Zhang, R. AI technology application and employee responsibility. Humanit. Soc. Sci. Commun. 2023, 10, 356. [Google Scholar] [CrossRef]
- Li, C.; Huo, P.; Wang, Z.; Zhang, W.; Liang, F.; Mardani, A. Digitalization generates equality? Enterprises’ digital transformation, financing constraints, and labor share in China. J. Bus. Res. 2023, 163, 113924. [Google Scholar] [CrossRef]
- Bryson, A.; Clark, A.E.; Freeman, R.B.; Green, C.P. Share capitalism and worker wellbeing. Labour Econ. 2016, 42, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Karabarbounis, L.; Neiman, B. The global decline of the labor share. Q. J. Econ. 2013, 129, 61–103. [Google Scholar] [CrossRef]
- Barkai, S. Declining labor and capital shares. J. Financ. 2020, 75, 2421–2463. [Google Scholar] [CrossRef]
- Bom, P.R.; Erauskin, I. Productive government investment and the labor share. Int. Rev. Econ. Financ. 2022, 82, 347–363. [Google Scholar] [CrossRef]
- Miao, Y.; Shi, Y.; Jing, H. Effect of digital transformation on labor income share in manufacturing enterprises: Insights from technological innovation and industry–university–research collaborations. Kybernetes 2024, 53, 24–46. [Google Scholar] [CrossRef]
- Acemoglu, D. Why do new technologies complement skills? Directed technical change and wage inequality. Q. J. Econ. 1998, 113, 1055–1089. [Google Scholar] [CrossRef]
- Wang, J.; Hu, Y.; Zhang, Z. Skill-biased technological change and labor market polarization in China. Econ. Model. 2021, 100, 105507. [Google Scholar] [CrossRef]
- Aghion, P.; Jones, B.F.; Jones, C.I. Artificial Intelligence and Economic Growth; National Bureau of Economic Research: Cambridge, MA, USA, 2017. [Google Scholar]
- Acemoglu, D.; Restrepo, P. Automation and new tasks: How technology displaces and reinstates labor. J. Econ. Perspect. 2019, 33, 3–30. [Google Scholar] [CrossRef]
- Autor, D.; Chin, C.; Salomons, A.; Seegmiller, B. New frontiers: The origins and content of new work, 1940–2018. Q. J. Econ. 2024, 139, 1399–1465. [Google Scholar] [CrossRef]
- Lokuge, S.; Sedera, D.; Grover, V.; Dongming, X. Organizational readiness for digital innovation: Development and empirical calibration of a construct. Inf. Manag. 2019, 56, 445–461. [Google Scholar] [CrossRef]
- Xie, M.; Ding, L.; Xia, Y.; Guo, J.; Pan, J.; Wang, H. Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms. Econ. Model. 2021, 96, 295–309. [Google Scholar] [CrossRef]
- Ma, H.; Gao, Q.; Li, X.; Zhang, Y. AI development and employment skill structure: A case study of China. Econ. Anal. Policy 2022, 73, 242–254. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerisation? Technol. Forecast. Soc. Change 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Wu, Y.; Lin, Z.; Zhang, Q.; Wang, W. Artificial intelligence, wage dynamics, and inequality: Empirical evidence from Chinese listed firms. Int. Rev. Econ. Financ. 2024, 96, 103739. [Google Scholar] [CrossRef]
- Jiang, H.; Wang, X.; Liu, C. Automated machines and the labor wage gap. Technol. Forecast. Soc. Change 2024, 206, 123505. [Google Scholar] [CrossRef]
- Fossen, F.M.; Sorgner, A. New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data. Technol. Forecast. Soc. Change 2022, 175, 121381. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, R.; Di, D.; Li, G. Does digital transformation promote global value chain upgrading? Evidence from Chinese manufacturing firms. Econ. Model. 2024, 139, 106810. [Google Scholar] [CrossRef]
- Li, R.; Xu, S.; Zhang, Y. Can digital transformation reduce within-firm pay inequality? Evidence from China. Econ. Model. 2023, 129, 106530. [Google Scholar] [CrossRef]
- Luo, H.; Qiao, H. Exploring the impact of industrial robots on firm innovation under circular economy umbrella: A human capital perspective. Manag. Decis. 2024, 62, 2763–2790. [Google Scholar] [CrossRef]
- Holmström, J. From AI to digital transformation: The AI readiness framework. Bus. Horiz. 2022, 65, 329–339. [Google Scholar] [CrossRef]
- Buera, F.J.; Kaboski, J.P. The rise of the service economy. Am. Econ. Rev. 2012, 102, 2540–2569. [Google Scholar] [CrossRef]
- Dou, B.; Guo, S.; Chang, X.; Wang, Y. Corporate digital transformation and labor structure upgrading. Int. Rev. Financ. Anal. 2023, 90, 102904. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Yin, X. Digital transformation and labor upgrading. Pac. Basin Financ. J. 2024, 83, 102280. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, D. Digital transformation and firms’ bargaining power: Evidence from China. J. Bus. Res. 2024, 183, 114851. [Google Scholar] [CrossRef]
- Yuan, Y.; Sun, Y.; Chen, H. Does artificial intelligence affect firms’ inner wage gap? Appl. Econ. 2025, 57, 2365–2371. [Google Scholar] [CrossRef]
- Goldfarb, A.; Taska, B.; Teodoridis, F. Could machine learning be a general purpose technology? A comparison of emerging technologies using data from online job postings. Res. Policy 2023, 52, 104653. [Google Scholar] [CrossRef]
- Acemoglu, D.; Johnson, S. Learning from Ricardo and Thompson: Machinery and labor in the early industrial revolution and in the age of artificial intelligence. Annu. Rev. Econ. 2024, 16, 597–621. [Google Scholar] [CrossRef]
- Xu, X.; Wang, W.; Zeng, Y.; Dong, Y.; Hao, H. Innovations in attracting regional talent. Manag. Decis. 2025, 63, 1763–1786. [Google Scholar] [CrossRef]
- Monteiro, A.; Cepêda, C.; Da Silva, A.C.F.; Vale, J. The relationship between AI adoption intensity and internal control system and accounting information quality. Systems 2023, 11, 536. [Google Scholar] [CrossRef]
- Liu, J.; Chang, H.; Forrest, J.Y.L.; Yang, B. Influence of artificial intelligence on technological innovation: Evidence from the panel data of China’s manufacturing sectors. Technol. Forecast. Soc. Change 2020, 158, 120142. [Google Scholar] [CrossRef]
- Giuggioli, G.; Pellegrini, M.M. Artificial intelligence as an enabler for entrepreneurs: A systematic literature review and an agenda for future research. Int. J. Entrep. Behav. Res. 2023, 29, 816–837. [Google Scholar] [CrossRef]
- Caggese, A.; Cuñat, V.; Metzger, D. Firing the wrong workers: Financing constraints and labor misallocation. J. Financ. Econ. 2019, 133, 589–607. [Google Scholar] [CrossRef]
- Ying, Y.; Cui, X.; Jin, S. Artificial intelligence and green total factor productivity: The moderating effect of slack resources. Systems 2023, 11, 356. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Tang, L.; Sun, Z.; Wang, X. Exploring the conditional ESG payoff of AI adoption: The roles of learning capability, digital TMT, and operational slack. Systems 2025, 13, 399. [Google Scholar] [CrossRef]
- Buera, F.J.; Kaboski, J.P.; Rogerson, R.; Vizcaino, J.I. Skill-biased structural change. Rev. Econ. Stud. 2022, 89, 592–625. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. The race between man and machine: Implications of technology for growth, factor shares, and employment. Am. Econ. Rev. 2018, 108, 1488–1542. [Google Scholar] [CrossRef]
- Acemoglu, D.; Autor, D.; Hazell, J.; Restrepo, P. Artificial intelligence and jobs: Evidence from online vacancies. J. Labor. Econ. 2022, 40, S293–S340. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Mitchell, T.; Rock, D. What can machines learn, and what does it mean for occupations and the economy. AEA Pap. Proc. 2018, 108, 43–47. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; McElheran, K. The rapid adoption of data-driven decision-making. Am. Econ. Rev. 2016, 106, 133–139. [Google Scholar] [CrossRef]
- Du, J.; He, J.; Yang, J.; Chen, X. How industrial robots affect labor income share in task model: Evidence from Chinese A-share listed companies. Technol. Forecast. Soc. Change 2024, 208, 123655. [Google Scholar] [CrossRef]
- Autor, D.; Salomons, A. Is Automation Labor-Displacing? Productivity Growth, Employment, and the Labor Share. NBER Work. Pap. 2018, 1–74. [Google Scholar] [CrossRef]
- Chen, N.; Sun, D.; Chen, J. Digital transformation, labour share, and industrial heterogeneity. J. Innov. Knowl. 2022, 7, 100173. [Google Scholar] [CrossRef]
- Lennartz, S.; Dratsch, T.; Zopfs, D.; Persigehl, T.; Maintz, D.; Große Hokamp, N.; Pinto dos Santos, D. Use and control of artificial intelligence in patients across the medical workflow: Single-center questionnaire study of patient perspectives. J. Med. Internet Res. 2021, 23, e24221. [Google Scholar] [CrossRef]
- Xue, X.; Tan, X.; Ji, A.; Xue, W. Measuring the global digital technology innovation network in the construction industry. IEEE Trans. Eng. Manag. 2024, 71, 11138–11165. [Google Scholar] [CrossRef]
- Atanassov, J.; Kim, E.H. Labor and corporate governance: International evidence from restructuring decisions. J. Financ. 2009, 64, 341–374. [Google Scholar] [CrossRef]
- Cao, J.; Tang, J. Party organization embedding and enterprise labor income share. Int. Rev. Econ. Financ. 2024, 96, 103638. [Google Scholar] [CrossRef]
- Su, C.W.; Yuan, X.; Umar, M.; Lobonţ, O.R. Does technological innovation bring destruction or creation to the labor market? Technol. Soc. 2022, 68, 101905. [Google Scholar] [CrossRef]
- Di Giuli, A.; Laux, P.A. The effect of media-linked directors on financing and external governance. J. Financ. Econ. 2022, 145, 103–131. [Google Scholar] [CrossRef]
- Huang, Q.; Fang, J.; Xue, X.; Gao, H. Does Digital Innovation Cause Better ESG Performance? An Empirical Test of A-Listed Firms in China. Res. Int. Bus. Financ. 2023, 66, 102049. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Xu, C.H.; Xue, X.L.; Zhu, H. Can digital innovation improve firm performance: Evidence from digital patents of Chinese listed firms. Int. Rev. Financ. Anal. 2023, 89, 102810. [Google Scholar] [CrossRef]
- King, G.; Nielsen, R. Why propensity scores should not be used for matching. Polit. Anal. 2019, 27, 435–454. [Google Scholar] [CrossRef]
- Herrendorf, B.; Rogerson, R.; Valentinyi, K. Growth and structural transformation. Handb. Econ. Growth 2014, 2, 855–941. [Google Scholar]
- Nickell, S. Unemployment and labor market rigidities: Europe versus North America. J. Econ. Perspect. 1997, 11, 55–74. [Google Scholar] [CrossRef]
- Hu, X.; Liu, L.; Wang, D. How does regional carbon transition affect loan pricing? Evidence from China. Financ. Res. Lett. 2024, 70, 106356. [Google Scholar] [CrossRef]
- Shao, Y.; Chen, Z. Can government subsidies promote the green technology innovation transformation? Evidence from Chinese listed companies. Econ. Anal. Policy 2022, 74, 716–727. [Google Scholar] [CrossRef]
- Nunes, P.M.; Serrasqueiro, Z.; Leitao, J. Is there a linear relationship between R&D intensity and growth? Empirical evidence of non-high-tech vs. high-tech SMEs. Res. Policy 2012, 41, 36–53. [Google Scholar]
- Liu, Y.; Guo, M.; Han, Z.; Gavurova, B.; Bresciani, S.; Wang, T. Effects of digital orientation on organizational resilience: A dynamic capabilities perspective. J. Manuf. Technol. Manag. 2024, 35, 268–290. [Google Scholar] [CrossRef]
- Furman, J.; Seamans, R. AI and the economy. Innov. Policy Econ. 2019, 19, 161–191. [Google Scholar] [CrossRef]
- Grossman, G.M.; Oberfield, E. The elusive explanation for the declining labor share. Annu. Rev. Econ. 2022, 14, 93–124. [Google Scholar] [CrossRef]
- Levinson, J.; Petrin, A. Estimating production functions using inputs to control for unobservables. Rev. Econ. Stud. 2003, 70, 317–341. [Google Scholar] [CrossRef]
- Olley, S.; Pakes, A. The dynamics of productivity in the telecommunications equipment industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
Type | Variables | Definition |
---|---|---|
Dependent variable | LS | Cash paid to and for employees in the current period divided by total operating income of the enterprise |
Independent variable | AI | The natural logarithm of the number of authorized AI invention patents |
Mediating variables | HighEdu | The proportion of personnel with a bachelor’s degree or higher |
Tech | The proportion of technical personnel | |
R&Der | The proportion of R&D personnel | |
Control variables | Size | The natural log of a firm’s total assets |
Growth | Growth rate of operating income | |
Mshare | The ratio of shares held by management to the total number of shares | |
Mfee | The ratio of firms’ management expense to main business income | |
Net Profit | The ratio of net profit in sales revenue | |
Turnover | Operating income divided by total assets | |
Intensity | Number of employees divided by total assets, multiplied by 105 | |
Other Patents | The natural logarithm of the number of authorized non-AI invention patents |
Variables | Observations | Mean | SD | Min | Median | Max |
---|---|---|---|---|---|---|
LS | 31,467 | 0.144 | 0.105 | 0.001 | 0.120 | 0.971 |
AI | 31,467 | 0.356 | 0.777 | 0.000 | 0.000 | 8.604 |
HighEdu | 31,467 | 0.281 | 0.218 | 0.000 | 0.221 | 0.890 |
Tech | 31,467 | 0.215 | 0.183 | 0.000 | 0.163 | 0.850 |
R&Der | 31,467 | 0.117 | 0.135 | 0.000 | 0.094 | 0.664 |
Size | 31,467 | 22.25 | 1.270 | 19.59 | 22.06 | 26.45 |
Growth | 31,467 | 0.161 | 0.406 | −0.658 | 0.099 | 4.024 |
Mshare | 31,467 | 0.140 | 0.195 | 0.000 | 0.013 | 0.702 |
Mfee | 31,467 | 0.087 | 0.070 | 0.007 | 0.069 | 0.641 |
Net Profit | 31,467 | 0.063 | 0.184 | −1.544 | 0.068 | 0.538 |
Turnover | 31,467 | 0.636 | 0.429 | 0.057 | 0.541 | 3.021 |
Intensity | 31,467 | 0.077 | 0.012 | 0.046 | 0.076 | 0.112 |
Other Patents | 31,467 | 0.817 | 1.665 | 0.000 | 0.000 | 9.212 |
Variables | Dependent Variable: LS | ||||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | |
AI | 0.0124 *** | 0.0060 *** | 0.0016 *** | 0.0028 *** | 0.0074 *** |
(0.0007) | (0.0004) | (0.0004) | (0.0005) | (0.0013) | |
Size | −0.0545 *** | −0.0404 *** | −0.0459 *** | −0.0470 *** | |
(0.0005) | (0.0004) | (0.0005) | (0.0014) | ||
Growth | −0.0064 *** | −0.0062 *** | −0.0069 *** | −0.0036 | |
(0.0009) | (0.0006) | (0.0008) | (0.0023) | ||
Mshare | −0.0009 | −0.0006 | −0.0033 * | 0.0023 | |
(0.0019) | (0.0014) | (0.0018) | (0.0050) | ||
Mfee | 0.6540 *** | 0.4121 *** | 0.6385 *** | 0.9300 *** | |
(0.0065) | (0.0047) | (0.0060) | (0.0165) | ||
Net Profit | −0.0074 *** | 0.0188 *** | 0.0096 *** | −0.0266 *** | |
(0.0020) | (0.0014) | (0.0018) | (0.0051) | ||
Turnover | −0.0545 *** | −0.0485 *** | −0.0489 *** | −0.0374 *** | |
(0.0011) | (0.0008) | (0.0010) | (0.0028) | ||
Intensity | 5.7934 *** | 4.1748 *** | 4.8360 *** | 5.0119 *** | |
(0.0521) | (0.0375) | (0.0479) | (0.1320) | ||
Other Patents | −0.0011 *** | 0.0008 *** | −0.0003 | −0.0024 *** | |
(0.0003) | (0.0012) | (0.0002) | (0.0006) | ||
Constants | 0.1394 *** | 0.8927 *** | 0.6833 *** | 0.7826 *** | 0.9069 *** |
(0.0006) | (0.0249) | (0.0088) | (0.0112) | (0.0308) | |
Year FE | No | Yes | Yes | Yes | Yes |
Industry FE | No | Yes | Yes | Yes | Yes |
Province FE | No | Yes | Yes | Yes | Yes |
Observations | 31,467 | 31,467 | 31,467 | 31,467 | 31,467 |
Adjusted R2 | 0.0083 | 0.6695 | / | / | / |
Variables | Instrumental Variable Method | PSM | |||
---|---|---|---|---|---|
AI | LS | AI | LS | LS | |
(1) | (2) | (3) | (4) | (5) | |
AI (Mean) | 0.9141 *** | ||||
(0.0153) | |||||
Access | 0.0600 *** | ||||
(0.0070) | |||||
AI | 0.0090 *** | 0.0577 *** | |||
(0.0014) | (0.0118) | ||||
AI (PSM) | 0.0046 *** | ||||
(0.0013) | |||||
Constants | −0.6388 *** | 0.9493 *** | −1.4881 *** | 0.9891 *** | 1.1975 *** |
(0.1244) | (0.0165) | (0.1784) | (0.0214) | (0.0490) | |
Controls | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes |
Observations | 31,467 | 31,467 | 27,058 | 27,058 | 11,290 |
F-statistic | 114.51 | / | 60.01 | / | / |
Adjusted R2 | 0.3428 | / | 0.2207 | / | 0.6752 |
Variables | Replacing the Labor Share Metrics | Replacing the AI Technology Indicators | Lagging Value of AI Technology | Excluding Samples from Special Years | |
---|---|---|---|---|---|
LS2 | LS | LS | LS | LS | |
(1) | (2) | (3) | (4) | (5) | |
AI | 0.0065 *** | 0.0049 *** | |||
(0.0005) | (0.0005) | ||||
AI (Authorized) | 0.0052 *** | ||||
(0.0010) | |||||
AI (Keyword) | 0.0038 *** | ||||
(0.0003) | |||||
AI (Lagging) | 0.0034 *** | ||||
(0.0004) | |||||
Constants | 0.8864 *** | 0.8851 *** | 0.9053 *** | 0.8568 *** | 0.7902 *** |
(0.0262) | (0.0249) | (0.0353) | (0.0339) | (0.0172) | |
Controls | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes |
Observations | 31,467 | 31,467 | 31,467 | 26,235 | 24,331 |
Adjusted R2 | 0.6681 | 0.6682 | 0.6690 | 0.6704 | 0.6717 |
Variables | Labor Structure Upgrading | |||||
---|---|---|---|---|---|---|
HighEdu | Tech | R&Der | LS | LS | LS | |
(1) | (2) | (3) | (4) | (5) | (6) | |
AI | 0.0299 *** | 0.0226 *** | 0.0142 *** | |||
(0.0012) | (0.0011) | (0.0008) | ||||
HighEdu | 0.1060 *** | |||||
(0.0022) | ||||||
Tech | 0.0692 *** | |||||
(0.0025) | ||||||
R&Der | 0.0719 *** | |||||
(0.0034) | ||||||
Constants | −1.1501 *** | −0.1895 *** | −0.1329 *** | 0.9948 *** | 0.9067 *** | 0.9005 *** |
(0.0377) | (0.0343) | (0.0250) | (0.0242) | (0.0247) | (0.0248) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 31,467 | 31,467 | 31,467 | 31,467 | 31,467 | 31,467 |
Adjusted R2 | 0.5352 | 0.4603 | 0.4941 | 0.6909 | 0.6760 | 0.6726 |
Variables | Labor Market Rigidity | Labor Market Supply | Talent Policy Support | |||
---|---|---|---|---|---|---|
High Labor Market Rigidity | Low Labor Market Rigidity | High Labor Market Supply | Low Labor Market Supply | Receiving Subsidies Support | Lacking Subsidies Support | |
(1) | (2) | (3) | (4) | (5) | (6) | |
AI | 0.0041 *** | 0.0092 *** | 0.0078 *** | 0.0033 *** | 0.0106 *** | 0.0028 *** |
(0.0006) | (0.0008) | (0.0007) | (0.0006) | (0.0008) | (0.0006) | |
Bootstrap test | 0.005 *** (p < 0.01) | 0.004 *** (p < 0.01) | 0.008 *** (p < 0.01) | |||
Constants | 0.8151 *** | 0.8286 *** | 0.8833 *** | 1.0406 *** | 1.2333 *** | 0.8680 *** |
(0.0190) | (0.0222) | (0.0453) | (0.0211) | (0.0299) | (0.0361) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 15,482 | 14,919 | 15,559 | 15,908 | 9280 | 22,187 |
Adjusted R2 | 0.6753 | 0.6760 | 0.6648 | 0.6983 | 0.6852 | 0.6741 |
Variables | Labor Intensity | Technological Nature | Nature of Property Right | |||
---|---|---|---|---|---|---|
Labor- Intensive Enterprises | Capital- Intensive Enterprises | High- Tech Enterprises | Non-High-Tech Enterprises | State- Owned Enterprises | Non-State-Owned Enterprises | |
(1) | (2) | (3) | (4) | (5) | (6) | |
AI | 0.0081 *** | 0.0026 *** | 0.0080 *** | 0.0035 *** | 0.0004 | 0.0087 *** |
(0.0008) | (0.0004) | (0.0007) | (0.0006) | (0.0007) | (0.0006) | |
Bootstrap test | 0.005 *** (p < 0.01) | 0.004 *** (p < 0.01) | 0.008 *** (p < 0.01) | |||
Constants | 1.3284 *** | 0.5152 *** | 1.2488 *** | 0.7067 *** | 0.7379 *** | 1.0126 *** |
(0.0731) | (0.0402) | (0.0717) | (0.0553) | (0.0425) | (0.0333) | |
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes | Yes | Yes |
Observations | 15,733 | 15,734 | 13,707 | 17,760 | 10,128 | 21,339 |
Adjusted R2 | 0.6432 | 0.5506 | 0.6730 | 0.6860 | 0.6958 | 0.6737 |
Variables | Firms’ Total Factor Productivity (TFP) | |||
---|---|---|---|---|
TFP-LP | TFP-OP | TFP-LP | TFP-OP | |
(1) | (2) | (4) | (5) | |
AI | 0.0209 *** | 0.0159 *** | 0.0107 *** | 0.0066 ** |
(0.0025) | (0.0022) | (0.0038) | (0.0032) | |
LS | −0.7291 *** | −0.8684 *** | ||
(0.0319) | (0.0267) | |||
AI × LS | 0.0825 *** | 0.0817 *** | ||
(0.0175) | (0.0146) | |||
Constants | −5.2755 *** | −6.3059 *** | −4.7119 *** | −5.6283 *** |
(0.1632) | (0.1377) | (0.1636) | (0.1368) | |
Controls | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes |
Industry FE | Yes | Yes | Yes | Yes |
Province FE | Yes | Yes | Yes | Yes |
Observations | 30,501 | 30,501 | 30,501 | 30,501 |
Adjusted R2 | 0.9154 | 0.9162 | 0.9169 | 0.9190 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, X.; Chen, J.; Xiao, W.; Wang, C. How Does Artificial Intelligence Technology Influence Labor Share: The Role of Labor Structure Upgrading. Systems 2025, 13, 586. https://doi.org/10.3390/systems13070586
Xue X, Chen J, Xiao W, Wang C. How Does Artificial Intelligence Technology Influence Labor Share: The Role of Labor Structure Upgrading. Systems. 2025; 13(7):586. https://doi.org/10.3390/systems13070586
Chicago/Turabian StyleXue, Xiaolong, Jianshuo Chen, Wendi Xiao, and Chenxiao Wang. 2025. "How Does Artificial Intelligence Technology Influence Labor Share: The Role of Labor Structure Upgrading" Systems 13, no. 7: 586. https://doi.org/10.3390/systems13070586
APA StyleXue, X., Chen, J., Xiao, W., & Wang, C. (2025). How Does Artificial Intelligence Technology Influence Labor Share: The Role of Labor Structure Upgrading. Systems, 13(7), 586. https://doi.org/10.3390/systems13070586