How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China
Abstract
1. Introduction
2. Theoretical Framework and Hypothesis Development
2.1. Theoretical Framework
2.1.1. AI Capability, BITC, KGMs, and PI
2.1.2. Theoretical Model
2.2. Mediating Effect of BITC
2.3. Moderating Effect of FKGMs and IKGMs
2.3.1. Formal Knowledge Government Mechanisms
2.3.2. Informal Knowledge Government Mechanisms
3. Methodology
3.1. Methodology Selection and Rationale
3.2. Data Collection and Sample
3.3. Measures
3.4. Control Variables
3.5. Evaluation of Common Method Bias
3.6. Assessment of the Measurement Model
3.7. Hypothesis Testing
3.7.1. Evaluation of the Structural Model
3.7.2. Evaluation of the Mediating Effect
3.7.3. Evaluation of the Moderation Effect
3.7.4. Robustness Tests and Endogeneity
4. Results
5. Discussion
6. Conclusions
6.1. Theoretical Implications
6.2. Managerial Implications
6.3. Limitations and Future Study Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slater, S.F.; Mohr, J.J.; SenGupta, S. Radical product innovation capability: Literature review, synthesis, and illustrative research propositions. J. Prod. Innov. Manag. 2014, 31, 552–566. [Google Scholar] [CrossRef]
- Shehzad, M.U.; Zhang, J.H.; Le, P.B. Role of collaborative culture and knowledge management process for stimulating radical and incremental innovation: A comparative moderation approach. Bus. Process Manag. J. 2021, 27, 2021–2050. [Google Scholar] [CrossRef]
- Kakatkar, C.; Bilgram, V.; Füller, J. Innovation analytics: Leveraging artificial intelligence in the innovation process. Bus. Horiz. 2020, 63, 171–181. [Google Scholar] [CrossRef]
- Mariani, M.M.; Machado, I.; Magrelli, V.; Dwivedi, Y.K. Artificial intelligence in innovation research: A systematic review, conceptual framework, and future research directions. Technovation 2023, 122, 102623. [Google Scholar] [CrossRef]
- Verganti, R.; Vendraminelli, L.; Iansiti, M. Innovation and Design in the age of Artificial Intelligence. J. Prod. Innov. Manag. 2020, 3, 212–227. [Google Scholar] [CrossRef]
- Gooper, R.G. The AI transformation of product innovation. Ind. Mark. Manag. 2024, 3, 1–14. [Google Scholar] [CrossRef]
- Gama, F.; Magistretti, S. Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications. J. Prod. Innov. Manag. 2023, 42, 76–111. [Google Scholar] [CrossRef]
- Jiang, X.; Jiang, X.; Sun, W.; Fan, W. How do manufacturing firms manage artificial intelligence to drive interactive product innovation? IEEE Trans. Eng. Manag. 2024, 71, 6090–6102. [Google Scholar] [CrossRef]
- Haefner, N.; Wincent, J.; Parida, V.; Gassmann, O. Artificial intelligence and innovation management: A review, framework, and research agenda. Technol. Forecast. Soc. Change 2021, 162, 120392. [Google Scholar] [CrossRef]
- Mikalef, P.; Gupta, M. Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Inf. Manag. 2021, 58, 103434. [Google Scholar] [CrossRef]
- Evanschitzky, H.; Eisend, M.; Calantone, R.J.; Jiang, Y. Success factors of product innovation: An updated meta-analysis. J. Prod. Innov. Manag. 2012, 29, 21–37. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Palmié, M.; Wincent, J. How AI capabilities enable business model innovation: Scaling AI through co-evolutionary processes and feedback loops. J. Bus. Res. 2021, 134, 574–587. [Google Scholar] [CrossRef]
- Li, N.; Yan, Y.; Yang, Y.; Gu, A. Artificial intelligence capability and organizational creativity: The role of knowledge sharing and organizational cohesion. Front. Psychol. 2022, 13, 845277. [Google Scholar] [CrossRef]
- Ahmad, Z. Unlocking AI capabilities: Exploring strategic fit, innovation ambidexterity and digital entrepreneurial intent in driving digital transformation. J. Manag. Dev. 2025, 44, 194–218. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Yang, X. How does AI capability enable digital product innovation? A mixed methods design. Int. J. Innov. Manag. 2025, 29, 2550017. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Chatteriee, S.; Mariani, M. Artificial intelligence (AI) capabilities and the R&D performance of organizations: The moderating role of environmental dynamism. IEEE Trans. Eng. Manag. 2024, 71, 11522–11532. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics capabilities and innovation: The mediating role of dynamic capabilities and moderating effect of the environment. Br. J. Manag. 2019, 30, 272–298. [Google Scholar] [CrossRef]
- Wang, J.; Yao, X.; Zhu, X. The relationship between inventory leanness and product innovation with the contingent role of market concentration. J. Manuf. Technol. Manag. 2023, 34, 1377–1403. [Google Scholar] [CrossRef]
- Wu, W.; Gao, Y.; Liu, Y. Assessing the impact of big data analytics capability on radical innovation: Is business intelligence always a path? J. Manuf. Technol. Manag. 2024, 35, 1010–1034. [Google Scholar] [CrossRef]
- Cooper, R.G.; Kleinschmidt, E.J. Success factors in product innovation. Ind. Mark. Manag. 1987, 16, 215–223. [Google Scholar] [CrossRef]
- Barney, J. Firm resources and sustained competitive advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Molina-Castillo, F.; Jimenez-Jimenez, D.; Munuera-Aleman, J. Product competence exploitation and exploration strategies: The impact on new product performance through quality and innovativeness. Ind. Mark. Manag. 2011, 40, 1172–1182. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z. Business intelligence capabilities and firm performance: A study in China. Int. J. Inf. Manag. 2021, 57, 120–151. [Google Scholar] [CrossRef]
- Niu, Y.; Ying, L.; Yang, J.; Bao, M.; Sivaparthipan, C.B. Organizational business intelligence and decision making using big data analytics. Inf. Process Manag. 2021, 58, 102725. [Google Scholar] [CrossRef]
- Kim, C.; Song, J.; Nerkar, A. Learning and innovation: Exploitation and exploration trade-offs. J. Bus. Res. 2012, 65, 1189–1194. [Google Scholar] [CrossRef]
- Zhou, K.Z.; Li, C.B. How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strat. Manag. J. 2012, 33, 1090–1102. [Google Scholar] [CrossRef]
- Akter, S.; Hossain, M.A.; Sajib, S.; Sultana, S.; Rahman, M.; Vrontis, D.; McCarthy, G. A framework for AI-powered service innovation capability: Review and agenda for future research. Technovation 2023, 125, 102768. [Google Scholar] [CrossRef]
- Grant, R.M. Toward a knowledge-based theory of the firm. Strat. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Hammer, M. What is business process management? In Handbook on Business Process Management; Vom Brocke, J., Rosemann, M., Eds.; Springer: Berlin, Germany, 2015; pp. 3–16. [Google Scholar]
- Husted, K.; Michailova, S.; Minbaeva, D.B.; Pedersen, T. Knowledge-sharing hostility and governance mechanisms: An empirical test. J. Knowl. Manag. 2012, 16, 745–773. [Google Scholar] [CrossRef]
- Huang, M.C.; Chiu, Y.P.; Lu, T.C. Knowledge governance mechanisms and repatriate’s knowledge sharing: The mediating roles of motivation and opportunity. J. Knowl. Manag. 2013, 17, 677–694. [Google Scholar] [CrossRef]
- Min, M.; Zhou, X.; Zhang, Z. Interactive mechanisms between formal and informal knowledge governance mechanisms in predicting knowledge processes in China. Knowl. Manag. Res. Pract. 2024, 22, 256–268. [Google Scholar] [CrossRef]
- Alegre-Vidal, J.; Lapiedra-Alcamí, R.; Chiva-Gómez, R. Linking operations strategy and produce innovation: An empirical study of Spanish ceramic tile producers. Res. Policy 2004, 33, 829–839. [Google Scholar] [CrossRef]
- Chandy, R.K.; Tellis, G.J. The incumbent’s curse? Incumbency, size, and radical product innovation. J. Mark. 2000, 64, 1–17. [Google Scholar] [CrossRef]
- Mikalef, P.; Islam, N.; Parida, V.; Singh, H.; Altwaijry, N. Artificial intelligence (AI) competencies for organizational performance: A B2B marketing capabilities perspective. J. Bus. Res. 2023, 164, 113998. [Google Scholar] [CrossRef]
- Alex, A.; Ferraresi Carlos, O.; Quandt, S.A.; Santos, D.; Frega, J.R. Knowledge management and strategic orientation: Leveraging innovativeness and performance. J. Knowl. Manag. 2012, 16, 688–701. [Google Scholar] [CrossRef]
- Fang, S.-C.; Yang, C.-W.; Hsu, W.-Y. Inter-organizational knowledge transfer: The perspective of knowledge governance. J. Knowl. Manag. 2013, 17, 943–957. [Google Scholar] [CrossRef]
- Foss, N.J.; Husted, K.; Michailova, S. Governing knowledge sharing in organizations: Levels of analysis, governance mechanisms, and research directions. J. Manag. Stud. 2010, 47, 455–482. [Google Scholar] [CrossRef]
- Mahoney, J.T.; Pandian, J.R. The resource-based view within the conversation of strategic management. Strat. Manag. J. 1992, 13, 363–380. [Google Scholar] [CrossRef]
- Abou-Foul, M.; Ruiz-Alba, J.L.; López-Tenorio, P.J. The impact of artificial intelligence capabilities on servitization: The moderating role of absorptive capacity—A dynamic capabilities perspective. J. Bus. Res. 2023, 157, 113609. [Google Scholar] [CrossRef]
- Torres, R.; Sidorova, A. Reconceptualizing information quality as effective use in the context of business intelligence and analytics. Int. J. Inf. Manag. 2019, 49, 316–329. [Google Scholar] [CrossRef]
- Yang, D. How does knowledge sharing and governance mechanism affect innovation capabilities? From the coevolution perspective. Int. Bus. Res. 2011, 4, 154–157. [Google Scholar] [CrossRef]
- Grant, R.M. Prospering in dynamically-competitive environments: Organizational capability as knowledge integration. Organ. Sci. 1996, 7, 375–387. [Google Scholar] [CrossRef]
- Nonaka, I.; Takeuchi, H. The knowledge-creating company: How Japanese companies create the dynamics of innovation. Long. Range Plann. 1996, 29, 592. [Google Scholar] [CrossRef]
- Kozlenkova, I.V.; Samaha, S.A.; Palmatier, R.W. Resource-based theory in marketing. J. Acad. Mark. Sci. 2014, 42, 1–21. [Google Scholar] [CrossRef]
- Lee, O.K.D.; Choi, B.; Lee, H. How do knowledge management resources and capabilities pay off in short term and long term? Inf. Manag. 2020, 57, 103166. [Google Scholar] [CrossRef]
- Tsai, W. Social structure of ‘coopetition’ within a multiunit organization: Coordination, competition, and intraorganizational knowledge sharing. Organ. Sci. 2002, 13, 179–190. [Google Scholar] [CrossRef]
- Ghasemaghaei, M. Does data analytics use improve firm decision making quality? The role of knowledge sharing and data analytics competency. Decis. Support. Syst. 2019, 120, 14–24. [Google Scholar] [CrossRef]
- Binsaeed, R.H.; Yousaf, Z.; Grigorescu, A.; Samoila, A.; Chitescu, R.I.; Nassani, A.A. Knowledge sharing key issue digital technology and artificial intelligence adoption. Systems 2023, 11, 316. [Google Scholar] [CrossRef]
- Madhani, P.M. Resource Based View (RBV) of Competitive Advantage: An Overview; Icfai University Press: Hyderabad, India, 2009. [Google Scholar]
- Hervas-Oliver, J.L.; Sempere-Ripoll, F.; Moll, C.B. Zooming into firms’ location, capabilities and innovation performance: Does agglomeration foster incremental or radical innovation? Eur. Res. Manag. Bus. Econ. 2022, 28, 100186. [Google Scholar] [CrossRef]
- Barney, J.B.; Ketchen, D.J.; Wright, M. Resource-based theory and the value creation framework. J. Manag. 2021, 47, 1936–1955. [Google Scholar] [CrossRef]
- Neiroukh, S.; Emeagwali, O.L.; Aljuhmani, H.Y. Artificial intelligence capability and organizational performance: Unraveling the mediating mechanisms of decision-making processes. Manag. Decis. 2024. Advance on line publication. [Google Scholar] [CrossRef]
- Wernerfelt, B. A resource-based view of the firm. Strat. Manag. J. 1984, 5, 171–180. [Google Scholar] [CrossRef]
- Ameen, N.; Tarba, S.; Cheah, J.H.; Xia, S.; Sharma, G.D. Coupling artificial intelligence capability and strategic agility for enhanced product and service creativity. Br. J. Manag. 2024, 35, 1916–1934. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Daly, M.; Burstein, F. Reconciling business intelligence, analytics and Decis Support Syst: More data, deeper insight. Decis. Support. Syst. 2021, 146, 113560. [Google Scholar] [CrossRef]
- Bao, Z.K.; Hashim, K.F.; Almagrabi, A.O.; Hashim, H.B. Business intelligence impact on management accounting development given the role of mediation decision type and environment. Inf. Process Manag. 2023, 60, 103380. [Google Scholar] [CrossRef]
- Wuest, T.; Weimer, D.; Irgens, C.; Thoben, K. Machine learning in manufacturing: Advantages, challenges, and applications. Prod. Manuf. Res. 2016, 4, 23–45. [Google Scholar] [CrossRef]
- Chen, H.; Chiang, R.H.L.; Storey, V.C. Business intelligence and analytics: From big data to big impact. MIS Q. 2012, 36, 1165–1188. [Google Scholar] [CrossRef]
- Bag, S.; Gupta, S.; Kumar, A.; Sivarajah, U. An integrated artificial intelligence framework for knowledge creation and B2B marketing rational decision making for improving firm performance. Ind. Mark. Manag. 2021, 92, 178–189. [Google Scholar] [CrossRef]
- Cao, Y.; Xiang, Y. The impact of knowledge governance on knowledge sharing. Manag. Decis. 2012, 5I0, 591–610. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, W.; Tang, W.; Duffield, C.F.; Hui, F.K.P.; Zhang, L.; Lou, C. How to improve the effects of knowledge governance on individual learning across projects: From the perspective of relational capital. Int. J. Proj. Manag. 2024, 42, 1–10. [Google Scholar] [CrossRef]
- Joslin, R.; Müller, R. The relationship between project governance and project success. Int. J. Proj. Manag. 2016, 34, 613–626. [Google Scholar] [CrossRef]
- Bidwell, M.J. Politics and firm boundaries: How organizational structure, group interests, and resources affect outsourcing. Organ. Sci. 2012, 23, 1622–1642. [Google Scholar] [CrossRef]
- Yamao, S.; De Cieri, H.D.; Hutchings, K. Transferring subsidiary knowledge to global headquarters: Subsidiary senior executives’ perceptions of the role of HR configurations in the development of knowledge stocks. Hum. Resour. Manag. 2009, 48, 531–554. [Google Scholar] [CrossRef]
- Mola, L.; Rossignoli, C.; Carugati, A.; Giangreco, A. Business intelligence system design and its consequences for knowledge sharing, collaboration, and decision-making: An exploratory study. Int. J. Technol. Hum. Interact. 2015, 11, 1–25. [Google Scholar] [CrossRef]
- Pemsel, S.; Wiewiora, A.; Müller, R.; Aubry, M.; Brown, K. A conceptualization of knowledge governance in project-based organizations. Int. J. Proj. Manag. 2014, 32, 1411–1422. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C. When to use and how to report the results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach, 2nd ed.; Guilford Press: New York, NY, USA, 2017. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Chen, W.W.L.; Wong, T.T. Visuospatial pathways to mathematical achievement. Learn. Instr. 2019, 62, 11–19. [Google Scholar] [CrossRef]
- Kenny, D.A. Power and N Computations for Mediation. Available online: https://davidakenny.shinyapps.io/MedPower/ (accessed on 3 March 2025).
- Castro, G.M.; Delgado-Verde, M.; Navas-López, J.E.; Cruz-González, J. The moderating role of innovation culture in the relationship between knowledge assets and product innovation. Technol. Forecast. Soc. Change 2013, 80, 351–363. [Google Scholar] [CrossRef]
- Damanpor, F. Organizational innovation: A meta-analysis of effects of determinants and moderators. Acad. Manag. J. 1991, 34, 555–590. [Google Scholar] [CrossRef]
- Marcus, B.; Schuler, H. Antecedents of counterproductive behavior at work: A general perspective. J. Appl. Psychol. 2004, 89, 647–660. [Google Scholar] [CrossRef]
- Petruzzelli, A.M.; Ardito, L.; Savino, T. Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size. J. Bus. Res. 2018, 86, 190–201. [Google Scholar] [CrossRef]
- Williams, L.J.; Hartman, N.; Cavazotte, F. Method variance and marker variables: A review and comprehensive CFA marker technique. Organ. Res. Methods 2010, 13, 477–514. [Google Scholar] [CrossRef]
- Kock, N. Common method bias in PLS-SEM: A full collinearity assessment approach. Int. J. E-Collab. 2017, 11, 1–10. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications, Inc.: New York, NY, USA, 2016; pp. 76–77. [Google Scholar]
- Hair, J.F.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE Publications, Inc.: Los Angeles, CA, USA, 2022. [Google Scholar]
- Edwards, J.R. The fallacy of formative measurement. Organ. Res. Methods 2011, 14, 370–388. [Google Scholar] [CrossRef]
- MacKenzie, S.B.; Podsakoff, P.M.; Podsakoff, N.P. Construct measurement and validation procedures in MIS and organizational research: A review and recommended procedures. MIS Q. 2011, 35, 293–334. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.M.; Lauro, C. PLS path modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Sarstedt, M.; Hair, J.F., Jr.; Cheah, J.H.; Becker, J.M.; Ringle, C.M. How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australas. Mark. J. 2019, 27, 197–211. [Google Scholar] [CrossRef]
- Hult, G.T.M.; Hair, J.F.; Proksch, D.; Sarstedt, M.; Pinkwart, A.; Ringle, C.M. Addressing endogeneity in international marketing applications of partial least squares structural equation modeling. J. Int. Mark. 2018, 26, 1–21. [Google Scholar] [CrossRef]
- Ángeles López-Cabarcos, M.; Srinivasan, S.; Göttling-Oliveira-Monteiro, S.; Vázquez-Rodríguez, P. Tacit knowledge and firm performance relationship. The role of product innovation and the firm level capabilities. J. Bus. Econ. Manag. 2019, 20, 330–350. [Google Scholar] [CrossRef]
- Moderno, O.B.S.; Braz, A.C.; Nascimento, P.T.S. Robotic process automation and artificial intelligence capabilities driving digital strategy: A resource-based view. Bus. Process Manag. J. 2024, 30, 105–134. [Google Scholar] [CrossRef]
- Mikalef, P.; Pateli, A.; Batenburg, R.S.; Wetering, R.V.D. Purchasing alignment under multiple contingencies: A configuration theory approach. Ind. Manag. Data Syst. 2015, 115, 625–645. [Google Scholar] [CrossRef]
Variable | Attribution | Frequency | Percent |
---|---|---|---|
Position | CEO | 96 | 18.6 |
SVP | 156 | 30.2 | |
CIO | 140 | 27.1 | |
CSO | 124 | 24.0 | |
Working years | Less than one year | 95 | 18.4 |
1–2 years | 94 | 18.2 | |
2–3 years | 110 | 21.3 | |
3–4 years | 129 | 25.0 | |
Over four years | 88 | 17.1 | |
Industry | Pharmaceutical manufacturing sector | 130 | 25.2 |
Automobile manufacturing industry | 120 | 23.3 | |
Electrical machinery and equipment manufacturing industry | 79 | 15.3 | |
Computer, communication, and electronic equipment manufacturing industry | 127 | 24.6 | |
Others | 60 | 11.6 | |
Established years | Less than three years | 67 | 13.0 |
3–5 years | 104 | 20.2 | |
6–10 years | 130 | 25.2 | |
11–15 years | 138 | 26.7 | |
Over 15 years | 77 | 14.9 | |
Enterprise size | Less than 300 employees | 103 | 20.0 |
300–500 employees | 87 | 16.9 | |
500–1000 employees | 137 | 26.6 | |
1000–2000 employees | 122 | 23.6 | |
More than 2000 employees | 67 | 13.0 |
Variable | Scale | Items |
---|---|---|
AI capability [35] | Infrastructure | AI Capability1: Relative to our industry rivals, our organization has data management services and architectures for AI. |
AI Capability2: All network communication services and cloud services are connected to the central office for analytics. | ||
AI Capability3: Our organization utilizes AI application portfolio and services (i.e., Microsoft Cognitive Services, Google Cloud Vision). | ||
AI Capability4: Our organization has AI facilities’ operations/services (i.e., servers, large-scale processors, performance monitors) to ensure that data is secured from to end to end with state-of-the-art technology. | ||
Business spanning | AI Capability5: Developing a clear vision regarding how AI contributes to business value. | |
AI Capability6: Integrating business strategic planning and AI planning. | ||
AI Capability7: Enabling functional area and general management’s ability to understand value of AI investments. | ||
AI Capability8: Establishing an effective and flexible AI planning process and developing a robust AI plan. | ||
Proactive stance | AI Capability9: Our organization are capable of and continue to experiment with new AI tools and techniques as necessary. | |
AI Capability10: Our organization have a climate that is supportive of trying out new ways of using AI. | ||
AI Capability11: Our organization constantly seek new ways to enhance the effectiveness of AI use. | ||
AI Capability12: Our organization constantly keep current with new AI innovations. | ||
BITC [23] | Upgrading capability | BITC1: BI assists in setting a favourable position and exploring new opportunities in a turbulent environment. |
BITC2: BI assists in continuously creating or absorbing new knowledge, developing new products, or innovating business processes. | ||
BITC3: BI assists in discerning and integrating new knowledge through exogenous sources of external network and social capital. | ||
Regeneration capability | BITC4: BI can prompt the reallocation of available resources in line with strategic goals and fully utilize the knowledge for organizational changes. | |
BITC5: BI improves the capability of optimizing the allocation and utilization of resources in light of new business practices. | ||
BITC6: BI assists in enhancing organizational learning to capture, create, and utilize new capabilities. | ||
FKGMs [31] | FKGM1: Knowledge sharing is an index of performance evaluation and rewards. | |
FKGM2: Experts are invited as instructors in internal training. | ||
FKGM3: There are company newsletter or journal to encourage knowledge sharing. | ||
IKGMs [31] | IKGM1: There are water-cooler, coffee lounge for colleagues to make friendship. | |
IKGM2: There are leisure activities for colleagues to make friendship. | ||
IKGM3: There are athletic team or birthday party for colleagues to make friendship. | ||
PI [74] | PI1: In the last three years, the number of product innovations developed by our organization is higher than my competitors’. | |
PI2: The percentage of sales with respect to new products, on the total of sales, is higher than the one of my competitors. | ||
PI3: In the last three years, the number of new products with respect to my product portfolio is higher than the one of my competitors. |
Component | Initial Eigenvalues | ||
---|---|---|---|
Total | % of Variance | Cumulative% | |
1 | 7.944 | 23.364 | 23.364 |
2 | 4.514 | 13.276 | 36.640 |
3 | 2.794 | 8.217 | 44.858 |
4 | 2.084 | 6.128 | 50.986 |
5 | 1.641 | 4.825 | 55.811 |
6 | 1.419 | 4.173 | 59.983 |
7 | 1.303 | 3.831 | 63.815 |
8 | 1.195 | 3.514 | 67.329 |
Variable | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 INF | 3.858 | 0.899 | 1 | ||||||||||
2 BS | 3.676 | 0.972 | 0.477 ** | 1 | |||||||||
3 PS | 3.735 | 0.923 | 0.409 ** | 0.522 ** | 1 | ||||||||
4 AI Capability | 3.756 | 0.750 | - | - | - | 1 | |||||||
5 UC | 3.764 | 0.924 | 0.305 ** | 0.351 ** | 0.375 ** | 0.428 ** | 1 | ||||||
6 RC | 3.850 | 0.876 | 0.285 ** | 0.348 ** | 0.384 ** | 0.422 ** | 0.531 ** | 1 | |||||
7 BITC | 3.807 | 0.788 | 0.337 ** | 0.400 ** | 0.433 ** | 0.486 ** | - | - | 1 | ||||
8 FKGMs | 3.841 | 0.878 | 0.068 | 0.215 ** | 0.149 ** | 0.181 ** | 0.196 ** | 0.215 ** | 0.234 ** | 1 | |||
9 IKGMs | 3.909 | 0.872 | 0.136 ** | 0.271 ** | 0.200 ** | 0.254 ** | 0.202 ** | 0.310 ** | 0.291 ** | 0.464 ** | 1 | ||
10 PI | 3.621 | 0.955 | 0.359 ** | 0.375 ** | 0.365 ** | 0.456 ** | 0.363 ** | 0.414 ** | 0.443 ** | 0.159 ** | 0.195 ** | 1 | |
11 ATT | 5.592 | 0.891 | 0.017 | 0.013 | −0.009 | 0.009 | 0.013 | 0.018 | 0.017 | −0.005 | −0.016 | −0.006 | 1 |
Fit | χ2 | df | χ2/df | RMSEA | SRMR | CFI | TLI |
---|---|---|---|---|---|---|---|
1 CFA | 803.334 | 491 | 1.636 | 0.035 | 0.032 | 0.963 | 0.958 |
2 Baseline | 804.465 | 512 | 1.571 | 0.033 | 0.032 | 0.965 | 0.962 |
3 Method-C | 804.430 | 511 | 1.574 | 0.033 | 0.032 | 0.965 | 0.962 |
4 Method-U | 785.910 | 485 | 1.620 | 0.035 | 0.030 | 0.964 | 0.959 |
5 Method-R | 785.918 | 521 | 1.508 | 0.031 | 0.030 | 0.969 | 0.966 |
Chi-Square Model Comparison Tests | |||||||
ΔModels | Δχ2 | Δdf | p Value | ||||
1 Baseline vs. Method-C | 0.035 | 1 | 0.852 | ||||
2 Method-C vs. Method-U | 18.520 | 26 | 0.856 | ||||
3 Method-U vs. Method-R | 0.008 | 36 | 1.000 |
Variable | VIF |
---|---|
Infrastructure (INF) | 1.059 |
Proactive Stance (PS) | 1.015 |
Business Spanning (BS) | 1.172 |
Regeneration Capability (RC) | 1.192 |
Upgrading Capability (UC) | 1.029 |
FKGMs | 1.041 |
IKGMs | 1.030 |
PI | 1.043 |
Construct | Items | Outer Loading | CR | AVE | Cronbach’s Alpha |
---|---|---|---|---|---|
First Order | |||||
Infrastructure (INF) | INF1 | 0.751 | 0.891 | 0.671 | 0.836 |
INF2 | 0.842 | ||||
INF3 | 0.847 | ||||
INF4 | 0.833 | ||||
Business Spanning (BS) | BS1 | 0.859 | 0.911 | 0.719 | 0.869 |
BS2 | 0.810 | ||||
BS3 | 0.836 | ||||
BS4 | 0.885 | ||||
Proactive Stance (PS) | PS1 | 0.860 | 0.905 | 0.704 | 0.859 |
PS2 | 0.829 | ||||
PS3 | 0.810 | ||||
PS4 | 0.855 | ||||
Upgrading Capability (UC) | UC1 | 0.864 | 0.902 | 0.754 | 0.837 |
UC2 | 0.882 | ||||
UC3 | 0.859 | ||||
Regeneration Capability (RC) | RC1 | 0.853 | 0.879 | 0.708 | 0.793 |
RC2 | 0.850 | ||||
RC3 | 0.820 | ||||
FKGMs | FKGM1 | 0.830 | 0.869 | 0.689 | 0.775 |
FKGM2 | 0.885 | ||||
FKGM3 | 0.771 | ||||
IKGMs | IKGM1 | 0.786 | 0.881 | 0.713 | 0.797 |
IKGM2 | 0.868 | ||||
IKGM3 | 0.875 | ||||
PI | PI1 | 0.815 | 0.887 | 0.724 | 0.809 |
PI2 | 0.857 | ||||
PI3 | 0.879 | ||||
Second Order | |||||
AI Capability | INF | 0.773 | |||
BS | 0.838 | 0.889 | 0.847 | 0.649 | |
PS | 0.805 | ||||
BITC | UC | 0.873 | |||
RC | 0.878 | 0.843 | 0.868 | 0.766 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
---|---|---|---|---|---|---|---|---|---|---|
Lower Order | ||||||||||
1 INF | 0.819 | 0.561 | 0.484 | 0.364 | 0.348 | 0.085 | 0.168 | 0.438 | - | 0.440 |
2 BS | 0.481 | 0.848 | 0.604 | 0.411 | 0.417 | 0.261 | 0.323 | 0.448 | - | 0.512 |
3 PS | 0.412 | 0.525 | 0.839 | 0.441 | 0.461 | 0.185 | 0.241 | 0.437 | - | 0.558 |
4 UC | 0.304 | 0.351 | 0.375 | 0.869 | 0.653 | 0.243 | 0.249 | 0.442 | 0.546 | - |
5 RC | 0.284 | 0.346 | 0.381 | 0.533 | 0.841 | 0.271 | 0.384 | 0.515 | 0.551 | - |
6 FKGMs | 0.065 | 0.211 | 0.147 | 0.198 | 0.219 | 0.830 | 0.589 | 0.202 | 0.239 | 0.318 |
7 IKGMs | 0.137 | 0.269 | 0.200 | 0.203 | 0.305 | 0.461 | 0.844 | 0.243 | 0.329 | 0.390 |
8 PI | 0.361 | 0.378 | 0.365 | 0.364 | 0.413 | 0.163 | 0.197 | 0.851 | 0.594 | 0.591 |
Higher Order | ||||||||||
9 AI Capability | - | - | - | 0.427 | 0.419 | 0.177 | 0.253 | 0.457 | 0.806 | 0.678 |
10 BITC | 0.336 | 0.398 | 0.432 | - | - | 0.238 | 0.291 | 0.444 | 0.484 | 0.875 |
Model 1 | Model 2 | Model3 | |||||||
---|---|---|---|---|---|---|---|---|---|
Q2 Predict | PLS-LM | Q2 Predict | PLS-LM | Q2 Predict | PLS-LM | ||||
ΔRMSE | ΔMAE | ΔRMSE | ΔMAE | ΔRMSE | ΔMAE | ||||
PLSPredict LV summary | |||||||||
BITC | - | 0.259 | 0.307 | ||||||
PI | 0.202 | 0.202 | 0.197 | ||||||
PLSPredict MV summary | |||||||||
RC | - | - | - | 0.210 | 0.002 | 0.000 | 0.239 | −0.015 | −0.025 |
UC | - | - | - | 0.185 | −0.007 | −0.002 | 0.231 | −0.032 | −0.021 |
PI1 | 0.135 | −0.005 | −0.005 | 0.130 | −0.012 | −0.015 | 0.127 | −0.010 | −0.011 |
PI2 | 0.134 | −0.005 | −0.004 | 0.136 | −0.013 | −0.011 | 0.131 | −0.010 | −0.008 |
PI3 | 0.170 | −0.005 | −0.004 | 0.173 | −0.002 | 0.001 | 0.171 | 0.000 | 0.002 |
Std. Estimate | S.E. | 95% CI | ||
---|---|---|---|---|
2.50% | 97.50% | |||
Total Effect | 0.457 | 0.049 | 0.354 | 0.545 |
Direct Effect | 0.316 | 0.058 | 0.197 | 0.421 |
AI Capability → BITC → PI | 0.141 | 0.027 | 0.091 | 0.199 |
Path | Std. Estimate | S.E. | t | p | 95%CI | f2 | VIF | |
---|---|---|---|---|---|---|---|---|
2.50% | 97.50% | |||||||
Model 1: Mediation Model; R2 (BITC = 0.272, PI = 0.275); Q2 (BITC = 0.199, PI = 0.194) | ||||||||
AI Capability → BITC | 0.432 | 0.050 | 8.552 | 0.000 | 0.328 | 0.527 | 0.238 | 1.074 |
AI Capability → PI | 0.310 | 0.059 | 5.276 | 0.000 | 0.190 | 0.418 | 0.100 | 1.329 |
BITC → PI | 0.280 | 0.053 | 5.286 | 0.000 | 0.179 | 0.388 | 0.079 | 1.374 |
FKGM → BITC | 0.099 | 0.046 | 2.135 | 0.033 | 0.003 | 0.183 | 0.011 | 1.276 |
FKGM → PI | 0.031 | 0.049 | 0.636 | 0.525 | −0.068 | 0.126 | 0.001 | 1.289 |
IKGM → BITC | 0.137 | 0.056 | 2.460 | 0.014 | 0.031 | 0.244 | 0.019 | 1.320 |
IKGM → PI | 0.022 | 0.046 | 0.491 | 0.623 | −0.065 | 0.112 | 0.001 | 1.346 |
Model 2: Interaction Model; R2 (BITC = 0.337, PI = 0.284); Q2 (BITC = 0.245, PI = 0.195) | ||||||||
AI Capability → BITC | 0.436 | 0.042 | 10.305 | 0.000 | 0.351 | 0.517 | 0.267 | 1.077 |
AI Capability → PI | 0.352 | 0.057 | 6.180 | 0.000 | 0.233 | 0.458 | 0.098 | 1.762 |
BITC → PI | 0.230 | 0.056 | 4.081 | 0.000 | 0.120 | 0.342 | 0.037 | 1.974 |
FKGM → BITC | 0.116 | 0.045 | 2.566 | 0.010 | 0.022 | 0.199 | 0.015 | 1.303 |
FKGM → PI | 0.035 | 0.044 | 0.794 | 0.427 | −0.054 | 0.121 | 0.001 | 1.344 |
IKGM → BITC | 0.160 | 0.053 | 3.037 | 0.002 | 0.062 | 0.265 | 0.029 | 1.345 |
IKGM → PI | 0.013 | 0.043 | 0.298 | 0.766 | −0.068 | 0.099 | 0.000 | 1.426 |
IKGM × AI Capability → BITC | 0.155 | 0.060 | 2.590 | 0.010 | 0.044 | 0.278 | 0.031 | 1.430 |
IKGM × AI Capability → PI | −0.034 | 0.063 | 0.539 | 0.590 | −0.157 | 0.092 | 0.001 | 2.282 |
FKGM × AI Capability → BITC | 0.103 | 0.044 | 2.341 | 0.019 | 0.018 | 0.191 | 0.015 | 1.427 |
FKGM × AI Capability → PI | 0.102 | 0.068 | 1.498 | 0.134 | −0.035 | 0.230 | 0.009 | 2.284 |
IKGM × BITC → PI | −0.009 | 0.052 | 0.182 | 0.856 | −0.116 | 0.088 | 0.000 | 2.545 |
FKGM × BITC → PI | −0.072 | 0.062 | 1.175 | 0.240 | −0.194 | 0.046 | 0.005 | 2.444 |
Path | Std. Estimate | S.E. | t | p |
---|---|---|---|---|
AI Capability → BITC | 0.747 | 0.232 | 3.213 | 0.001 |
AI Capability → PI | 0.562 | 0.263 | 2.137 | 0.033 |
BITC → PI | 0.436 | 0.145 | 3.003 | 0.003 |
FKGM → BITC | 0.135 | 0.111 | 1.223 | 0.221 |
FKGM → PI | 0.079 | 0.119 | 0.662 | 0.508 |
IKGM → BITC | 0.084 | 0.112 | 0.747 | 0.455 |
IKGM → PI | 0.075 | 0.113 | 0.667 | 0.505 |
GC (AI Capability) → BITC | −0.323 | 0.233 | 1.389 | 0.165 |
GC (AI Capability) → PI | 0.375 | 0.253 | 1.485 | 0.138 |
GC (FKGM) → BITC | −0.034 | 0.086 | 0.399 | 0.690 |
GC (FKGM) → PI | −0.045 | 0.100 | 0.446 | 0.656 |
GC (IKGM) → BITC | 0.046 | 0.078 | 0.591 | 0.554 |
GC (IKGM) → PI | −0.049 | 0.094 | 0.516 | 0.606 |
GC (BITC) → PI | −0.140 | 0.117 | 1.196 | 0.232 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, Y.; Wu, W. How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems 2025, 13, 480. https://doi.org/10.3390/systems13060480
Gao Y, Liu Y, Wu W. How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems. 2025; 13(6):480. https://doi.org/10.3390/systems13060480
Chicago/Turabian StyleGao, Yang, Yexin Liu, and Weiwei Wu. 2025. "How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China" Systems 13, no. 6: 480. https://doi.org/10.3390/systems13060480
APA StyleGao, Y., Liu, Y., & Wu, W. (2025). How Does Artificial Intelligence Capability Affect Product Innovation in Manufacturing Enterprises? Evidence from China. Systems, 13(6), 480. https://doi.org/10.3390/systems13060480