Modeling the Growth Dynamics of Logistics Performance: Industrialization, Environmental Technology, and Economic Transformation in Manufacturing Economies
Abstract
:1. Introduction and Background
2. Literature Review
- (1)
- Environment-related technology and logistics performance.
- (2)
- Industrialization and logistics performance.
2.1. Environment-Related Technology and Logistics Performance
2.2. Industrialization and Logistics Performance
2.3. Research Gap and Contribution of the Study
3. Conceptual Framework, Methodology, and Model Selection
3.1. Conceptual Framework
3.2. Specification of the Empirical Models
3.3. Variable Selection and Data
3.3.1. Dependent Variable
3.3.2. Independent Variable
3.3.3. Control Variables
- ▪ GDP growth
- ▪ Industrialization
- ▪ Trade openness
3.4. Econometric Model
3.5. Econometric Methodology
3.5.1. Cross-Sectional Dependence
3.5.2. Slope of Homonymity Test
3.5.3. Panel Cointegration Test
3.5.4. Shapiro–Wilk Test
3.5.5. Panel Quantile Estimates (Baseline Estimates)
3.6. Robust Estimates (Driscoll–Kraay and Prais–Winsten Estimates)
3.7. Panel Quantile Estimates Based on Income
4. Results and Discussions
4.1. Descriptive Statistics
- ▪ Correlation analysis
- ▪ Unit root test
4.2. Slope Homogeneity
- ▪ Panel cointegration test
- ▪ Shapiro–Wilk test
- ▪ Panel Quantile estimates for baseline model
- ▪ Robustness Check (Driscoll–Kraay and Prais–Winsten Estimates
4.3. Panel Quantile Estimates Based on Income
- ▪ Dumitrescu and Hurlin Panel causality
5. Conclusions and Policy Implications
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
China | South Korea | United Kingdom | Canada |
United states | Mexico | Indonesia | Spain |
Japan | Italy | Brazil | Saudi Arabia |
Germany | Russian Federation | Ireland | Switzerland |
India | France | Turkey | Thailand |
1 | World Bank dataset (https://databank.worldbank.org/source/world-development-indicators). |
2 | OECD Database (https://data-explorer.oecd.org/). |
3 | WIPO, Green Innovation Database (https://wipogreen.wipo.int/wipogreen-database/database). |
References
- Jomthanachai, S.; Wong, W.P.; Khaw, K.W. An application of machine learning to logistics performance prediction: An economics attribute-based of collective instance. Comput. Econ. 2024, 63, 741–792. [Google Scholar] [CrossRef]
- Kinra, A.; Hald, K.S.; Mukkamala, R.R.; Vatrapu, R. An unstructured big data approach for country logistics performance assessment in global supply chains. Int. J. Oper. Prod. Manag. 2020, 40, 439–458. [Google Scholar] [CrossRef]
- Göçer, A.; Özpeynirci, Ö.; Semiz, M. Logistics performance index-driven policy development: An application to Turkey. Transp. Policy 2022, 124, 20–32. [Google Scholar] [CrossRef]
- Beysenbaev, R.; Dus, Y. Proposals for improving the logistics performance index. Asian J. Shipp. Logist. 2020, 36, 34–42. [Google Scholar] [CrossRef]
- Giuffrida, M.; Jiang, H.; Mangiaracina, R. Investigating the relationships between uncertainty types and risk management strategies in cross-border e-commerce logistics. Int. J. Logist. Manag. 2021, 32, 1406–1433. [Google Scholar] [CrossRef]
- Del Rosal, I.; Moura, T.G.Z. The effect of shipping connectivity on seaborne containerised export flows. Transp. Policy 2022, 118, 143–151. [Google Scholar] [CrossRef]
- Wei, S.; Jiandong, W.; Saleem, H. The impact of renewable energy transition, green growth, green trade and green innovation on environmental quality: Evidence from top 10 green future countries. Front. Environ. Sci. 2023, 10, 1076859. [Google Scholar] [CrossRef]
- Haden, S.S.P.; Oyler, J.D.; Humphreys, J.H. Historical, practical, and theoretical perspectives on green management: An exploratory analysis. Manag. Decis. 2009, 47, 1041–1055. [Google Scholar] [CrossRef]
- Jabbour, C.J.C. Tecnologias ambientais: Em busca de um significado. Rev. Adm. Pública 2010, 44, 591–611. [Google Scholar] [CrossRef]
- Sarkis, J.; Zhu, Q.; Lai, K.-h. An organizational theoretic review of green supply chain management literature. Int. J. Prod. Econ. 2011, 130, 1–15. [Google Scholar] [CrossRef]
- Jabbour, C.J.C.; Neto, A.S.; Gobbo, J.A., Jr.; de Souza Ribeiro, M.; de Sousa Jabbour, A.B.L. Eco-innovations in more sustainable supply chains for a low-carbon economy: A multiple case study of human critical success factors in Brazilian leading companies. Int. J. Prod. Econ. 2015, 164, 245–257. [Google Scholar] [CrossRef]
- Cheng, Y.; Sinha, A.; Ghosh, V.; Sengupta, T.; Luo, H. Carbon tax and energy innovation at crossroads of carbon neutrality: Designing a sustainable decarbonization policy. J. Environ. Manag. 2021, 294, 112957. [Google Scholar] [CrossRef] [PubMed]
- Shehzad, K.; Liu, X.; Rauf, A.; Arif, M.; Mazhar, S.; Sohail, N.; Amin, W. Revolutionising tourism development in China: An effective role of ICT and Western Silk Road project. Asia Pac. J. Tour. Res. 2019, 24, 965–977. [Google Scholar] [CrossRef]
- Klassen, R.D.; Whybark, D.C. Environmental management in operations: The selection of environmental technologies. Decis. Sci. 1999, 30, 601–631. [Google Scholar] [CrossRef]
- Freeman, H.; Harten, T.; Springer, J.; Randall, P.; Curran, M.A.; Stone, K. Industrial pollution prevention! A critical review. J. Air Waste Manag. Assoc. 1992, 42, 618–656. [Google Scholar] [CrossRef]
- Agyekum, E.B.; Adebayo, T.S.; Bekun, F.V.; Kumar, N.M.; Panjwani, M.K. Effect of two different heat transfer fluids on the performance of solar tower CSP by comparing recompression supercritical CO2 and rankine power cycles, China. Energies 2021, 14, 3426. [Google Scholar] [CrossRef]
- Chu, L.K. Determinants of ecological footprint in OCED countries: Do environmental-related technologies reduce environmental degradation? Environ. Sci. Pollut. Res. 2022, 29, 23779–23793. [Google Scholar] [CrossRef]
- Wiebe, K.S.; Yamano, N. Estimating CO2 Emissions Embodied in Final Demand and Trade Using the OECD ICIO 2015: Methodology and Results. 2016. Available online: https://www.oecd.org/content/dam/oecd/en/publications/reports/2016/09/estimating-co2-emissions-embodied-in-final-demand-and-trade-using-the-oecd-icio-2015_g17a286b/5jlrcm216xkl-en.pdf (accessed on 5 October 2024).
- Wang, D.; Tarasov, A.; Zhang, H. Environmental regulation, innovation capability, and green total factor productivity of the logistics industry. Kybernetes 2023, 52, 688–707. [Google Scholar] [CrossRef]
- Vachon, S.; Klassen, R.D. Supply chain management and environmental technologies: The role of integration. Int. J. Prod. Res. 2007, 45, 401–423. [Google Scholar] [CrossRef]
- Onifade, S.T.; Alola, A.A. Energy transition and environmental quality prospects in leading emerging economies: The role of environmental-related technological innovation. Sustain. Dev. 2022, 30, 1766–1778. [Google Scholar] [CrossRef]
- Ahmad, M.; Zheng, J. Do innovation in environmental-related technologies cyclically and asymmetrically affect environmental sustainability in BRICS nations? Technol. Soc. 2021, 67, 101746. [Google Scholar] [CrossRef]
- Ulucak, R.; Kassouri, Y.; İlkay, S.Ç.; Altıntaş, H.; Garang, A.P.M. Does convergence contribute to reshaping sustainable development policies? Insights from Sub-Saharan Africa. Ecol. Indic. 2020, 112, 106140. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabir, M.; Naheed, R.; Shehzad, K. How do environmental innovations and energy productivity affect the environment? Analyzing the role of economic globalization. Int. J. Environ. Sci. Technol. 2022, 19, 7527–7538. [Google Scholar] [CrossRef]
- Saud, S.; Chen, S.; Haseeb, A. The role of financial development and globalization in the environment: Accounting ecological footprint indicators for selected one-belt-one-road initiative countries. J. Clean. Prod. 2020, 250, 119518. [Google Scholar] [CrossRef]
- Pata, U.K.; Samour, A. Do renewable and nuclear energy enhance environmental quality in France? A new EKC approach with the load capacity factor. Prog. Nucl. Energy 2022, 149, 104249. [Google Scholar] [CrossRef]
- Shehzad, K.; Zeraibi, A.; Zaman, U. Testing the N-shaped environmental Kuznets Curve in Algeria: An imperious role of natural resources and economic globalization. Resour. Policy 2022, 77, 102700. [Google Scholar] [CrossRef]
- Sharif, A.; Saqib, N.; Dong, K.; Khan, S.A.R. Nexus between green technology innovation, green financing, and CO2 emissions in the G7 countries: The moderating role of social globalisation. Sustain. Dev. 2022, 30, 1934–1946. [Google Scholar] [CrossRef]
- Hashmi, R.; Alam, K. Dynamic relationship among environmental regulation, innovation, CO2 emissions, population, and economic growth in OECD countries: A panel investigation. J. Clean. Prod. 2019, 231, 1100–1109. [Google Scholar] [CrossRef]
- Shahbaz, M.; Mallick, H.; Mahalik, M.K.; Loganathan, N. Does globalization impede environmental quality in India? Ecol. Indic. 2015, 52, 379–393. [Google Scholar] [CrossRef]
- Deng, T. Impacts of transport infrastructure on productivity and economic growth: Recent advances and research challenges. Transp. Rev. 2013, 33, 686–699. [Google Scholar] [CrossRef]
- Martel, A.; Klibi, W.; Martel, A.; Klibi, W. Supply chains: Issues and opportunities. Des. Value-Creat. Supply Chain Netw. 2016, 1–43. [Google Scholar]
- Tang, C.F.; Abosedra, S. Logistics performance, exports, and growth: Evidence from Asian economies. Res. Transp. Econ. 2019, 78, 100743. [Google Scholar] [CrossRef]
- Raheem, I.D.; Ogebe, J.O. CO2 emissions, urbanization and industrialization: Evidence from a direct and indirect heterogeneous panel analysis. Manag. Environ. Qual. Int. J. 2017, 28, 851–867. [Google Scholar] [CrossRef]
- Yan, B.; Yao, B.; Zhang, C. Industrial structure, high-quality development of logistics industry and the economy. PLoS ONE 2023, 18, e0285229. [Google Scholar] [CrossRef]
- Provensi, T.; Marcon, M.L.; Schmidt, J.L.; Rodrigues, C.d.O.; Sehnem, S. Sustainability and innovation in the pet industry: An analysis from the perspective of Ecological Modernization Theory. Rev. Adm. Empresas 2024, 64, e2023-0247. [Google Scholar] [CrossRef]
- Siqi, D.; Baocheng, D. The Impact of Green Technology Innovation and Digital Transformation on the Environmental Performance of Logistics Enterprises. In Proceedings of the International Conference on Intelligent Transportation and Logistics with Big Data & International Forum on Decision Sciences, Harbin, China, 2–3 July 2023; pp. 51–64. [Google Scholar]
- Ahmed, N.; Areche, F.O.; Nieto, D.D.C.; Borda, R.F.C.; Gonzales, B.C.; Senkus, P.; Siemiński, P.; Skrzypek, A. Nexus between cyclical innovation in green technologies and CO2 emissions in nordic countries: Consent toward environmental sustainability. Sustainability 2022, 14, 11768. [Google Scholar] [CrossRef]
- Huo, W.; Zaman, B.U.; Zulfiqar, M.; Kocak, E.; Shehzad, K. How do environmental technologies affect environmental degradation? Analyzing the direct and indirect impact of financial innovations and economic globalization. Environ. Technol. Innov. 2023, 29, 102973. [Google Scholar] [CrossRef]
- Hussain, M.; Dogan, E. The role of institutional quality and environment-related technologies in environmental degradation for BRICS. J. Clean. Prod. 2021, 304, 127059. [Google Scholar] [CrossRef]
- Ju, M.; Mirović, I.; Petrović, V.; Erceg, Ž.; Stević, Ž. A Novel Approach for the Assessment of Logistics Performance Index of EU Countries. Economics 2024, 18, 20220074. [Google Scholar] [CrossRef]
- Wan, B.; Wan, W.; Hanif, N.; Ahmed, Z. Logistics performance and environmental sustainability: Do green innovation, renewable energy, and economic globalization matter? Front. Environ. Sci. 2022, 10, 996341. [Google Scholar] [CrossRef]
- Sikder, M.; Wang, C.; Yao, X.; Huai, X.; Wu, L.; KwameYeboah, F.; Wood, J.; Zhao, Y.; Dou, X. The integrated impact of GDP growth, industrialization, energy use, and urbanization on CO2 emissions in developing countries: Evidence from the panel ARDL approach. Sci. Total Environ. 2022, 837, 155795. [Google Scholar] [CrossRef] [PubMed]
- Alola, A.A.; Adebayo, T.S. Are green resource productivity and environmental technologies the face of environmental sustainability in the Nordic region? Sustain. Dev. 2023, 31, 760–772. [Google Scholar] [CrossRef]
- Usman, M.; Kousar, R.; Makhdum, M.S.A.; Yaseen, M.R.; Nadeem, A.M. Do financial development, economic growth, energy consumption, and trade openness contribute to increase carbon emission in Pakistan? An insight based on ARDL bound testing approach. Environ. Dev. Sustain. 2022, 25, 444–473. [Google Scholar] [CrossRef]
- Baz, K.; Zhu, Z. Life cycle analysis of green technologies: Assessing the impact of environmental policies on carbon emissions and energy efficiency. Geosci. Front. 2025, 16, 102004. [Google Scholar] [CrossRef]
- Salihi, A.A.; Ibrahim, H.; Baharudin, D.M. Environmental governance as a driver of green innovation capacity and firm value creation. Innov. Green Dev. 2024, 3, 100110. [Google Scholar] [CrossRef]
- Jima, M.D.; Makoni, P.L. Causality between financial inclusion, financial stability and economic growth in sub-Saharan Africa. Sustainability 2023, 15, 1152. [Google Scholar] [CrossRef]
- Barakat, M.; Haikal, G.; Ali, A.; Eid, A. Enhancing exports through managing logistics performance: Evidence from Middle East and African Countries. J. Res. Bus. Econ. Manag. 2018, 11, 2131–2140. [Google Scholar]
- Gani, A. The logistics performance effect in international trade. Asian J. Shipp. Logist. 2017, 33, 279–288. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Z.J.; Lin, B. Evaluating the synergistic effect of digitalization and industrialization on total factor carbon emission performance. J. Environ. Manag. 2023, 348, 119281. [Google Scholar] [CrossRef]
- Nam, H.-J.; Ryu, D. Does trade openness promote economic growth in developing countries? J. Int. Financ. Mark. Inst. Money 2024, 93, 101985. [Google Scholar] [CrossRef]
- Aslam, N.; Yang, W.; Saeed, R.; Ullah, F. Energy transition as a solution for energy security risk: Empirical evidence from BRI countries. Energy 2024, 290, 130090. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Swamy, P.A. Efficient inference in a random coefficient regression model. Econom. J. Econom. Soc. 1970, 38, 311–323. [Google Scholar] [CrossRef]
- Mutascu, M. A bootstrap panel Granger causality analysis of energy consumption and economic growth in the G7 countries. Renew. Sustain. Energy Rev. 2016, 63, 166–171. [Google Scholar] [CrossRef]
- Westerlund, J.; Thuraisamy, K.; Sharma, S. On the use of panel cointegration tests in energy economics. Energy Econ. 2015, 50, 359–363. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- McCoskey, S.; Kao, C. A residual-based test of the null of cointegration in panel data. Econom. Rev. 1998, 17, 57–84. [Google Scholar] [CrossRef]
- Larsson, R.; Lyhagen, J.; Löthgren, M. Likelihood-based cointegration tests in heterogeneous panels. Econom. J. 2001, 4, 109–142. [Google Scholar] [CrossRef]
- Banday, U.J.; Kocoglu, M. Modelling simultaneous relationships between human development, energy, and environment: Fresh evidence from panel quantile regression. J. Knowl. Econ. 2023, 14, 1559–1581. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Koenker, R.; Bassett, G., Jr. Regression quantiles. Econom. J. Econom. Soc. 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Aziz, N.; Mihardjo, L.W.; Sharif, A.; Jermsittiparsert, K. The role of tourism and renewable energy in testing the environmental Kuznets curve in the BRICS countries: Fresh evidence from methods of moments quantile regression. Environ. Sci. Pollut. Res. 2020, 27, 39427–39441. [Google Scholar] [CrossRef] [PubMed]
- Abrevaya, J.; Dahl, C.M. The effects of birth inputs on birthweight: Evidence from quantile estimation on panel data. J. Bus. Econ. Stat. 2008, 26, 379–397. [Google Scholar] [CrossRef]
- Binder, M.; Coad, A. From Average Joe’s happiness to Miserable Jane and Cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. J. Econ. Behav. Organ. 2011, 79, 275–290. [Google Scholar] [CrossRef]
- Amin, A.; Dogan, E.; Khan, Z. The impacts of different proxies for financialization on carbon emissions in top-ten emitter countries. Sci. Total Environ. 2020, 740, 140127. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, H.; Zhang, Z. The heterogeneous effect of driving factors on carbon emission intensity in the Chinese transport sector: Evidence from dynamic panel quantile regression. Sci. Total Environ. 2020, 727, 138578. [Google Scholar] [CrossRef]
- Payne, J.E.; Truong, H.H.D.; Chu, L.K.; Doğan, B.; Ghosh, S. The effect of economic complexity and energy security on measures of energy efficiency: Evidence from panel quantile analysis. Energy Policy 2023, 177, 113547. [Google Scholar] [CrossRef]
- Çetin, M.; Sarıgül, S.S.; Işık, C.; Avcı, P.; Ahmad, M.; Alvarado, R. The impact of natural resources, economic growth, savings, and current account balance on financial sector development: Theory and empirical evidence. Resour. Policy 2023, 81, 103300. [Google Scholar] [CrossRef]
- Ahmad, M.; Kuldasheva, Z.; Nasriddinov, F.; Balbaa, M.E.; Fahlevi, M. Is achieving environmental sustainability dependent on information communication technology and globalization? Evidence from selected OECD countries. Environ. Technol. Innov. 2023, 31, 103178. [Google Scholar] [CrossRef]
- Wang, D.; Liu, W.; Liang, Y. Green innovation in logistics service supply chain: The impacts of relationship strength and overconfidence. Ann. Oper. Res. 2022, 343, 949–979. [Google Scholar] [CrossRef]
- Grinin, L.; Malkov, S.; Korotayev, A. High-income and low-income countries. Toward a common goal at different speeds. In Reconsidering the Limits to Growth: A Report to the Russian Association of the Club of Rome; Springer: Berlin/Heidelberg, Germany, 2023; pp. 207–224. [Google Scholar]
- Marques, A.C.; Caetano, R. The impact of foreign direct investment on emission reduction targets: Evidence from high-and middle-income countries. Struct. Change Econ. Dyn. 2020, 55, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Gakuru, E.; Yang, S.; Namahoro, J.; Nie, P.; Bunje, M.Y.; Aslam, N. Energy-focused green climate policies and trade nexus: Do heterogeneous effects on clean energy poverty matter? Energy 2024, 294, 130836. [Google Scholar] [CrossRef]
Dimension | Indicators and Measurement | Reference | Source |
---|---|---|---|
LTC | Ability to track and trace consignment | [41] | WDI |
LP | Competence and quality of logistics services | [42] | WDI |
LPS | Ease of arranging competitively priced shipments | [43] | WDI |
LCC | Efficiency of the customs clearance process | [7] | WDI |
LFS | Frequency of shipments reaching the consignee on time | [1] | WDI |
LQT | Quality of trade- and transport-related infrastructure | [21] | WDI |
Variables | Measurement | Sources |
---|---|---|
CMT | Climate change mitigation technology in the transportation sector | WDI1 |
ETD | Environment-related technological development % of all technology | OECD2 |
ETR | Relative advantage in environmental technology (ratio) | OECD |
ERTI | Development of ERT inventions worldwide % age | OECD |
ERTPC | Inventions in environment-related technologies worldwide per capita | OECD |
ERP | Environment-related patent technologies | OECD |
EI | Environmental Innovation Score | WIPO3 |
Variables | Indicators and Measurement | Source |
---|---|---|
LPI | Logistics performance index | WDI |
INDUS | Industrialization (share% % of GDP) | WDI |
ERT | Environment-related technology | OECD, WDI, WIPO |
FDI | FDI net inflows (% of GDP) | WDI |
GDP | GDP per capita (current US$) | WDI |
TO | Export and Import BOP current US$ $ | WDI |
Income-Based Classification | Selected Countries |
---|---|
High-income countries | South Korea, United Kingdom, Canada, United States, Spain, Japan, Italy, Saudi Arabia, Germany, Ireland, Switzerland, and France |
Upper-middle income countries | Mexico, China, Brazil, Turkey, Thailand, Russian Federation |
Lower-middle income countries | India, Indonesia |
Variables | Mean | SD | Max | Min | No. Ob. |
---|---|---|---|---|---|
LPI | 1.987 | 0.249 | 2.395 | 1.308 | 320 |
ERT | 0.164 | 0.146 | 1.1 | 0.1 | 320 |
INDUS | 0.431 | 0.141 | 1 | 0.247 | 320 |
FDI | 0.045 | 0.078 | 1 | 0.00 | 320 |
GDP | 0.303 | 0.23 | 1 | 0.01 | 320 |
TO | 0.199 | 0.181 | 1 | 0 | 320 |
Variables | LPI | ERT | INDUS | FDI | GDP | TO |
---|---|---|---|---|---|---|
LPI | 1 | |||||
ERT | 0.1847 | 1 | ||||
INDUS | −0.468 | 0.1186 | 1 | |||
FDI | 0.1099 | −0.1061 | 0.0423 | 1 | ||
GDP | 0.7349 | 0.0024 | −0.3895 | 0.2889 | 1 | |
TO | 0.1551 | −0.2866 | 0.1891 | 0.5890 | 0.3988 | 1 |
Variables | CD Test | p-Values | Average Joint | Mean (P) | Mean Abs (P) |
---|---|---|---|---|---|
LPI | 8.723 | 0.000 | 16.00 | 0.16 | 0.35 |
ERT | 5.018 | 0.000 | 16.00 | 0.09 | 0.42 |
INDUS | 14.541 | 0.000 | 16.00 | 0.26 | 0.54 |
FDI | 6.002 | 0.000 | 16.00 | 0.11 | 0.27 |
GDP | 15.771 | 0.000 | 16.00 | 0.29 | 0.44 |
TO | 10.613 | 0.000 | 16.00 | 0.19 | 0.48 |
Variable Name | I (0) | I (1) | I (0) | I (1) |
---|---|---|---|---|
LPI | −1.166 | −1.631 | −1.894 | −2.628 * |
ERT | −2.239 ** | 3.207 *** | −1.82 | −2.401 |
INDUS | −1.968 | 3.328 *** | −2.608 * | −2.620 * |
FDI | 3.541 *** | 4.912 *** | −3.891 *** | −4.289 *** |
GDP | −1.274 | 3.061 *** | −2.017 | −2.712 ** |
TO | −1.402 | 3.074 *** | −1.89 | −2.668 ** |
Test | p-Value | Statistics |
---|---|---|
Δ | 0.000 | 5.59 |
Δ Adj. | 0.000 | 7.454 |
Panel Cointegration Test | ||||
---|---|---|---|---|
Test 1. | Wester Lund Cointegration Test | |||
Variance ratio | Statistics: 4.47259 (0.000) | |||
Test 2. | Pedroni Test | |||
Modified Phillips–Perron test | Statistics: 4.1034 (0.000) | |||
Phillips–Perron test | Statistics: 1.396 (0.000) | |||
Augmented Dickey–Fuller test | Statistics: 1.991 (0.000) | |||
Test 3. | Kao test | |||
Modified Phillips–Perron test | Statistics: 2.9913 (0.000) | |||
Phillips–Perron test | Statistics: 2.0722 (0.000) | |||
Augmented Dickey–Fuller test | Statistics: 4.7836 (0.000) |
Variables | Obs. | W | V | Z | p-Value |
---|---|---|---|---|---|
LPI | 320 | 0.9374 | 14.118 | 6.234 | 0.000 |
INDUS | 320 | 0.8949 | 23.701 | 7.454 | 0.000 |
FDI | 320 | 0.3782 | 140.264 | 11.64 | 0.000 |
TO | 320 | 0.77 | 51.878 | 9.298 | 0.000 |
ERT | 320 | 0.4635 | 121.018 | 11.293 | 0.000 |
GDP | 320 | 0.9202 | 17.99 | 6.804 | 0.000 |
Variable | 0.10 | 0.20 | 0.30 | 0.40 | 0.50 | 0.60 | 0.70 | 0.80 | 0.90 |
---|---|---|---|---|---|---|---|---|---|
INDUS | −0.271 | −0.336 ** | 0.445 *** | 0.546 *** | 0.487 *** | 0.485 *** | −0.449 *** | −0.461 *** | −0.435 *** |
(0.316) | (0.188) | (0.097) | (0.112) | (0.086) | (−0.0806) | (−0.046) | (0.080) | (−0.165) | |
FDI | −0.209 | −0.222 | −0.369 | −0.405 | −0.664 * | −0.5 | −0.402 | −0.22 | −0.342 |
(0.519) | (0.536) | (0.480) | (0.048) | (0.379) | (0.349) | (−0.367) | (−0.364) | (−0.254) | |
TO | −0.147 | −0.00308 | 0.0851 | 0.189 | 0.309 ** | 0.278 ** | 0.213 | 0.203 | 0.316 *** |
(0.154) | (0.167) | (0.189) | (0.153) | (0.123) | (−0.131) | (−0.139) | (−0.157) | (−0.115) | |
ERT | 0.407 *** | 0.364 *** | 0.340 *** | 0.326 *** | 0.293 *** | 0.291 ** | 0.392 *** | 0.608 *** | 0.753 *** |
(0.097) | (0.035) | (0.014) | (0.026) | (0.032) | (−0.115) | (0.131) | (0.170) | (−0.256) | |
GDP | 0.795 *** | 0.678 *** | 0.658 *** | 0.660 *** | 0.678 *** | 0.677 *** | 0.701 *** | 0.774 *** | 0.790 *** |
(0.058) | (0.07) | (0.052) | (0.102) | (0.113) | (−0.098) | (−0.114) | (0.106) | (−0.111) | |
Constant | 1.643 *** | 1.766 *** | 1.861 *** | 1.938 *** | 1.933 *** | 1.959 *** | 1.962 *** | 1.954 *** | 1.942 *** |
(0.090) | (0.0956) | (0.053) | (0.072) | (0.067) | (0.062) | (0.06) | (0.061) | (0.062) | |
Pseudo R2 | 0.3165 | 0.3790 | 0.4365 | 0.4609 | 0.4613 | 0.4350 | 0.3934 | 0.3609 | 0.3535 |
N. obs | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 | 320 |
Prais–Winsten Estimates: Driscoll–Kraay Estimates: | ||||||
---|---|---|---|---|---|---|
Variables | Coefficient | Het.co. Std Error | p-Value | Coefficient | D/k Std. Error | p-Value |
ERT | 0.2448 | 0.053 | 0.000 | 0.3794 | 0.069 | 0.000 |
INDUS | −0.3783 | 0.083 | 0.000 | −0.451 | 0.085 | 0.000 |
FDI | 0.091 | 0.064 | 0.156 | 0.134 | 0.11 | 0.11 |
GDP | 0.4089 | 0.0602 | 0.000 | 0.6859 | 0.068 | 0.000 |
TO | 0.1395 | 0.091 | 0.127 | 0.0787 | 0.073 | 0.21 |
CONS. | 1.952 | 0.045 | 0.000 | 1.9062 | 0.06 | 0.000 |
Variables | 1st Stage (ERT) | 2nd Stage (LPI) |
---|---|---|
Endogenous Variable | ||
ERT | 3.578 *** (0.618) | |
Instruments | ||
L1.LPI | 0.269 *** (0.046) | |
INDUS | 0.465 *** (0.065) | −1.669 *** (0.323) |
FDI | 0.254 ** (0.116) | −0.898 ** (0.434) |
GDP | 0.002 (0.054) | 0.008 (0.193) |
TO | −0.424 *** (0.057) | 1.501 *** (0.342) |
Diagnostics | ||
Observations | 300 | 300 |
F-test. | 33.62 *** | |
Underid. test (p-value) | 0.000 | 0.000 |
Weak ID test (Cragg-Donald) | 33.62 > 16.38 (10% max IV size) | |
AR Wald test (p-value) | - | 0.000 |
Variable High-Income Countries Upper-Middle-Income Countries Lower-Middle-Income Countries | ||||||
---|---|---|---|---|---|---|
INDUS | 0.1012 | (−0.1564) | −0.3524 ** | (−0.1617) | 0.7945 *** | (−0.2241) |
FDI | −0.0511 | (−0.1358) | −0.2446 | (−0.7576) | 0.2522 | (−0.1514) |
TO | 0.6845 *** | (−0.244) | 0.4595 | (−0.4845) | 0.407 | (−0.3433) |
ERT | 0.7729 *** | (0.223) | 0.3864 *** | (0.096) | −3.661 | (0.721) |
GDP | 0.2634 ** | (0.105) | 0.8353 *** | (−0.278) | 0.4267 ** | (−0.1837) |
CONS. | 2.1393 *** | (−0.0417) | 1.7923 *** | (−0.0473) | 2.4514 *** | (−0.2807) |
No.obs | 144 | 144 | 32 |
Null Hypothesis | W-Statistics | Z-Bar Statistics | p-Value |
---|---|---|---|
Logistics performance index does not cause ERT ERT does not cause LPI | 1.7164 *** | 2.2655 | 0.02 |
3.6067 | 0.000 | ||
LPI does not cause INDUS INDUS does not cause LPI | 2.1174 *** | 3.5337 | 0.000 |
−0.8671 | 0.38 | ||
LPI does not cause FDI FDI does not cause LPI | 1.3681 *** | 1.1640 | 0.02 |
4.2874 | 0.000 | ||
GDP does not cause LPI LPI does not cause GDP | 1.3639 *** | 1.1509 | 0.24 |
3.4743 | 0.000 | ||
LPI does not cause TO TO does not cause LPI | 3.5332 *** | 8.0107 | 0.000 |
0.0865 | 0.9311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hayyat, U.; Qian, L.; Saeed, M.; Nawaz, W. Modeling the Growth Dynamics of Logistics Performance: Industrialization, Environmental Technology, and Economic Transformation in Manufacturing Economies. Systems 2025, 13, 375. https://doi.org/10.3390/systems13050375
Hayyat U, Qian L, Saeed M, Nawaz W. Modeling the Growth Dynamics of Logistics Performance: Industrialization, Environmental Technology, and Economic Transformation in Manufacturing Economies. Systems. 2025; 13(5):375. https://doi.org/10.3390/systems13050375
Chicago/Turabian StyleHayyat, Umar, Li Qian, Maleeha Saeed, and Wajid Nawaz. 2025. "Modeling the Growth Dynamics of Logistics Performance: Industrialization, Environmental Technology, and Economic Transformation in Manufacturing Economies" Systems 13, no. 5: 375. https://doi.org/10.3390/systems13050375
APA StyleHayyat, U., Qian, L., Saeed, M., & Nawaz, W. (2025). Modeling the Growth Dynamics of Logistics Performance: Industrialization, Environmental Technology, and Economic Transformation in Manufacturing Economies. Systems, 13(5), 375. https://doi.org/10.3390/systems13050375