Nash–Cournot Equilibrium and Its Impact on Network Transmission Congestion
Abstract
:1. Introduction
- The analysis/evaluation of congestion on transmission lines comparing economic dispatch using the NCE against conventional power dispatch (ED) provides practical insights. The findings validate the profits of the NCE method, as it leads to a lower percentage of use in the test system compared to the conventional economic dispatch, thereby reducing congestion in the transmission line.
- The model developed in this article incorporates bilateral power transactions to analyze congestion in transmission lines. Bilateral transactions are treated as constant power injections within the economic dispatch solution using NCE and conventional dispatch methods.
2. The Cournot Model
The Nash–Cournot Equilibrium
3. The Cournot Model as an Optimization Problem
- The NCE exists.
- Moreover, if the game map associated with (9)–(13), defined as
4. Results
4.1. Simulation for the Nine-Node Test System—Base Case
4.2. Simulation for the Nine-Node Test System—with Two Bilateral Power Transactions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (a).
- Stationary condition: Establishes that the partial derivative of the Lagrange function, expressed in (A9) with respect to the power generated by each participant, must be equal to zero.
- (b).
- Feasibility conditions: They enforce equality constraints (reference angle and balance constraint) and inequality constraints (generation limits and maximum lines transmission limits).
- (c).
- Complementary condition: They establish that the inner product of the multiplier vector of inequality constraints (, , , and ) and the vector of inequality constraints (, , and ) is zero.
- (d).
- Sign condition: Indicates that the multiplier vector of inequality constraints (, , , and ) must be non-negative, that is, greater than or equal to zero.
Appendix B
α | β |
---|---|
1000 | 1 |
Players | Cost Function Coefficients | Generation Limits (MW) | |||
---|---|---|---|---|---|
1 | 150 | 5.00 | 0.1100 | 100 | 250 |
2 | 600 | 1.20 | 0.0850 | 100 | 270 |
3 | 335 | 1.00 | 0.1225 | 100 | 300 |
Node | Load (MW) |
---|---|
5 | 130 |
6 | 190 |
8 | 200 |
Sending Node | Receiving Node | R (p.u.) | X (p.u.) | B (p.u.) | Upper Limits (MW) |
---|---|---|---|---|---|
1 | 4 | - | 0.0576 | 17.3611 | 250 |
2 | 7 | - | 0.0625 | 16.0000 | 270 |
3 | 9 | - | 0.0586 | 17.0648 | 300 |
4 | 5 | 0.0170 | 0.0920 | 10.5106 | 250 |
4 | 6 | 0.0100 | 0.0850 | 11.6040 | 250 |
5 | 7 | 0.0390 | 0.1700 | 5.5882 | 150 |
6 | 9 | 0.0320 | 0.1610 | 5.9751 | 250 |
7 | 8 | 0.0119 | 0.1008 | 9.7820 | 250 |
8 | 9 | 0.0085 | 0.0720 | 13.6752 | 250 |
References
- Rasheed, S.; Abhyankar, A. Development of Nash Equilibrium for Profit Maximization Equilibrium Problem in Electricity Market. In Proceedings of the IEEE 2019 8th International Conference on Power Systems (ICPS), Jaipur, India, 20–22 December 2019; pp. 1–6. Available online: https://ieeexplore.ieee.org/document/9067712 (accessed on 17 October 2022).
- Stoft, S. Using Game Theory to Study Market Power in Simple Networks. IEEE Power Eng. Soc. 1999, 33–40. Available online: https://www.researchgate.net/publication/240384407_Using_Game_Theory_to_Study_Market_Power_in_Simple_Networks (accessed on 27 May 2022).
- Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944. [Google Scholar]
- Fudenberg, D.; Tirole, J. Game Theory; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Kreps, D.M. Microeconomic Foundations II: Imperfect Competition, Information, and Strategic Interaction; Princeton University Press: Princeton, NJ, USA, 2023. [Google Scholar]
- Chaoxu, M.; Wang, K.; Zhen, N.; Changyin, S. Cooperative Differential Game-Based Optimal Control and Its Application to Power Systems. IEEE Trans. Ind. Inform. 2020, 16, 5169–5179. Available online: https://ieeexplore.ieee.org/document/8913641 (accessed on 11 February 2022).
- Belhaiza, S.; Baroudi, U. A Game Theoretic Model for Smart Grids Demand Management. IEEE Trans. Smart Grid 2015, 6, 1386–1393. Available online: https://ieeexplore.ieee.org/document/6998870 (accessed on 11 February 2022).
- Pourahmadi, F.; Fotuhi-Firuzabad, M.; Dehghanian, P. Application of Game Theory in Reliability-Centered Maintenance of Electric Power Systems. IEEE Trans. Ind. Appl. 2017, 53, 936–946. Available online: https://ieeexplore.ieee.org/document/7782759/footnotes#footnotes (accessed on 11 February 2022).
- Qisheng, H.; Yunjian, X.; Costas, A.C. Strategic Storage Operation in Wholesale Electricity Markets: A Networked Cournot Game Analysis. IEEE Trans. Netw. Sci. Eng. 2021, 8, 1789–1801. Available online: https://ieeexplore.ieee.org/document/9406390 (accessed on 16 October 2022).
- Luhao, W.; Yumin, Z.; Qiqiang, L.; Xingong, C.; Zhuo, W. A Stochastic Cournot Game Based Optimal Energy Bidding for Multiple Microgrid. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 1716–1720. Available online: https://www.researchgate.net/publication/344765871_A_Stochastic_Cournot_Game_Based_Optimal_Energy_Bidding_for_Multiple_Microgrids (accessed on 11 February 2022).
- Song, H.; Cheng-Ching, L.; Lawarree, J. Nash equilibrium bidding strategies in a bilateral electricity market. IEEE Trans. Power Syst. 2002, 17, 73–79. Available online: https://ieeexplore.ieee.org/document/982195 (accessed on 8 April 2022).
- Sabu, C.; Babu, M.R. Nash equilibrium bidding strategies in a pool based electricity market. In Proceedings of the 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014], Nagercoil, India, 20–21 March 2014; pp. 803–808. Available online: https://ieeexplore.ieee.org/document/7055001?signout=success (accessed on 17 October 2022).
- Cunningham, L.B.; Baldick, R.; Baughman, M.L. An empirical study of applied game theory: Transmission constrained Cournot behavior. IEEE Trans. Power Syst. 2002, 17, 166–172. Available online: https://www.researchgate.net/publication/3266508_An_empirical_study_of_applied_game_theory_Transmission_constrained_Cournot_behavior (accessed on 2 July 2022).
- Huang, L.; Zhang, S.; Wang, X.; Ma, J. A Distributed Algorithm for Solving Cournot Equilibrium Model of Electricity Markets. In Proceedings of the 2020 5th International Conference on Power and Renewable Energy (ICPRE), Shanghai, China, 12–14 September 2020; pp. 138–142. Available online: https://ieeexplore.ieee.org/document/9233176 (accessed on 17 October 2022).
- Kolstad, C.D.; Mathiesen, L. Necessary and Sufficient Conditions for Uniqueness of a Cournot Equilibrium. Rev. Econ. Stud. 1987, 54, 681–690. [Google Scholar] [CrossRef]
- Pražák, P.; Kovárník, J. Nonlinear Phenomena in Cournot Duopoly Model. Systems 2018, 6, 30. [Google Scholar] [CrossRef]
- Kirschen, D.S.; Strbac, G. Fundamentals of Power System Economics; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019. [Google Scholar]
- Carrillo Galvez, A.; Flores Bazán, F.; López Parra, E. Effect of models uncertainties on the emission constrained economic dispatch. A prediction interval-based approach. Appl. Energy 2022, 317, 119070. [Google Scholar] [CrossRef]
- Djurovic, M.; Milacic, A.; Krsulja, M. A simplified model of quadratic cost function for thermal generators. In Proceedings of the 23rd DAAAM International Symposium on Intelligent Manufacturing and Automation, Zadar, Croatia, 21–28 October 2012; p. 1. Available online: https://www.researchgate.net/publication/289742158_A_simplified_model_of_quadratic_cost_function_for_thermal_generators (accessed on 28 August 2024).
- Gabriel, S.A.; Conejo, A.J. Complementarity Modeling in Energy Markets; Springer: New York, NY, USA, 2013. [Google Scholar]
- Wood, A.J.; Wollenberg, B.F.; Sheblé, G.B. Power Generation, Operation, and Control; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer: New York, NY, USA, 2003. [Google Scholar]
- Rosen, J.B. Existence and Uniqueness of Equilibrium Points for Concave N-Person Games. Econometrica 1965, 33, 520–534. [Google Scholar] [CrossRef]
- Osborne, M.J.; Rubinstein, A. A Course in Game Theory; The MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Kamgarpour, M. Game-Theoretic Models in Energy Systems and Control. DTU Summer School 2018 Modern Optimization in Energy Systems. 2018. Available online: https://infoscience.epfl.ch/handle/20.500.14299/183420 (accessed on 28 August 2024).
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003. [Google Scholar]
- Sánchez Galván, M.A. Modelado e Implementación del Equilibrio de Nash—Cournot en los Mercados de Energía Desregulados. Master’s Thesis, Instituto Politécnico Nacional, México City, Mexico, 2023. [Google Scholar]
- Castillo, E.; Conejo, A.J.; Pedregal, P.; García, R.; Alguacil, N. Formulación y Resolución de Modelos de Programación Matemática en Ingeniería y Ciencia; Universidad de Castilla La Mancha. Escuela Técnica Superior de Ingenieros Industriales. Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos. 2002. Available online: https://books.google.com.mx/books/about/Formulaci%C3%B3n_y_resoluci%C3%B3n_de_modelos_de.html?id=6SkyPQAACAAJ&redir_esc=y (accessed on 17 October 2023).
Players | Solution Approach | |||
---|---|---|---|---|
ED | NCE | |||
Power (MW) | Angle | Power (MW) | Angle | |
1 | 160.32 | 0 | 111.84 | 0 |
2 | 217.49 | 9.1 | 199.35 | 12.29 |
3 | 151.73 | 1.57 | 220.56 | 11.2 |
Total: | 529.54 | - | 531.75 | - |
Players | Solution Approach | |||
---|---|---|---|---|
ED | NCE | |||
Cost (USD/MWh) | Profit (USD/MWh) | Cost (USD/MWh) | Profit (USD/MWh) | |
1 | 3778.875 | 71,645.2719 | 2085.1004 | 50,283.9795 |
2 | 4881.649 | 97,438.6958 | 4217.1559 | 89,128.4815 |
3 | 3306.924 | 68,075.9716 | 6514.7824 | 96,762.4375 |
Total: | 11,967.448 | 237,159.939 | 12,817.038 | 236,174.898 |
Transmission Line | Solution Approach | ||||
---|---|---|---|---|---|
Sending Node | Receiving Node | ||||
ED | NCE | ||||
Power Flow (MW) | Losses (MW) | Power Flow (MW) | Losses (MW) | ||
1 | 4 | 160.32 | 0 | 111.84 | 0 |
2 | 7 | 217.49 | 0 | 199.35 | 0 |
3 | 9 | 151.73 | 0 | 220.56 | 0 |
4 | 5 | 46.04 | 0.41 | 32.91 | 0.24 |
4 | 6 | 114.28 | 1.39 | 78.93 | 0.7 |
5 | 7 | 84.37 | 3.08 | 97.33 | 4.15 |
6 | 9 | −77.11 | 2.08 | −111.77 | 4.51 |
7 | 8 | 130.04 | 2.09 | 97.87 | 1.19 |
8 | 9 | 72.05 | 0.48 | 103.31 | 0.97 |
Transmission Line | Solution Approach | ||
---|---|---|---|
Sending Node | Receiving Node | ||
ED | NCE | ||
Percentage of Use (%) | Percentage of Use (%) | ||
1 | 4 | 64.12 | 44.73 |
2 | 7 | 80.55 | 73.83 |
3 | 9 | 50.57 | 73.52 |
4 | 5 | 18.41 | 13.16 |
4 | 6 | 45.71 | 31.57 |
5 | 7 | 56.24 | 64.88 |
6 | 9 | 30.84 | 44.70 |
7 | 8 | 52.01 | 39.14 |
8 | 9 | 28.82 | 41.32 |
Median: | 50.57 | 44.70 | |
Mean: | 47.47 | 47.43 |
Players | Solution Approach | |||
---|---|---|---|---|
ED | NCE | |||
Power (MW) | Angle | Power (MW) | Angle | |
1 | 160.8 | 0 | 109.49 | 0 |
2 | 217.49 | 9.27 | 167.34 | 10.03 |
3 | 151.73 | −3.37 | 252.66 | 8.96 |
Total: | 530.02 | - | 529.49 | - |
Players | Solution Approach | |||
---|---|---|---|---|
ED | NCE | |||
Cost (USD/MWh) | Profit (USD/MWh) | Cost (USD/MWh) | Profit (USD/MWh) | |
1 | 3798.230 | 71,774.553 | 2016.136 | 49,500.003 |
2 | 4881.649 | 97,334.300 | 3181.035 | 75,554.108 |
3 | 3306.924 | 68,003.141 | 8407.701 | 110,471.355 |
Total: | 11,986.804 | 237,111.996 | 13,604.873 | 235,525.466 |
Transmission Line | Solution Approach | ||||
---|---|---|---|---|---|
Sending Node | Receiving Node | ||||
ED | NCE | ||||
Power Flow (MW) | Losses (MW) | Power Flow (MW) | Losses (MW) | ||
1 | 4 | 214.12 | 0 | 164.23 | 0 |
2 | 7 | 267.49 | 0 | 217.34 | 0 |
3 | 9 | 151.73 | 0 | 252.65 | 0 |
4 | 5 | 46.26 | 0.42 | 40.12 | 0.33 |
4 | 6 | 167.86 | 3.07 | 124.11 | 1.73 |
5 | 7 | −84.16 | 3.14 | −90.21 | 3.59 |
6 | 9 | −75.21 | 2.05 | −117.61 | 5.13 |
7 | 8 | 180.18 | 4.11 | 123.55 | 1.93 |
8 | 9 | −73.92 | 0.54 | −128.38 | 1.53 |
Transmission Line | Solution Approach | ||
---|---|---|---|
Sending Node | Receiving Node | ||
ED | NCE | ||
Percentage of Use (%) | Percentage of Use (%) | ||
1 | 4 | 85.64 | 65.69 |
2 | 7 | 99.07 | 80.49 |
3 | 9 | 50.57 | 84.21 |
4 | 5 | 18.50 | 16.04 |
4 | 6 | 67.14 | 49.64 |
5 | 7 | 56.10 | 60.14 |
6 | 9 | 30.08 | 47.04 |
7 | 8 | 72.07 | 49.42 |
8 | 9 | 29.56 | 51.35 |
Median: | 56.10 | 51.35 | |
Mean: | 56.53 | 56.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Galván, M.d.l.Á.; Robles García, J.; Romero Romero, D.; Badaoui, M. Nash–Cournot Equilibrium and Its Impact on Network Transmission Congestion. Systems 2024, 12, 376. https://doi.org/10.3390/systems12090376
Sánchez Galván MdlÁ, Robles García J, Romero Romero D, Badaoui M. Nash–Cournot Equilibrium and Its Impact on Network Transmission Congestion. Systems. 2024; 12(9):376. https://doi.org/10.3390/systems12090376
Chicago/Turabian StyleSánchez Galván, María de los Ángeles, Jaime Robles García, David Romero Romero, and Mohamed Badaoui. 2024. "Nash–Cournot Equilibrium and Its Impact on Network Transmission Congestion" Systems 12, no. 9: 376. https://doi.org/10.3390/systems12090376
APA StyleSánchez Galván, M. d. l. Á., Robles García, J., Romero Romero, D., & Badaoui, M. (2024). Nash–Cournot Equilibrium and Its Impact on Network Transmission Congestion. Systems, 12(9), 376. https://doi.org/10.3390/systems12090376