Optimized Decisions for Smart Tourism Destinations: A Cross-Generational Perspective Using an Improved Importance–Performance Analysis
Abstract
:1. Introduction
2. Review of the Scientific Literature
2.1. The Decision Problem in the Smart Tourism Destination Context
2.2. Smart Tourism Destination Attributes
2.3. Baby Boomers, Generation X, Millennials, Generation Z—Main Considerations
2.4. The Importance–Performance Analysis
3. Research Methodology
3.1. Questionnaire Design
3.2. Data Collection
3.3. Data Analysis
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
STD Theoretically Validated Categories | Dimension Description | STD Attributes Operationalized by Importance-Items and Performance-Items |
---|---|---|
Information and communications technology (ICT) | The ICT aspects perceived by tourists as necessary for online communication and connectivity | ICT1: Free Wifi ICT2: Various destination-related applications ICT3: Short and multimedia-messaging service ICT4: Tourists call centre ICT5: GPS (Global Positioning System) signal |
Digital accessibility (Da) | Da represents the perceived possibility to obtain online information that should be complete, correct, and true, available in applications connected to one other, and easily accessed in more than one language | Da1: Intelligent-guide system Da2: Tourism destination home page Da3: Tourism destination home page in English Da4: Online parking access |
Smart mobility (Sm) | Sm refers to the physical accessibility of tourists to different places, facilitated by interconnected and shared online transportation modes | Sm1: Guiding-information service Sm2: E-tour map Sm3: Flexible smart vehicle scheduling |
Smart tourist experience (Ste) | A Ste derives from the interaction between tourism stakeholders, mediated by the information circulating through the ICTs, largely including interacting with multimedia interactive and/or enhanced websites | Ste1: Virtual tourism experience Ste2: Augmented reality |
Influence of third parties (Itp) | Itp refers to the influence of third parties established by travel reviews apps, social networks, online communities, and blogs on travel planning and decision-making. | Itp1: Tourism platforms that contains accommodation, restaurants, attractions or other recommendations Itp2: Online forums/travel discussions communities Itp3: Travel blogs |
Infrastructure and Sustainability (IS) | I refers to the physical environment offering various public services and S refers to the environmental and socioeconomic benefits provided by a tourist destination | IS1: Real-time traffic broadcast IS2: Electronic-entrance guard system IS3: Smart environment |
Facilities for travellers with disabilities (Fd) | Fd refers to the tourist destination features, such as applications with audio description, sign language, as well as detailed and complete information providing digital accessibility and mobility for travellers with disabilities. | Fd1: Applications, websites, content that is accessible for travellers with disabilities Fd2: Accessible data about physical design features of accommodation, restaurants, tourist attractions, etc. |
Trust (T) | T refers to credibility that emerges from positive experiences belonging to a STD deposited by the tourists in tourism providers. | T1: Mobile payment T2: Electronic toll collection T3: E-complaint handling |
Security (S) | S refers to the reduction of perceived travel risk derived from suitable information obtained through technological resources. | S1: Real-time traffic broadcast S2: Smart card (band) S3: Weather forecast S4: Smart emergency response system |
Independence (I) | I refers to tourist’s autonomy to make choices and get around STD | I1: Electronic touch screen I2: Quick response code I3: Personal-itinerary design option |
Well-being (Wb) | Wb refers to the physiological and psychological comfort experienced by travellers in a STD | Wb1: Queuing-time forecast Wb2: E-Events calendar Wb3: Electronic-ticketing system Wb4: Online coupons Wb5: Tourist-flow forecast Wb6: Tourist-flow monitoring Wb7: Crowd handling |
Personal transformation (Pt) | Pt refers to the learning acquired at an STD that changes the travellers’s point of view, leading it to incorporate innovative ideas in everyday life | Pt1: Smart education (destination should educate their tourists on how to best use the new technologies through the smart learning method) |
Frequency Distribution | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Baby Boomers | Generation X | Millennials | Generation Z | Overall sample | ||||||
Variables | Number | Percentage | Number | Percentage | Number | Percentage | Number | Percentage | Number | Percentage |
Gender (Total) | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
Female | 31 | 44.93% | 52 | 34.90% | 122 | 45.02% | 159 | 37.68% | 523 | 57.41% |
Male | 36 | 52.17% | 95 | 63.76% | 138 | 50.92% | 254 | 60.19% | 364 | 39.96% |
I prefer not to say | 2 | 2.90% | 2 | 1.34% | 11 | 4.06% | 9 | 2.13% | 24 | 2.63% |
Education | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
Higher education | 35 | 50.72% | 106 | 71.14% | 211 | 77.86% | 318 | 75.36% | 670 | 73.55% |
High school | 26 | 37.68% | 42 | 28.19% | 58 | 21.40% | 98 | 23.22% | 224 | 24.59% |
Middle school | 8 | 11.59% | 1 | 0.67% | 2 | 0.74% | 6 | 1.42% | 17 | 1.87% |
Professional or employment status | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
Specialist job title | 10 | 14.49% | 45 | 30.20% | 87 | 32.10% | 75 | 17.77% | 217 | 23.82% |
Service worker | 10 | 14.49% | 29 | 19.46% | 79 | 29.15% | 67 | 15.88% | 185 | 20.31% |
Public function servant | 6 | 8.70% | 21 | 14.09% | 21 | 7.75% | 18 | 4.27% | 66 | 7.24% |
Employment in agriculture | 2 | 2.90% | 0 | 0% | 6 | 2.21% | 2 | 0.47% | 10 | 1.10% |
Qualified worker | 7 | 10.14% | 4 | 2.68% | 6 | 2.21% | 27 | 6.40% | 44 | 4.83% |
State employee | 6 | 8.70% | 22 | 14.77% | 22 | 8.12% | 13 | 3.08% | 63 | 6.92% |
Self-employed | 1 | 1.45% | 8 | 5.37% | 7 | 2.58% | 18 | 4.27% | 34 | 3.73% |
Entrepreneur | 2 | 2.90% | 6 | 4.03% | 20 | 7.38% | 17 | 4.03% | 45 | 4.94% |
Others (student, homemaker, retired, etc.) | 25 | 36.23% | 14 | 9.40% | 23 | 8.49% | 185 | 43.84% | 247 | 27.11% |
Frequency of travel/holiday (of at least 2 days) | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
a. 1–2 times a year | 47 | 68.12% | 97 | 65.10% | 114 | 42.07% | 189 | 44.79% | 447 | 49.07% |
b. 3–4 times a year | 18 | 26.09% | 36 | 24.16% | 122 | 45.02% | 156 | 36.97% | 332 | 36.44% |
c. 5–7 times a year | 4 | 5.80% | 12 | 8.05% | 24 | 8.86% | 47 | 11.14% | 87 | 9.55% |
d. More than 7 times a year | 0 | 0% | 4 | 2.68% | 11 | 4.06% | 30 | 7.11% | 45 | 4.94% |
Travel motives | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
a. Relaxation and health care | 32 | 46.38% | 54 | 36.24% | 112 | 41.33% | 117 | 27.73% | 315 | 34.58% |
b. Professional interest | 4 | 5.80% | 14 | 9.40% | 29 | 10.70% | 16 | 3.79% | 63 | 6.92% |
c. Visiting tourist attractions | 18 | 26.09% | 53 | 35.57% | 90 | 33.21% | 210 | 49.76% | 371 | 40.72% |
d. Participation in cultural or sports events | 0 | 0% | 3 | 2.01% | 6 | 2.21% | 15 | 3.55% | 24 | 2.63% |
e. Visiting relatives or friends | 9 | 13.04% | 13 | 8.72% | 18 | 6.64% | 23 | 5.45% | 63 | 6.92% |
f. Other reasons | 6 | 8.70% | 12 | 8.05% | 16 | 5.90% | 41 | 9.72% | 75 | 8.23% |
Income level | 69 | 7.57% | 149 | 16.36% | 271 | 29.75% | 422 | 46.32% | 911 | 100% |
a. Under 2500 RON monthly | 10 | 14.49% | 13 | 8.72% | 12 | 4.43% | 119 | 28.20% | 154 | 16.90% |
b. Between 2501 and 3500 RON monthly | 15 | 21.74% | 30 | 20.13% | 49 | 18.08% | 118 | 27.96% | 212 | 23.27% |
c. Between 3501 and 4500 RON monthly | 19 | 27.54% | 44 | 29.53% | 93 | 34.32% | 75 | 17.77% | 231 | 25.36% |
d. Between 4501 and 5500 RON monthly | 13 | 18.84% | 34 | 22.82% | 56 | 20.66% | 38 | 9.00% | 141 | 15.48% |
e. Over 5.500 RON monthly | 12 | 17.39% | 28 | 18.79% | 61 | 22.51% | 72 | 17.06% | 173 | 18.99% |
Baby Boomers | Generation X | Millennials | Generation Z | ||||||
---|---|---|---|---|---|---|---|---|---|
Performance | Importance | Performance | Importance | Performance | Importance | Performance | Importance | ||
1 | ICT1 | 3.85 | 4.18 | 4.36 | 4.38 | 4.35 | 4.50 | 4.16 | 4.38 |
2 | ICT2 | 3.76 | 4.02 | 4.18 | 4.20 | 4.08 | 4.31 | 4.05 | 4.14 |
3 | ICT3 | 3.65 | 4.18 | 3.95 | 4.18 | 3.87 | 4.25 | 3.82 | 4.18 |
4 | ICT4 | 3.47 | 4 | 3.40 | 4.06 | 3.72 | 4.16 | 3.64 | 4.06 |
5 | Da1 | 3.55 | 4 | 3.73 | 4.22 | 3.90 | 4.33 | 4.03 | 4.19 |
6 | Da2 | 3.34 | 3.84 | 4.10 | 4.16 | 4.19 | 4.40 | 3.99 | 4.29 |
7 | Da3 | 2.56 | 2.91 | 3.51 | 3.81 | 3.99 | 4.29 | 3.93 | 4.20 |
8 | I1 | 3.10 | 3.14 | 3.71 | 3.63 | 3.72 | 3.90 | 3.83 | 3.82 |
9 | I2 | 2.62 | 3.42 | 3.18 | 3.63 | 3.30 | 3.91 | 3.58 | 3.77 |
10 | ICT5 | 3.36 | 3.56 | 3.95 | 4.08 | 3.98 | 4.25 | 3.97 | 4.16 |
11 | I3 | 2.95 | 3.30 | 3.59 | 3.97 | 3.77 | 4.16 | 3.67 | 3.95 |
12 | Sm1 | 2.95 | 3.18 | 3.36 | 4.04 | 3.52 | 4.21 | 3.54 | 4.03 |
13 | Sm2 | 3.13 | 3.82 | 3.84 | 4.25 | 4.02 | 4.21 | 3.96 | 4.31 |
14 | S1 | 3.23 | 3.68 | 3.32 | 4.20 | 3.77 | 4.24 | 3.72 | 4.17 |
15 | S2 | 3.31 | 3.40 | 3.32 | 3.82 | 3.66 | 4.04 | 3.64 | 4.03 |
16 | S3 | 3.89 | 4.04 | 4.09 | 4.24 | 4.08 | 4.24 | 4.03 | 4.16 |
17 | Wb1 | 2.72 | 3.27 | 3.43 | 3.95 | 3.46 | 4.21 | 3.58 | 4.14 |
18 | Ste1 | 2.53 | 3.14 | 3.19 | 3.65 | 3.42 | 3.87 | 3.61 | 3.95 |
19 | Itp1 | 3.07 | 3.57 | 3.89 | 4.18 | 4.22 | 4.31 | 3.98 | 4.26 |
20 | Itp2 | 2.52 | 2.94 | 3.50 | 3.83 | 3.56 | 3.98 | 3.61 | 3.85 |
21 | Itp3 | 2.49 | 3 | 3.50 | 3.69 | 3.61 | 3.98 | 3.49 | 3.70 |
22 | T1 | 3.65 | 3.86 | 4.06 | 4.44 | 4.16 | 4.58 | 4.13 | 4.36 |
23 | T2 | 3.28 | 3.55 | 3.65 | 4.02 | 3.92 | 4.37 | 3.82 | 4.10 |
24 | IS3 | 2.82 | 3.42 | 3.03 | 3.93 | 3.36 | 4.16 | 3.49 | 3.93 |
25 | S4 | 2.86 | 3.52 | 3.27 | 4.20 | 3.23 | 4.30 | 3.48 | 4.14 |
26 | Fd1 | 2.85 | 3.81 | 3.10 | 3.90 | 3.34 | 4.24 | 3.38 | 4.17 |
27 | Fd2 | 2.91 | 3.82 | 3.04 | 3.99 | 3.46 | 4.25 | 3.54 | 4.22 |
28 | T3 | 3.17 | 3.65 | 3.24 | 4.24 | 3.48 | 4.33 | 3.48 | 4.23 |
29 | IS1 | 3.24 | 4.02 | 3.51 | 4.35 | 3.49 | 4.53 | 3.49 | 4.32 |
30 | IS2 | 3.17 | 3.68 | 3.89 | 4.16 | 4.07 | 4.40 | 3.85 | 4.31 |
31 | Sm3 | 2.62 | 3.43 | 3.08 | 4 | 3.41 | 4.24 | 3.44 | 3.97 |
32 | Da4 | 2.68 | 3.37 | 3.08 | 3.84 | 3.25 | 4.12 | 3.39 | 3.96 |
33 | Wb2 | 2.86 | 3.34 | 3.43 | 3.85 | 3.56 | 4.12 | 3.67 | 4.08 |
34 | Wb3 | 3.14 | 3.65 | 3.81 | 4.14 | 3.8 | 4.37 | 3.91 | 4.24 |
35 | Wb4 | 3.02 | 3.81 | 3.29 | 4.05 | 3.47 | 4.23 | 3.56 | 4.21 |
36 | Wb5 | 3.15 | 3.49 | 3.60 | 4.27 | 3.68 | 4.33 | 3.76 | 4.26 |
37 | Wb6 | 2.56 | 3.11 | 3.13 | 3.89 | 3.29 | 4.18 | 3.57 | 4.08 |
38 | Wb7 | 2.46 | 3.21 | 3.01 | 3.95 | 3.29 | 4.26 | 3.48 | 4.11 |
39 | Ste2 | 2.30 | 2.89 | 2.66 | 3.71 | 2.95 | 3.90 | 3.31 | 3.88 |
40 | Pt1 | 2.62 | 3.28 | 3.11 | 3.89 | 3.49 | 4.11 | 3.57 | 4.05 |
MEAN | 3.035 | 3.537 | 3.502 | 4.024 | 3.674 | 4.219 | 3.703 | 4.109 |
References
- Zhang, Y.; Sotiriadis, M.; Shen, S. Investigating the Impact of Smart Tourism Technologies on Tourists’ Experiences. Sustainability 2022, 14, 3048. [Google Scholar] [CrossRef]
- Analytica, O. Tourism Is Recovering but Faces Many Headwinds in 2023. Emerald Expert Brief. 2022. [Google Scholar] [CrossRef]
- Sustacha, I.; Baños-Pino, J.F.; Del Valle, E. The Role of Technology in Enhancing the Tourism Experience in Smart Destinations: A Meta-Analysis. J. Destin. Mark. Manag. 2023, 30, 100817. [Google Scholar] [CrossRef]
- Beldona, S.; Nusair, K.; Demicco, F. Online Travel Purchase Behavior of Generational Cohorts: A Longitudinal Study. J. Hosp. Mark. Manag. 2009, 18, 406–420. [Google Scholar] [CrossRef]
- Almeida-Santana, A.; Moreno-Gil, S. New Trends in Information Search and Their Influence on Destination Loyalty: Digital Destinations and Relationship Marketing. J. Destin. Mark. Manag. 2017, 6, 150–161. [Google Scholar] [CrossRef]
- Goo, J.; Huang, C.D.; Yoo, C.W.; Koo, C. Smart Tourism Technologies’ Ambidexterity: Balancing Tourist’s Worries and Novelty Seeking for Travel Satisfaction. Inf. Syst. Front. 2022, 24, 2139–2158. [Google Scholar] [CrossRef] [PubMed]
- Haydam, N.; Purcarea, T.; Edu, T.; Negricea, I.C. Explaining Satisfaction at a Foreign Tourism Destination—An Intra-Generational Approach Evidence within Generation y from South Africa and Romania. Amfiteatru Econ. 2017, 19, 528–542. Available online: https://hdl.handle.net/10419/169087 (accessed on 21 March 2024).
- Buhalis, D.; Amaranggana, A. Smart Tourism Destinations. In Information and Communication Technologies in Tourism 2014: Proceedings of the International Conference in Dublin, Ireland, 21–24 January 2014; Springer: Berlin/Heidelberg, Germany, 2013; pp. 553–564. [Google Scholar]
- Lee, P.; Zach, F.J.; Chung, N. Progress in Smart Tourism 2010–2017: A Systematic Literature Review. J. Smart Tour. 2021, 1, 19–30. [Google Scholar] [CrossRef]
- Pencarelli, T. The Digital Revolution in the Travel and Tourism Industry. Inf. Technol. Tour. 2020, 22, 455–476. [Google Scholar] [CrossRef]
- Corrêa, S.C.H.; Gosling, M.d.S. Travelers’ Perception of Smart Tourism Experiences in Smart Tourism Destinations. Tour. Plan. Dev. 2021, 18, 415–434. [Google Scholar] [CrossRef]
- Shafiee, S.; Rajabzadeh Ghatari, A.; Hasanzadeh, A.; Jahanyan, S. Smart Tourism Destinations: A Systematic Review. Tour. Rev. 2021, 76, 505–528. [Google Scholar] [CrossRef]
- Buhalis, D.; Amaranggana, A. Smart Tourism Destinations Enhancing Tourism Experience through Personalisation of Services. In Information and Communication Technologies in Tourism 2015: Proceedings of the International Conference in Lugano, Switzerland, 3–6 February 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 377–389. [Google Scholar]
- Hoffman, D.L.; Novak, T.P. The Path of Emergent Experience in the Consumer IoT: From Early Adoption to Radical Changes in Consumers’ Lives. NIM Mark. Intell. Rev. 2018, 10, 10–17. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Consumer and Object Experience in the Internet of Things: An Assemblage Theory Approach. J. Consum. Res. 2018, 44, 1178–1204. [Google Scholar] [CrossRef]
- Rachão, S.; Breda, Z.; de Oliveira Fernandes, C.; Joukes, V.; Ferreira, C. Food-and-Wine Tourists’ Willingness to Pay for Co-Creation Experiences: A Generational Approach. J. Hosp. Tour. Manag. 2023, 56, 245–252. [Google Scholar] [CrossRef]
- Ban, O.I.; Bogdan, V.; Tușe, D. Tourist Destination Assessment by Revised Importance-Performance Analysis. In Eurasian Economic Perspectives; Bilgin, M.H., Danis, H., Demir, E., Can, U., Eds.; Eurasian Studies in Business and Economics; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–68. [Google Scholar] [CrossRef]
- Ban, O.I.; Droj, L.; Tușe, D.; Botezat, E. Operationalization of importance-performance analysis with nine categories and tested for green practices and financial evaluation. Technol. Econ. Dev. Econ. 2022, 28, 1711–1738. [Google Scholar] [CrossRef]
- Chen, K.-S.; Chen, H.-T. Applying Importance–Performance Analysis with Simple Regression Model and Priority Indices to Assess Hotels’ Service Performance. J. Test. Eval. 2014, 42, 455–466. [Google Scholar] [CrossRef]
- Hsu, W.-K.; Yu, H.-F.; Huang, S.-H.S. Evaluating the Service Requirements of Dedicated Container Terminals: A Revised IPA Model with Fuzzy AHP. Marit. Policy Manag. 2015, 42, 789–805. [Google Scholar] [CrossRef]
- Tsaur, R.-C.; Chen, C.-H. Strategies for Cross-Border Travel Supply Chains: Gaming Chinese Group Tours to Taiwan. Tour. Manag. 2018, 64, 154–169. [Google Scholar] [CrossRef]
- Giancola, F. The Generation Gap: More Myth than Reality. People Strategy 2006, 29, 32. [Google Scholar]
- Gretzel, U.; Reino, S.; Kopera, S.; Koo, C. Smart Tourism Challenges. J. Tour. 2015, 16, 41–47. [Google Scholar]
- Giese, J.L.; Cote, J.A. Defining Consumer Satisfaction. Acad. Mark. Sci. Rev. 2000, 1, 1–22. [Google Scholar]
- Tse, D.K.; Wilton, P.C. Models of Consumer Satisfaction Formation: An Extension. J. Mark. Res. 1988, 25, 204–212. [Google Scholar] [CrossRef]
- Assaker, G.; Vinzi, V.E.; O’Connor, P. Examining the Effect of Novelty Seeking, Satisfaction, and Destination Image on Tourists’ Return Pattern: A Two Factor, Non-Linear Latent Growth Model. Tour. Manag. 2011, 32, 890–901. [Google Scholar] [CrossRef]
- Alegre, J.; Garau, J. Tourist Satisfaction and Dissatisfaction. Ann. Tour. Res. 2010, 37, 52–73. [Google Scholar] [CrossRef]
- Russo, J.E.; Schoemaker, P.J. Winning Decisions: Getting it Right the First Time; Currency: New York, NY, USA, 2002. [Google Scholar]
- Romão, J.; Neuts, B.; Nijkamp, P.; Van Leeuwen, E. Culture, Product Differentiation and Market Segmentation: A Structural Analysis of the Motivation and Satisfaction of Tourists in Amsterdam. Tour. Econ. 2015, 21, 455–474. [Google Scholar] [CrossRef]
- Radder, L.; Han, X. Perceived Quality, Visitor Satisfaction and Conative Loyalty in South African Heritage Museums. Int. Bus. Econ. Res. J. (IBER) 2013, 12, 1261–1272. [Google Scholar] [CrossRef]
- Arnold, J.D. Make up Your Mind, the Seven Building Blocks to Better Decisions; AMA: New York, NY, USA, 1978. [Google Scholar]
- Franklin II, C.L. Developing Expertise in Management Decision-Making. Acad. Strateg. Manag. J. 2013, 12, 21. [Google Scholar]
- Homans, G.C. Social Behavior as Exchange. Am. J. Sociol. 1958, 63, 597–606. [Google Scholar] [CrossRef]
- Cook, K.S.; Cheshire, C.; Rice, E.R.W.; Nakagawa, S. Social Exchange Theory. In Handbook of Social Psychology; DeLamater, J., Ward, A., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 61–88. [Google Scholar] [CrossRef]
- Jahan, N.; Kim, S.W. Understanding Online Community Participation Behavior and Perceived Benefits: A Social Exchange Theory Perspective. PSU Res. Rev. 2020, 5, 85–100. [Google Scholar] [CrossRef]
- Füller, J.; Matzler, K. Customer Delight and Market Segmentation: An Application of the Three-Factor Theory of Customer Satisfaction on Life Style Groups. Tour. Manag. 2008, 29, 116–126. [Google Scholar] [CrossRef]
- Neuhofer, B.; Buhalis, D.; Ladkin, A. Smart Technologies for Personalized Experiences: A Case Study in the Hospitality Domain. Electron. Mark. 2015, 25, 243–254. [Google Scholar] [CrossRef]
- Pai, C.; Kang, S.; Liu, Y.; Zheng, Y. An Examination of Revisit Intention Based on Perceived Smart Tourism Technology Experience. Sustainability 2021, 13, 1007. [Google Scholar] [CrossRef]
- Gajdošík, T.; Orelová, A. Smart Technologies for Smart Tourism Development. In Artificial Intelligence and Bioinspired Computational Methods: Proceedings of the 9th Computer Science On-Line Conference 2020; Springer: Berlin/Heidelberg, Germany, 2020; Volume 29, pp. 333–343. [Google Scholar]
- Wang, D.; Li, X.R.; Li, Y. China’s “Smart Tourism Destination” Initiative: A Taste of the Service-Dominant Logic. J. Destin. Mark. Manag. 2013, 2, 59–61. [Google Scholar] [CrossRef]
- Lemon, K.N.; Verhoef, P.C. Understanding Customer Experience throughout the Customer Journey. J. Mark. 2016, 80, 69–96. [Google Scholar] [CrossRef]
- Femenia-Serra, F.; Neuhofer, B. Smart Tourism Experiences: Conceptualisation, Key Dimensions and Research Agenda. Investig. Reg.-J. Reg. Res. 2018, 42, 129–150. [Google Scholar]
- Wang, X.; Li, X.R.; Zhen, F.; Zhang, J. How Smart Is Your Tourist Attraction?: Measuring Tourist Preferences of Smart Tourism Attractions via a FCEM-AHP and IPA Approach. Tour. Manag. 2016, 54, 309–320. [Google Scholar] [CrossRef]
- Buhalis, D.; Law, R. Progress in Information Technology and Tourism Management: 20 Years on and 10 Years after the Internet—The State of eTourism Research. Tour. Manag. 2008, 29, 609–623. [Google Scholar] [CrossRef]
- Benckendorff, P.J.; Moscardo, G.; Pendergast, D. Tourism and Generation Y; CABI Publishing: Wallingford, UK, 2009. [Google Scholar]
- McCrindle, M.; Wolfinger, E. Generations Defined. Ethos 2010, 18, 8–13. [Google Scholar]
- Strauss, W.; Howe, N. Generations: The History of America’s Future, 1584 to 2069. Quill 1991.
- Kotler, P.; Kartajaya, H.; Hooi, D.H. Marketing for Competitiveness: Asia to the World! In the Age of Digital Consumers; World Scientific: Singapore, 2017. [Google Scholar]
- Prensky, M. Digital Natives, Digital Immigrants. From On the Horizon; MCB University Press: Bradford, UK, 2001; Volume 9, pp. 1–6. [Google Scholar]
- Krishen, A.S.; Berezan, O.; Agarwal, S.; Kachroo, P. The Generation of Virtual Needs: Recipes for Satisfaction in Social Media Networking. J. Bus. Res. 2016, 69, 5248–5254. [Google Scholar] [CrossRef]
- Saša, Z.K.; Mateja, Š. Does Tourism 4.0 Answers the Needs of Baby-Boomers? Industry 4.0 2022, 7, 33–35. [Google Scholar]
- Naumovska, L. Marketing Communication Strategies for Generation Y–Millennials. Bus. Manag. Strategy 2017, 8, 123–133. [Google Scholar] [CrossRef]
- Dabija, D.-C.; Bejan, B.M.; Tipi, N. Generation X versus Millennials Communication Behaviour on Social Media When Purchasing Food versus Tourist Services. E+ M Ekon. A Manag. 2018, 21, 191–205. [Google Scholar] [CrossRef]
- Reisenwitz, T.H.; Iyer, R. Differences in Generation X and Generation Y: Implications for the Organization and Marketers. Mark. Manag. J. 2009, 19. [Google Scholar]
- Berkup, S.B. Working with Generations X and Y in Generation Z Period: Management of Different Generations in Business Life. Mediterr. J. Soc. Sci. 2014, 5, 218. [Google Scholar] [CrossRef]
- Howe, N.; Nadler, R. Millennials in the Workplace. LifeCourse Associates. 2010. [Google Scholar]
- Howe, N.; Strauss, W. The next 20 Years: How Customer and Workforce Attitudes Will Evolve. Harv. Bus. Rev. 2007, 85, 41–52, 191. [Google Scholar]
- Anderson, M.; Jiang, J. Teens, Social Media & Technology 2018. Pew Res. Cent. 2018, 31, 1673–1689. [Google Scholar]
- Xiang, Z.; Magnini, V.P.; Fesenmaier, D.R. Information Technology and Consumer Behavior in Travel and Tourism: Insights from Travel Planning Using the Internet. J. Retail. Consum. Serv. 2015, 22, 244–249. [Google Scholar] [CrossRef]
- Seemiller, C.; Grace, M. Generation Z: Educating and Engaging the next Generation of Students. About Campus 2017, 22, 21–26. [Google Scholar] [CrossRef]
- Haidt, J.; Lukianoff, G. The Coddling of the American Mind: How Good Intentions and Bad Ideas Are Setting up a Generation for Failure; Penguin UK: London, UK, 2018. [Google Scholar]
- Bartczak, M.; Szymankowska, A. Reasons for the Resignation of Young People from Employment. Tur. I Rozw. óJ Reg. 2019, 12, 5–14. [Google Scholar] [CrossRef]
- Qi, S.; Leung, R. The Search for Kenya: How Chinese-Speaking Generation Z Does Its Online Travel Planning. In Information and Communication Technologies in Tourism 2018: Proceedings of the International Conference in Jönköping, Sweden, 24–26 January 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 106–116. [Google Scholar]
- Skinner, H.; Sarpong, D.; White, G.R. Meeting the Needs of the Millennials and Generation Z: Gamification in Tourism through Geocaching. J. Tour. Futures 2018, 4, 93–104. [Google Scholar] [CrossRef]
- Buhalis, D.; Karatay, N. Mixed Reality (MR) for Generation Z in Cultural Heritage Tourism towards Metaverse. In Information and Communication Technologies in Tourism 2022: Proceedings of the Enter 2022 Etourism Conference, 11–14 January 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 16–27. [Google Scholar]
- Bilińska, K.; Pabian, B.; Pabian, A.; Reformat, B. Development Trends and Potential in the Field of Virtual Tourism after the COVID-19 Pandemic: Generation Z Example. Sustainability 2023, 15, 1889. [Google Scholar] [CrossRef]
- Carretero, S.; Vuorikari, R.; Punie, Y. Digcomp 2.1: The Digital Competence Framework for Citizens with Eight Proficiency Levels and Examples of Use; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar]
- Cirilli, E.; Nicolini, P. Digital Skills and Profile of Each Generation: A Review. Rev. Infad Psicol. ÍA. Int. J. Dev. Educ. Psychol. 2019, 3, 487–496. [Google Scholar] [CrossRef]
- Chaisomboon, M.; Jomnonkwao, S.; Ratanavaraha, V. Elderly Users’ Satisfaction with Public Transport in Thailand Using Different Importance Performance Analysis Approaches. Sustainability 2020, 12, 9066. [Google Scholar] [CrossRef]
- Esmailpour, J.; Aghabayk, K.; Vajari, M.A.; De Gruyter, C. Importance–Performance Analysis (IPA) of Bus Service Attributes: A Case Study in a Developing Country. Transp. Res. Part A Policy Pract. 2020, 142, 129–150. [Google Scholar] [CrossRef]
- Patiar, A.; Ma, E.; Kensbock, S.; Cox, R. Hospitality Management Students’ Expectation and Perception of a Virtual Field Trip Web Site: An Australian Case Study Using Importance–Performance Analysis. J. Hosp. Tour. Educ. 2017, 29, 1–12. [Google Scholar] [CrossRef]
- Wohlfart, O.; Hovemann, G. Using Importance–Performance Analysis to Bridge the Information Gap between Industry and Higher Education. Ind. High. Educ. 2019, 33, 223–227. [Google Scholar] [CrossRef]
- Rau, H.-H.; Wu, Y.-S.; Chu, C.-M.; Wang, F.-C.; Hsu, M.-H.; Chang, C.-W.; Chen, K.-H.; Lee, Y.-L.; Kao, S.; Chiu, Y.-L. Importance-Performance Analysis of Personal Health Records in Taiwan: A Web-Based Survey. J. Med. Internet Res. 2017, 19, e131. [Google Scholar] [CrossRef] [PubMed]
- Aeyels, D.; Seys, D.; Sinnaeve, P.R.; Claeys, M.J.; Gevaert, S.; Schoors, D.; Sermeus, W.; Panella, M.; Bruyneel, L.; Vanhaecht, K. Managing In-Hospital Quality Improvement: An Importance-Performance Analysis to Set Priorities for ST-Elevation Myocardial Infarction Care. Eur. J. Cardiovasc. Nurs. 2018, 17, 535–542. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Pierskalla, C.D. Linking Importance–Performance Analysis, Satisfaction, and Loyalty: A Study of Savannah, GA. Sustainability 2018, 10, 704. [Google Scholar] [CrossRef]
- Rašovská, I.; Kubickova, M.; Ryglová, K. Importance–Performance Analysis Approach to Destination Management. Tour. Econ. 2021, 27, 777–794. [Google Scholar] [CrossRef]
- Eskildsen, J.K.; Kristensen, K. Enhancing Importance-performance Analysis. Int. J. Product. Perform. Manag. 2006, 55, 40–60. [Google Scholar] [CrossRef]
- Sever, I. Importance-Performance Analysis: A Valid Management Tool? Tour. Manag. 2015, 48, 43–53. [Google Scholar] [CrossRef]
- Albrecht, K.; Bradford, L.J. The Service Advantage: How to Identify and Fulfill Customer Needs; Irwin Professional Publishing: Burr Ridge, IL, USA, 1990. [Google Scholar]
- Ji, T.; Chen, J.-H.; Wei, H.-H.; Su, Y.-C. Towards People-Centric Smart City Development: Investigating the Citizens’ Preferences and Perceptions about Smart-City Services in Taiwan. Sustain. Cities Soc. 2021, 67, 102691. [Google Scholar] [CrossRef]
- Churchill, G.A. Marketing Research: Methodological Foundations; The Dryden Press: Hinsdale, IL, USA, 1991. [Google Scholar]
- Deng, W. Using a Revised Importance–Performance Analysis Approach: The Case of Taiwanese Hot Springs Tourism. Tour. Manag. 2007, 28, 1274–1284. [Google Scholar] [CrossRef]
- Kim, B.-Y.; Oh, H. An Extended Application of Importance-Performance Analysis. J. Hosp. Leis. Mark. 2001, 9, 107–125. [Google Scholar] [CrossRef]
- Lai, I.K.W.; Hitchcock, M. Importance–Performance Analysis in Tourism: A Framework for Researchers. Tour. Manag. 2015, 48, 242–267. [Google Scholar] [CrossRef]
- McLeay, F.; Robson, A.; Yusoff, M. New Applications for Importance-Performance Analysis (IPA) in Higher Education: Understanding Student Satisfaction. J. Manag. Dev. 2017, 36, 780–800. [Google Scholar] [CrossRef]
- Hair, J.F., Jr.; Hult, G.T.M.; Ringle, C.M.; Sarstedt, M.; Danks, N.P.; Ray, S. Evaluation of Reflective Measurement Models. In Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business; Springer: Berlin/Heidelberg, Germany, 2021; pp. 75–90. [Google Scholar] [CrossRef]
- Haselton, M.G.; Nettle, D.; Andrews, P.W. The Evolution of Cognitive Bias. Handb. Evol. Psychol. 2015, 724–746. [Google Scholar] [CrossRef]
- Barberà-Mariné, M.G.; Cannavacciuolo, L.; Ippolito, A.; Ponsiglione, C.; Zollo, G. The Weight of Organizational Factors on Heuristics: Evidence from Triage Decision-Making Processes. Manag. Decis. 2019, 57, 2890–2910. [Google Scholar] [CrossRef]
- Lauriola, M.; Levin, I.P. Personality Traits and Risky Decision-Making in a Controlled Experimental Task: An Exploratory Study. Personal. Individ. Differ. 2001, 31, 215–226. [Google Scholar] [CrossRef]
- Das, T.K.; Teng, B.-S. Cognitive Biases and Strategic Decision Processes: An Integrative Perspective. J. Manag. Stud. 1999, 36, 757–778. [Google Scholar] [CrossRef]
- Knight, D.; Pearce, C.L.; Smith, K.G.; Olian, J.D.; Sims, H.P.; Smith, K.A.; Flood, P. Top Management Team Diversity, Group Process, and Strategic Consensus. Strateg. Manag. J. 1999, 20, 445–465. [Google Scholar] [CrossRef]
- Uysal, D. Gen-Z’s Consumption Behaviours in Post-Pandemic Tourism Sector. J. Tour. Leis. Hosp. 2022, 4, 67–79. [Google Scholar] [CrossRef]
- Wang, Q.; Hung, K.; Liu, C. Tourist Experience and Well-Being of Chinese Elderly Tourists through Intergenerational Interaction with Their Adult Children. J. Hosp. Tour. Manag. 2023, 57, 18–28. [Google Scholar] [CrossRef]
- Daud, S.; Abidin, N.; Mazuin Sapuan, N.; Rajadurai, J. Enhancing University Business Curriculum Using an Importance-performance Approach: A Case Study of the Business Management Faculty of a University in Malaysia. Int. J. Educ. Manag. 2011, 25, 545–569. [Google Scholar] [CrossRef]
- Albayrak, T. Importance Performance Competitor Analysis (IPCA): A Study of Hospitality Companies. Int. J. Hosp. Manag. 2015, 48, 135–142. [Google Scholar] [CrossRef]
- Fotiadis, A.; Polyzos, S.; Huan, T.-C.T. The Good, the Bad and the Ugly on COVID-19 Tourism Recovery. Ann. Tour. Res. 2021, 87, 103117. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Wang, X. COVID-19 Two Years on: A Review of COVID-19-Related Empirical Research in Major Tourism and Hospitality Journals. Int. J. Contemp. Hosp. Manag. 2023, 35, 743–764. [Google Scholar] [CrossRef]
Baby Boomers | Generation X | Millennials | Generation Z | Action-Oriented Strategic Recommendations | |
Competitive vulnerability | Wb1, Fd1 | T3 | S4 | Wb5, IS1, IS2, Fd2 | Prioritize and largely improve |
Competitive strength | ICT1, ICT2, ICT3, ICT4, Da1, Da2, S3, T1 | ICT1, ICT2, ICT3, T1, Da2, Sm2, Itp1, IS2, S3 | ICT1, ICT2, Da1, Da2, T1, T2, IS2, Itp1 | ICT1, Da1, Da2, Da3, T1, Sm2, Sm3, Itp1, Wb4 | Maintain well |
Relative indifference | Wb2, Wb6, Wb7, Pt1, Ste1, Ste2, Itp2, Itp3, Da3 | Wb6, Ste1, Ste2, Da4, I2, IS3, Pt1 | Ste1, Ste2, I2 | Wb2, Ste2, Da4, I2, IS3, Itp3, T3 | Give less priority but follow through |
Irrelevant superiority | - | - | - | - | Economize the allocated resources |
TOTAL attributes | 19 | 17 | 12 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botezat, E.-A.; Ban, O.-I.; Popa, A.L.; Coita, D.-C.; Tarcza, T.M. Optimized Decisions for Smart Tourism Destinations: A Cross-Generational Perspective Using an Improved Importance–Performance Analysis. Systems 2024, 12, 297. https://doi.org/10.3390/systems12080297
Botezat E-A, Ban O-I, Popa AL, Coita D-C, Tarcza TM. Optimized Decisions for Smart Tourism Destinations: A Cross-Generational Perspective Using an Improved Importance–Performance Analysis. Systems. 2024; 12(8):297. https://doi.org/10.3390/systems12080297
Chicago/Turabian StyleBotezat, Elena-Aurelia, Olimpia-Iuliana Ban, Adela Laura Popa, Dorin-Cristian Coita, and Teodora Mihaela Tarcza. 2024. "Optimized Decisions for Smart Tourism Destinations: A Cross-Generational Perspective Using an Improved Importance–Performance Analysis" Systems 12, no. 8: 297. https://doi.org/10.3390/systems12080297
APA StyleBotezat, E. -A., Ban, O. -I., Popa, A. L., Coita, D. -C., & Tarcza, T. M. (2024). Optimized Decisions for Smart Tourism Destinations: A Cross-Generational Perspective Using an Improved Importance–Performance Analysis. Systems, 12(8), 297. https://doi.org/10.3390/systems12080297