Feature Distributions of Technologies
Abstract
:1. Introduction
- (1)
- The diffusion of contents is primarily driven by selective exposure [15]. In other words, online resources contain sufficient domain specificity.
- (2)
- (3)
- The volumes of returned results are aggregations of massive human behavioral traces that contain diversified knowledge and values, which are highly valued in decisions related to complicated and uncertain issues, such as assessing emerging technologies [18].
- (4)
- Search data from public search engines is more affordable to acquire than publications and patents that are stored in specific databases, the access to which may cost a fortune.
2. Literature Review
2.1. Technological Feature Evaluation
2.2. Technology Roadmapping
2.3. Technology Forecasting
2.4. Literature Summary
3. Methods
3.1. Analytical Framework
3.2. Feature Indicators
3.3. Case Study Setting
4. Results
4.1. Distributions of Versatility Values
4.2. Distributions of Significance Values
4.3. Distributions of Commerciality Values
4.4. Distributions of Disruptiveness Values
5. Discussion
5.1. Theoretical Contributions
5.2. Managerial Implications
5.3. Theoretical Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Acemoglu, D.; Akcigit, U.; Kerr, W.R. Innovation network. Proc. Natl. Acad. Sci. USA 2016, 113, 11483–11488. [Google Scholar] [CrossRef] [PubMed]
- Anadon, L.D.; Chan, G.; Harley, A.G.; Matus, K.; Moon, S.; Murthy, S.L.; Clark, W.C. Making technological innovation work for sustainable development. Proc. Natl. Acad. Sci. USA 2016, 113, 9682–9690. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.L.; Christensen, C.M. Disruptive technologies: Catching the wave. Harvard Bus. Rev. 1995, 73, 43–53. [Google Scholar] [CrossRef]
- Petralia, S.; Balland, P.A.; Morrison, A. Climbing the ladder of technological development. Res. Policy 2017, 46, 956–969. [Google Scholar] [CrossRef]
- O’Leary, D.E. Gartner’s hype cycle and information system research issues. Int. J. Account. Inf. Syst. 2008, 9, 240–252. [Google Scholar] [CrossRef]
- Nieto, M.; Lopéz, F.; Cruz, F. Performance analysis of technology using the S curve model: The case of digital signal processing (DSP) technologies. Technovation 1998, 18, 439–457. [Google Scholar] [CrossRef]
- Tran, T.A.; Daim, T. A taxonomic review of methods and tools applied in technological assessment. Technol. Forecast. Soc. 2008, 75, 1396–1405. [Google Scholar] [CrossRef]
- Daim, T.U.; Yoon, B.S.; Lindenberg, J.; Grizzi, R.; Estep, J.; Oliver, T. Strategic roadmapping of robotics technologies for the power industry: A multicriteria technological assessment. Technol. Forecast. Soc. 2018, 131, 49–66. [Google Scholar] [CrossRef]
- Proskuryakova, L. Energy technology foresight in emerging economies. Technol. Forecast. Soc. 2017, 119, 205–210. [Google Scholar] [CrossRef]
- Esmaelian, M.; Tavana, M.; Di Caprio, D.; Ansari, R. A multiple correspondence analysis model for evaluating technology foresight methods. Technol. Forecast. Soc. 2017, 125, 188–205. [Google Scholar] [CrossRef]
- Flostrand, A. Finding the future: Crowdsourcing versus the Delphi technique. Bus. Horiz. 2017, 60, 229–236. [Google Scholar] [CrossRef]
- Daim, T.U.; Rueda, G.; Martin, H.; Gerdsri, P. Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technol. Forecast. Soc. 2006, 73, 981–1012. [Google Scholar] [CrossRef]
- Linstone, H.A. Three eras of technology foresight. Technovation 2011, 31, 69–76. [Google Scholar] [CrossRef]
- Mitchell, T. Mining our reality. Science 2009, 326, 1644–1645. [Google Scholar] [CrossRef]
- Maggitti, P.G.; Smith, K.G.; Katila, R. The complex search process of invention. Res. Policy 2013, 42, 90–100. [Google Scholar] [CrossRef]
- Del Vicario, M.; Bessi, A.; Zollo, F.; Petroni, F.; Scala, A.; Caldarelli, G.; Eugene Stanley, H.; Quattrociocchi, W. The spreading of misinformation online. Proc. Natl. Acad. Sci. USA 2016, 113, 554–559. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Maggitti, P.G.; Smith, K.G.; Tesluk, P.E.; Katila, R. Top management attention to innovation: The role of search selection and intensity in new product introductions. Acad. Manag. J. 2013, 56, 893–916. [Google Scholar] [CrossRef]
- Roca, J.B.; Vaishnav, P.; Morgan, M.G.; Mendonça, J.; Fuchs, E. When risks cannot be seen: Regulating uncertainty in emerging technologies. Res. Policy 2017, 46, 1215–1233. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Guo, J.F.; Ji, Q. How does market concern derived from the internet affect oil prices. Appl. Energy 2013, 112, 1536–1543. [Google Scholar] [CrossRef]
- Beracha, E.; Wintoki, M.B. Forecasting residential real estate price changes from online search activity. J. Real Estate Res. 2013, 35, 283–312. [Google Scholar] [CrossRef]
- Yang, S.; Santillana, M.; Kou, S.C. Accurate estimation of influenza epidemics using Google search data via ARGO. Proc. Natl. Acad. Sci. USA 2015, 112, 14473–14478. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.L.; Rossini, F.A.; Carpenter, S.R.; Roper, A.T.; Larson, R.W.; Tiller, J.S. A Guidebook for Technology Assessment and Impact Analysis. Contemp. Sociol. 1982, 11, 552. [Google Scholar] [CrossRef]
- Klenner, P.; Hüsig, S.; Dowling, M. Ex-ante evaluation of disruptive susceptibility in established value networks—When are markets ready for disruptive innovations? Res. Policy 2013, 42, 914–927. [Google Scholar] [CrossRef]
- Hang, C.C.; Chen, J.; Yu, D. An assessment framework for disruptive innovation. Foresight 2011, 13, 4–13. [Google Scholar] [CrossRef]
- Hahn, F.; Jensen, S.; Tanev, S. Disruptive innovation vs. disruptive technology: The disruptive potential of the value propositions of 3D printing technology startups. Technol. Innov. Manag. 2014, 4, 27–36. [Google Scholar] [CrossRef]
- Guo, J.; Pan, J.; Guo, J.; Gu, F.; Kuusisto, J. Measurement framework for assessing disruptive innovations. Technol. Forecast. Soc. 2019, 139, 250–265. [Google Scholar] [CrossRef]
- Schmidt, G.M.; Druehl, C.T. When is a disruptive innovation disruptive? J. Prod. Innov. Manag. 2008, 25, 347–369. [Google Scholar] [CrossRef]
- Kostoff, R.N.; Boylan, R.; Simons, G.R. Disruptive technology roadmaps. Technol. Forecast. Soc. 2004, 71, 141–150. [Google Scholar] [CrossRef]
- Roper, A.; Cunningham, S.; Porter, A.; Mason, T.; Rossini, F. Forecasting and Management of Technology, 2nd ed.; Wiley: Hoboken, NJ, USA, 1991. [Google Scholar] [CrossRef]
- Mankins, J.C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009, 65, 1216–1223. [Google Scholar] [CrossRef]
- Martínez-Plumed, F.; Gómez, E.; Hernández-Orallo, J. Futures of artificial intelligence through technology readiness levels. Telemat. Inform. 2021, 58, 101525. [Google Scholar] [CrossRef]
- Kota, K.B.; Shenbagaraj, S.; Sharma, P.K.; Sharma, A.K.; Ghodke, P.K.; Chen, W.H. Biomass torrefaction: An overview of process and technology assessment based on global readiness level. Fuel 2022, 324, 124663. [Google Scholar] [CrossRef]
- Tzinis, I. Technology Readiness Level. Available online: https://www.nasa.gov/directorates/heo/scan/engineering/technology/technology_readiness_level (accessed on 2 April 2021).
- Vik, J.; Melås, A.M.; Stræte, E.P.; Søraa, R.A. Balanced readiness level assessment (BRLa): A tool for exploring new and emerging technologies. Technol. Forecast. Soc. 2021, 169, 120854. [Google Scholar] [CrossRef]
- Kyriakidou, V.; Michalakelis, C.; Sphicopoulos, T. Assessment of information and communications technology maturity level. Telecommun. Policy 2013, 37, 48–62. [Google Scholar] [CrossRef]
- Albert, T.; Moehrle, M.G.; Meyer, S. Technology maturity assessment based on blog analysis. Technol. Forecast. Soc. 2015, 92, 196–209. [Google Scholar] [CrossRef]
- Kobara, Y.M.; Akpan, I.J. Bibliometric Performance and Future Relevance of Virtual Manufacturing Technology in the Fourth Industrial Revolution. Systems 2023, 11, 524. [Google Scholar] [CrossRef]
- Lezama-Nicolás, R.; Rodríguez-Salvador, M.; Río-Belver, R.; Bildosola, I. A bibliometric method for assessing technological maturity: The case of additive manufacturing. Scientometrics 2018, 117, 1425–1452. [Google Scholar] [CrossRef] [PubMed]
- Letaba, P.T.; Pretorius, M.W. Toward Sociotechnical Transition Technology Roadmaps: A Proposed Framework for Large-Scale Projects in Developing Countries. IEEE Trans. Eng. Manag. 2022, 69, 195–208. [Google Scholar] [CrossRef]
- Sourav, K.; Daim, T.; Herstatt, C. Technology Roadmap for the Single-Aisle program of a major aircraft industry company. IEEE Eng. Manag. Rev. 2018, 46, 103–120. [Google Scholar] [CrossRef]
- Nazarko, J.; Ejdys, J.; Gudanowska, A.E.; Halicka, K.; Kononiuk, A.; Magruk, A.; Nazarko, Ł. Roadmapping in Regional Technology Foresight: A Contribution to Nanotechnology Development Strategy. IEEE Trans. Eng. Manag. 2022, 69, 179–194. [Google Scholar] [CrossRef]
- Ramos, A.G.; Daim, T.; Gaats, L.; Hutmacher, D.W.; Hackenberger, D. Technology roadmap for the development of a 3D cell culture workstation for a biomedical industry startup. Technol. Forecast. Soc. 2022, 174, 121213. [Google Scholar] [CrossRef]
- Park, H.; Phaal, R.; Ho, J.Y.; O’Sullivan, E. Twenty years of technology and strategic roadmapping research: A school of thought perspective. Technol. Forecast. Soc. 2020, 154, 119965. [Google Scholar] [CrossRef]
- Chakraborty, S.; Nijssen, E.J.; Valkenburg, R. A systematic review of industry-level applications of technology roadmapping: Evaluation and design propositions for roadmapping practitioners. Technol. Forecast. Soc. 2022, 179, 121141. [Google Scholar] [CrossRef]
- Phaal, R.; O’Sullivan, E.; Routley, M.; Ford, S.; Probert, D. A framework for mapping industrial emergence. Technol. Forecast. Soc. 2011, 78, 217–230. [Google Scholar] [CrossRef]
- Zhang, H.; Daim, T.; Zhang, Y.P. Integrating patent analysis into technology roadmapping: A latent dirichlet allocation based technology assessment and roadmapping in the field of Blockchain. Technol. Forecast. Soc. 2021, 167, 120729. [Google Scholar] [CrossRef]
- Nazarenko, A.; Vishnevskiy, K.; Meissner, D.; Daim, T. Applying digital technologies in technology roadmapping to overcome individual biased assessments. Technovation 2022, 110, 102364. [Google Scholar] [CrossRef]
- Yuskevich, I.; Smirnova, K.; Vingerhoeds, R.; Golkar, A. Model-based approaches for technology planning and roadmapping: Technology forecasting and game-theoretic modeling. Technol. Forecast. Soc. 2021, 168, 120761. [Google Scholar] [CrossRef]
- Yuskevich, I.; Hein, A.M.; Amokrane-Ferka, K.; Doufene, A.; Jankovic, M. A metamodel of an informational structure for model-based technology roadmapping. Technol. Forecast. Soc. 2021, 173, 121103. [Google Scholar] [CrossRef]
- Okada, Y.; Kishita, Y.; Nomaguchi, Y.; Yano, T.; Ohtomi, K. Backcasting-based method for designing roadmaps to achieve a sustainable future. IEEE Trans. Eng. Manag. 2022, 69, 168–178. [Google Scholar] [CrossRef]
- Noh, H.; Kim, K.; Song, Y.K.; Lee, S. Opportunity-driven technology roadmapping: The case of 5G mobile services. Technol. Forecast. Soc. 2021, 163, 120452. [Google Scholar] [CrossRef]
- Maja, M.M.; Letaba, P. Towards a data-driven technology roadmap for the bank of the future: Exploring big data analytics to support technology roadmapping. Soc. Sci. Humanit. Open 2022, 6, 100270. [Google Scholar] [CrossRef]
- Altuntas, S.; Dereli, T.; Kusiak, A. Forecasting technology success based on patent data. Technol. Forecast. Soc. 2015, 96, 202–214. [Google Scholar] [CrossRef]
- Porter, A.L.; Cunningham, S.W. Tech Mining: Exploiting New Technologies for Competitive Advantage; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Martino, J.P. Technological Forecasting for Decision Making; American Elsevier Publishing Company: Amsterdam, The Netherlands, 1975. [Google Scholar]
- Sanders, N.R.; Manrodt, K.B. The efficacy of using judgmental versus quantitative forecasting methods in practice. Omega 2003, 31, 511–522. [Google Scholar] [CrossRef]
- Adamuthe, A.C.; Thampi, G.T. Technology forecasting: A case study of computational technologies. Technol. Forecast. Soc. 2019, 143, 181–189. [Google Scholar] [CrossRef]
- Wang, C.; Geng, H.; Sun, R.; Song, H. Technological potential analysis and vacant technology forecasting in the graphene field based on the patent data mining. Resour. Policy 2022, 77, 102636. [Google Scholar] [CrossRef]
- Kim, L.; Ju, J. Can media forecast technological progress?: A text-mining approach to the on-line newspaper and blog’s representation of prospective industrial technologies. Inform. Process. Manag. 2019, 56, 1506–1525. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Lee, C. Anticipating technological convergence: Link prediction using wikipedia hyperlinks. Technovation 2019, 79, 25–34. [Google Scholar] [CrossRef]
- Lim, D.J.; Anderson, T.R.; Shott, T. Technological forecasting of supercomputer development: The March to Exascale computing. Omega 2015, 51, 128–135. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Chen, H.; Porter, A.L.; Zhu, D.; Lu, J. Topic analysis and forecasting for science, technology and innovation: Methodology with a case study focusing on big data research. Technol. Forecast. Soc. 2016, 105, 179–191. [Google Scholar] [CrossRef]
- Ma, T.; Zhou, X.; Liu, J.; Lou, Z.; Hua, Z.; Wang, R. Combining topic modeling and SAO semantic analysis to identify technological opportunities of emerging technologies. Technol. Forecast. Soc. 2021, 173, 121159. [Google Scholar] [CrossRef]
- Kyebambe, M.N.; Cheng, G.; Huang, Y.; He, C.; Zhang, Z. Forecasting emerging technologies: A supervised learning approach through patent analysis. Technol. Forecast. Soc. 2017, 125, 236–244. [Google Scholar] [CrossRef]
- Lee, C. A review of data analytics in technological forecasting. Technol. Forecast. Soc. 2021, 166, 120646. [Google Scholar] [CrossRef]
- Ford, D.; Ryan, C. Taking technology to market. Harv. Bus. Rev. 1981, 59, 117–126. [Google Scholar] [CrossRef]
- Haupt, R.; Kloyer, M.; Lange, M. Patent indicators for the technology life cycle development. Res. Policy 2007, 36, 387–398. [Google Scholar] [CrossRef]
- Ingrand, F.; Ghallab, M. Deliberation for autonomous robots: A survey. Artif. Intell. 2017, 247, 10–44. [Google Scholar] [CrossRef]
- Aly, A.; Griffiths, S.; Stramandinoli, F. Metrics and benchmarks in human-robot interaction: Recent advances in cognitive robotics. Cogn. Syst. Res. 2017, 43, 313–323. [Google Scholar] [CrossRef]
- Cilibrasi, R.L.; Vitanyi, P.M. The Google similarity distance. IEEE Trans. Knowl. Data Eng. 2007, 19, 370–383. [Google Scholar] [CrossRef]
- Bianchi, M.; Campodall’Orto, S.; Frattini, F.; Vercesi, P. Enabling open innovation in small- and medium-sized enterprises: How to find alternative applications for your technologies. R&D Manag. 2010, 40, 414–431. [Google Scholar] [CrossRef]
- King, A.A.; Baatartogtokh, B. How useful is the theory of disruptive innovation. MIT Sloan Manag. Rev. 2015, 57, 77–90. [Google Scholar]
- Martino, J. A review of selected recent advances in technological forecasting. Technol. Forecast. Soc. 2003, 70, 719–733. [Google Scholar] [CrossRef]
- Baer, J. Domain Specificity of Creativity, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- McFarland, D.J.; Hamilton, D. Adding contextual specificity to the technology acceptance model. Comput. Hum. Behav. 2006, 22, 427–447. [Google Scholar] [CrossRef]
- Levy, M.; Solomon, S. New evidence for the power-law distribution of wealth. Physica A 1997, 242, 90–94. [Google Scholar] [CrossRef]
- Miyazima, S.; Lee, Y.; Nagamine, T.; Miyajima, H. Power-law distribution of family names in Japanese societies. Physica A 2000, 278, 282–288. [Google Scholar] [CrossRef]
- Gabriel, S.B.; Feynman, J. Power-law distribution for solar energetic proton events. Sol. Phys. 1996, 165, 337–346. [Google Scholar] [CrossRef]
- Albert, R.; Jeong, H.; Barabási, A.L. Diameter of the world-wide web. Nature 1999, 401, 130–131. [Google Scholar] [CrossRef]
- Král, L. European Robotics Research: Achievements and Challenges. Available online: https://iros2012.isr.uc.pt/site/sites/default/files/iros2012_LiborKral_Plenary.pdf (accessed on 9 October 2012).
- Bar-Cohen, Y. Electroactive polymers as artificial muscles-capabilities, potentials and challenges. Handb. Biomim. 2000, 11, 188–196. [Google Scholar] [CrossRef]
- Barstow, D.R. 1985 Index IEEE Transactions on Software Engineering Vol. SE-11. IEEE Trans. Softw. Eng. 1985, 11, 1321–1336. [Google Scholar] [CrossRef]
- Rivero, D.; Rabunal, J.R.; Dorado, J.; Pazos, A. Time series forecast with anticipation using genetic programming. In Computational Intelligence and Bioinspired Systems, Proceedings of the 8th International Work-Conference on Artificial Neural Networks, Barcelona, Spain, 8–10 June 2005; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Espejo, P.; Ventura, S.; Herrera, F. A survey on the application of genetic programming to classification. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2010, 40, 121–144. [Google Scholar] [CrossRef]
- Guo, L.; Rivero, D.; Dorado, J.; Munteanu, C.R.; Pazos, A. Automatic feature extraction using genetic programming: An application to epileptic EEG classification. Expert Syst. Appl. 2011, 38, 10425–10436. [Google Scholar] [CrossRef]
- Bry, F.; Schaffert, S. Towards a declarative query and transformation language for XML and semistructured data: Simulation unification. In Proceedings of the International Conference on Logic Programming, Copenhagen, Denmark, 29 July–1 August 2002; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hanus, M.; Prehofer, C. Higher-order narrowing with definitional trees. J. Funct. Program. 1999, 9, 33–75. [Google Scholar] [CrossRef]
- Lake, B.M.; Salakhutdinov, R.; Tenenbaum, J.B. Human-level concept learning through probabilistic program induction. Science 2015, 350, 1332–1338. [Google Scholar] [CrossRef]
- Paquette, J.W.; Kim, K.J. Ionomeric electroactive polymer artificial muscle for naval applications. IEEE J. Ocean. Eng. 2004, 29, 729–737. [Google Scholar] [CrossRef]
- Carpi, F.; Kornbluh, R.D.; Sommerlarsen, P.; Alici, G. Electroactive polymer actuators as artificial muscles: Are they ready for bioinspired applications. Bioinspiration Biomim. 2011, 6, 045006. [Google Scholar] [CrossRef]
- Shepherd, R.F.; Ilievski, F.; Choi, W.; Morin, S.A.; Stokes, A.A.; Mazzeo, A.D.; Chen, X.; Wang, M.; Whitesides, G.M. Multigait soft robot. Proc. Natl. Acad. Sci. USA 2011, 108, 20400–20403. [Google Scholar] [CrossRef]
- Chiba, S.; Waki, M.; Wada, T.; Hirakawa, Y.; Masuda, K.; Ikoma, T. Consistent ocean wave energy harvesting using electroactive polymer (dielectric elastomer) artificial muscle generators. Appl. Energy 2013, 104, 497–502. [Google Scholar] [CrossRef]
- Haines, C.S.; Li, N.; Spinks, G.M.; Aliev, A.E.; Di, J.; Baughman, R.H. New twist on artificial muscles. Proc. Natl. Acad. Sci. USA 2016, 113, 11709–11716. [Google Scholar] [CrossRef]
- Ernst, H. The use of patent data for technological forecasting: The diffusion of CNC-technology in the machine tool industry. Small Bus. Econ. 1997, 9, 361–381. [Google Scholar] [CrossRef]
- Sasaki, H. Simulating Hype Cycle Curves with mathematical functions: Some examples of high-tech trends in Japan. Int. J. Inf. Manag. Technol. 2015, 7, 1–12. [Google Scholar] [CrossRef]
- Jarvenpaa, H.; Makinen, S.J. Empirically detecting the Hype Cycle with the life cycle indicators: An exploratory analysis of three technologies. In Proceedings of the 2008 IEEE International Conference on Industrial Engineering and Engineering Management, Singapore, 8–11 December 2008; pp. 12–16. [Google Scholar]
- Jun, S.-P. An empirical study of users’ hype cycle based on search traffic: The case study on hybrid cars. Scientometrics 2011, 91, 81–99. [Google Scholar] [CrossRef]
- Jun, S.-P. A comparative study of hype cycles among actors within the socio-technical system: With a focus on the case study of hybrid cars. Technol. Forecast. Soc. Chang. 2012, 79, 1413–1430. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Deng, C.; Pan, J.; Gu, F.; Guo, J. Feature Distributions of Technologies. Systems 2024, 12, 268. https://doi.org/10.3390/systems12080268
Zhu J, Deng C, Pan J, Gu F, Guo J. Feature Distributions of Technologies. Systems. 2024; 12(8):268. https://doi.org/10.3390/systems12080268
Chicago/Turabian StyleZhu, Jiannan, Chao Deng, Jiaofeng Pan, Fu Gu, and Jianfeng Guo. 2024. "Feature Distributions of Technologies" Systems 12, no. 8: 268. https://doi.org/10.3390/systems12080268
APA StyleZhu, J., Deng, C., Pan, J., Gu, F., & Guo, J. (2024). Feature Distributions of Technologies. Systems, 12(8), 268. https://doi.org/10.3390/systems12080268