Advancements in AI-Based Information Technologies: Solutions for Quality and Security
- Intelligent information technologies for the software engineering domain;
- Intelligent information technologies for the cybersecurity domain;
- Intelligent information technologies for software quality assurance;
- Intelligent information technologies for software security assurance;
- Intelligent information technologies for computer systems quality assurance;
- Intelligent information technologies for computer systems security assurance;
- Intelligent information technologies for computer systems reliability;
- Cross-disciplinary intelligent information technologies for various subject areas.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Contributions
- Almazroi, A.A.; Ayub, N. Enhancing Smart IoT Malware Detection: A GhostNet-based Hybrid Approach. Systems 2023, 11, 547. https://doi.org/10.3390/systems11110547.
- Kethineni, K.; Gera, P. Iot-Based Privacy-Preserving Anomaly Detection Model for Smart Agriculture. Systems 2023, 11, 304. https://doi.org/10.3390/systems11060304.
- Zaitseva, E.; Hovorushchenko, T.; Pavlova, O.; Voichur, Y. Identifying the Mutual Correlations and Evaluating the Weights of Factors and Consequences of Mobile Application Insecurity. Systems 2023, 11, 242. https://doi.org/10.3390/systems11050242.
- Venkatesan, V. K.; Ramakrishna, M. T.; Batyuk, A.; Barna, A.; Havrysh, B. High-Performance Artificial Intelligence Recommendation of Quality Research Papers Using Effective Collaborative Approach. Systems 2023, 11, 81. https://doi.org/10.3390/systems11020081.
- Panwar, K.; Singh, A.; Kukreja, S.; Singh, K. K.; Shakhovska, N.; Boichuk, A. Encipher GAN: An End-to-End Color Image Encryption System Using a Deep Generative Model. Systems 2023, 11, 36. https://doi.org/10.3390/systems11010036.
- Ganguli, C.; Shandilya, S. K.; Nehrey, M.; Havryliuk, M. Adaptive Artificial Bee Colony Algorithm for Nature-Inspired Cyber Defense. Systems 2023, 11, 27. https://doi.org/10.3390/systems11010027.
- Ingle, P. Y.; Kim, Y.-G. Video Synopsis Algorithms and Framework: A Survey and Comparative Evaluation. Systems 2023, 11, 108. https://doi.org/10.3390/systems11020108.
References
- Sivarajah, U.; Kamal, M.M.; Irani, Z.; Weerakkody, V. Critical analysis of Big Data challenges and analytical methods. J. Bus. Res. 2017, 70, 263–286. [Google Scholar] [CrossRef]
- Luo, Y.; Bu, J. How valuable is information and communication technology? A study of emerging economy enterprises. J. World Bus. 2016, 51, 200–211. [Google Scholar] [CrossRef]
- Tian, X. Big data and knowledge management: A case of déjà vu or back to the future? J. Knowl. Manag. 2017, 21, 113–131. [Google Scholar] [CrossRef]
- Mauerhoefer, T.; Strese, S.; Brettel, M. The Impact of Information Technology on New Product Development Performance. J. Prod. Innov. Manag. 2017, 34, 719–738. [Google Scholar] [CrossRef]
- Qiu, J.; Wu, Q.; Ding, G.; Xu, Y.; Feng, S. A survey of machine learning for big data processing. EURASIP J. Adv. Signal Process. 2016, 2016, 67. [Google Scholar] [CrossRef]
- Alkhaleel, B.A. Machine learning applications in the resilience of interdependent critical infrastructure systems—A systematic literature review. Int. J. Crit. Infrastruct. Prot. 2024, 44, 100646. [Google Scholar] [CrossRef]
- Navarin, N.; Mulders, D.; Oneto, L. Advances in artificial neural networks, machine learning and computational intelligence. Neurocomputing 2023, 298, 127098. [Google Scholar] [CrossRef]
- Abbasi, A.; Sarker, S.; Chiang, R. Big Data Research in Information Systems: Toward an Inclusive Research Agenda. J. Assoc. Inf. Syst. 2016, 17, I. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Gheisari, M.; Wang, G.; Bhuiyan, M.Z.A. A Survey on Deep Learning in Big Data. In Proceedings of the 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), Guangzhou, China, 21–24 July 2017; IEEE: Piscataway, NJ, USA, 2017. [Google Scholar] [CrossRef]
- Ristoski, P.; Paulheim, H. Semantic Web in Data Mining and Knowledge Discovery: A Comprehensive Survey. J. Web Semant. 2016, 36, 1–22. [Google Scholar] [CrossRef]
- Karabulut, E.; Pileggi, S.F.; Groth, P.; Degeler, V. Ontologies in digital twins: A systematic literature review. Future Gener. Comput. Syst. 2024, 153, 442–456. [Google Scholar] [CrossRef]
- Ostrowski, D.; Rychtyckyj, N.; MacNeille, P.; Kim, M. Integration of Big Data Using Semantic Web Technologies. In Proceedings of the 2016 IEEE Tenth International Conference on Semantic Computing (ICSC), Laguna Hills, CA, USA, 4–6 February 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Kazemi, R. Artificial intelligence techniques in advanced concrete technology: A comprehensive survey on 10 years research trend. Eng. Rep. 2023, 5, e12676. [Google Scholar] [CrossRef]
- Golub, K. Subject Access to Information: An Interdisciplinary Approach; Libraries Unlimited, An Imprint of Abc-Clio, LLC: Santa Barbara, CA, USA, 2015. [Google Scholar]
- Kim, H.; Choi, J. Recommendations for Responding to System Security Incidents Using Knowledge Graph Embedding. Electronics 2023, 13, 171. [Google Scholar] [CrossRef]
- Abulaish, M.; Wasi, N.A.; Sharma, S. The role of lifelong machine learning in bridging the gap between human and machine learning: A scientometric analysis. WIREs Data Min. Knowl. Discov. 2024, e1526. [Google Scholar] [CrossRef]
- Liu, C.; Peng, G.; Kong, S.; Lan, C.; Zhu, H. Critical information quality dimensions of conversational agents for healthcare. Inf. Res. Int. Electron. J. 2023, 28, 18–42. [Google Scholar] [CrossRef]
- Hovorushchenko, T.O. Methodology of Evaluating the Sufficiency of Information for Software Quality Assessment according to ISO 25010. J. Inf. Organ. Sci. 2018, 42, 63–85. [Google Scholar] [CrossRef]
- Hovorushchenko, T.; Pomorova, O. Methodology of evaluating the sufficiency of information on quality in the software requirements specifications. In Proceedings of the 2018 IEEE 9th International Conference on Dependable Systems, Services and Technologies (DESSERT), Kyiv, Ukraine, 24–27 May 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hovorushchenko, T.; Izonin, I.; Kutucu, H. Advancements in AI-Based Information Technologies: Solutions for Quality and Security. Systems 2024, 12, 58. https://doi.org/10.3390/systems12020058
Hovorushchenko T, Izonin I, Kutucu H. Advancements in AI-Based Information Technologies: Solutions for Quality and Security. Systems. 2024; 12(2):58. https://doi.org/10.3390/systems12020058
Chicago/Turabian StyleHovorushchenko, Tetiana, Ivan Izonin, and Hakan Kutucu. 2024. "Advancements in AI-Based Information Technologies: Solutions for Quality and Security" Systems 12, no. 2: 58. https://doi.org/10.3390/systems12020058
APA StyleHovorushchenko, T., Izonin, I., & Kutucu, H. (2024). Advancements in AI-Based Information Technologies: Solutions for Quality and Security. Systems, 12(2), 58. https://doi.org/10.3390/systems12020058