Quantity or Quality? The Impact of Multilevel Network Structural Holes on Firm Innovation
Abstract
:1. Introduction
2. Theory Analysis and Hypotheses Development
2.1. Organizational Collaboration Network Structural Holes and Firm Innovation
2.2. The Moderating Effect of Knowledge Network Structural Holes
2.3. The Moderating Effect of Urban Collaboration Network Structural Holes
2.4. Interaction between Structural Holes in Multilevel Networks
3. Research Design
3.1. Sample Selection and Data Source
3.2. Measurement
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Moderator Variables
3.2.4. Control Variables
3.3. Methods
3.3.1. Social Network Analysis
3.3.2. Negative Binomial Regression
4. Analysis and Results
5. Conclusions and Discussion
5.1. Theoretical Implications
5.2. Practical Implications
5.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, X.; Liu, X.; Chen, J. A meta-analysis of the relationship between collaborative innovation and innovation performance: The role of formal and informal institutions. Technovation 2023, 124, 102740. [Google Scholar] [CrossRef]
- Guan, J.; Liu, N. Exploitative and exploratory innovations in knowledge network and collaboration network: A patent analysis in the technological field of nano-energy. Res. Policy 2016, 45, 97–112. [Google Scholar] [CrossRef]
- Tseng, C.; Lin, S.; Pai, D.; Tung, C. The relationship between innovation network and innovation capability: A social network perspective. Technol. Anal. Strateg. Manag. 2016, 28, 1029–1040. [Google Scholar] [CrossRef]
- Llopis, O.; D’Este, P.; Díaz-Faes, A. Connecting others: Does a tertius iungens orientation shape the relationship between research networks and innovation? Res. Policy 2021, 50, 104175. [Google Scholar] [CrossRef]
- Burt, R.; Soda, G. Network capabilities: Brokerage as a bridge between network theory and the resource-based view of the firm. J. Manag. 2021, 47, 1698–1719. [Google Scholar] [CrossRef]
- Zhang, W.; Jiang, Y.; Zhang, W. Capabilities for collaborative innovation of technological alliance: A knowledge-based view. IEEE Trans. Eng. Manag. 2021, 68, 1734–1744. [Google Scholar] [CrossRef]
- Roper, S.; Hewitt-Dundas, N. Knowledge stocks, knowledge flows and innovation: Evidence from matched patents and innovation panel data. Res. Policy 2015, 44, 1327–1340. [Google Scholar] [CrossRef]
- Yayavaram, S.; Ahuja, G. Decomposability in knowledge structures and its impact on the usefulness of inventions and knowledge-base malleability. Adm. Sci. Q. 2008, 53, 333–362. [Google Scholar] [CrossRef]
- Lyu, T.; Geng, Q.; Zhao, Q. Understanding the efforts of cross-border search and knowledge co-creation on manufacturing enterprises’ service innovation performance. Systems 2023, 11, 4. [Google Scholar] [CrossRef]
- Wang, C.; Rodan, S.; Fruin, M.; Xu, X. Knowledge networks, collaboration networks, and exploratory innovation. Acad. Manag. J. 2014, 57, 484–514. [Google Scholar] [CrossRef]
- Johnston, A.; Huggins, R. The spatio-relational nature of urban innovation systems: Universities, knowledge intensive business service firms, and collaborative networks. J. Urban Technol. 2016, 23, 29–52. [Google Scholar] [CrossRef]
- Feng, Z.; Cai, H.; Chen, Z.; Zhou, W. Influence of an interurban innovation network on the innovation capacity of China: A multiplex network perspective. Technol. Forecast. Soc. Change 2022, 180, 121651. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, Q. Network inertia and inbound open innovation: Is there a bidirectional relationship? Scientometrics 2020, 122, 791–815. [Google Scholar] [CrossRef]
- Han, S.; Lyu, Y.; Ji, R.; Zhu, Y.; Su, J.; Bao, L. Open innovation, network embeddedness and incremental innovation capability. Manag. Decis. 2020, 58, 2655–2680. [Google Scholar] [CrossRef]
- Guan, J.; Zhang, J.; Yan, Y. The impact of multilevel networks on innovation. Res. Policy 2015, 44, 545–559. [Google Scholar] [CrossRef]
- Freeman, C. Networks of innovators: A synthesis of research issues. Res. Policy 1991, 20, 499–514. [Google Scholar] [CrossRef]
- Ter Wal, A.; Alexy, O.; Block, J.; Sandner, P. The best of both worlds: The benefits of open-specialized and closed-diverse syndication networks for new ventures’ success. Adm. Sci. Q. 2016, 61, 393–432. [Google Scholar] [CrossRef]
- Burt, R. Structural holes and good ideas. Am. J. Sociol. 2004, 110, 349–399. [Google Scholar] [CrossRef]
- Zang, J. Structural holes, exploratory innovation and exploitative innovation. Manag. Decis. 2018, 56, 1682–1695. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, C.; Wang, J. Financing constraints and innovation performance: The moderating role of the network location of cross-border innovation cooperation among Internet enterprises. Eur. J. Innov. Manag. 2023, 26, 1473–1499. [Google Scholar] [CrossRef]
- Duan, Y.; Yang, M.; Huang, L.; Chin, T.; Fiano, F.; de Nuccio, E.; Zhou, L. Unveiling the impacts of explicit vs. tacit knowledge hiding on innovation quality: The moderating role of knowledge flow within a firm. J. Bus. Res. 2022, 139, 1489–1500. [Google Scholar] [CrossRef]
- An, X.; Deng, H.; Chao, L.; Bai, W. Knowledge management in supporting collaborative innovation community capacity building. J. Knowl. Manag. 2014, 18, 574–590. [Google Scholar] [CrossRef]
- Ganguly, A.; Talukdar, A.; Chatterjee, D. Evaluating the role of social capital, tacit knowledge sharing, knowledge quality and reciprocity in determining innovation capability of an organization. J. Knowl. Manag. 2019, 23, 1105–1135. [Google Scholar] [CrossRef]
- Ahuja, G. Collaboration networks, structural holes, and innovation: A longitudinal study. Adm. Sci. Q. 2000, 45, 425–455. [Google Scholar] [CrossRef]
- Andersén, J. A relational natural-resource-based view on product innovation: The influence of green product innovation and green suppliers on differentiation advantage in small manufacturing firms. Technovation 2021, 104, 102254. [Google Scholar] [CrossRef]
- Zhou, K.; Li, C. How knowledge affects radical innovation: Knowledge base, market knowledge acquisition, and internal knowledge sharing. Strateg. Manag. J. 2012, 33, 1090–1102. [Google Scholar] [CrossRef]
- Liao, Y.; Phan, P. Internal capabilities, external structural holes network positions, and knowledge creation. J. Technol. Transf. 2016, 41, 1148–1167. [Google Scholar] [CrossRef]
- Xia, C.; Li, C. Art of saying no: Linking trust structural hole to knowledge hiding and creativity. Asia Pac. J. Manag. 2023. [Google Scholar] [CrossRef]
- Wen, J.; Qualls, W.; Zeng, D. To explore or exploit: The influence of inter-firm R&D network diversity and structural holes on innovation outcomes. Technovation 2021, 100, 102178. [Google Scholar] [CrossRef]
- Tang, C.; Liu, L.; Xiao, X. How do firms’ knowledge base and industrial knowledge networks co-affect firm innovation? IEEE Trans. Eng. Manag. 2023, 70, 29–39. [Google Scholar] [CrossRef]
- Zhao, L.; Xiang, Y.; Yi, Q. Fuzzy front end patent management and innovation performance Mediating role of patent commercialization and moderating effect of technological lock-in. Manag. Decis. 2017, 55, 1143–1162. [Google Scholar] [CrossRef]
- Zhao, Y.; Lyu, J.; Huesig, S. The impact of innovative city cooperation network on city’s innovation efficiency: Evidence from China. J. Knowl. Econ. 2023. [Google Scholar] [CrossRef]
- Song, Y.; Kim, J. The spatial spillover effect of technological innovation network in cities: A case of the high-tech industry of Yangtze River Delta. Int. J. Urban Sci. 2023, 27, 414–441. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Y.; Zhang, F. The influence of network positions on exploratory innovation: An empirical evidence from China’s patent analysis. Sci. Technol. Soc. 2020, 25, 184–207. [Google Scholar] [CrossRef]
- Arya, B.; Lin, Z. Understanding collaboration outcomes from an extended resource-based view perspective: The roles of organizational characteristics, partner attributes, and network structures. J. Manag. 2007, 33, 697–723. [Google Scholar] [CrossRef]
- Yao, L.; Li, J.; Li, J. Urban innovation and intercity patent collaboration: A network analysis of China’s national innovation system. Technol. Forecast. Soc. Change 2020, 160, 120185. [Google Scholar] [CrossRef]
- Xie, H.; Zou, J.; Mu, L. Multiple networks and enterprise innovation based on the perspective of middle managers. Knowl. Manag. Res. Pract. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Ode, E.; Ayavoo, R. The mediating role of knowledge application in the relationship between knowledge management practices and firm innovation. J. Innov. Knowl. 2020, 5, 209–217. [Google Scholar] [CrossRef]
- Yoon, S.; Marhold, K.; Kang, J. Linking the firm’s knowledge network and subsequent exploratory innovation: A study based on semiconductor industry patent data. Innov.-Organ. Manag. 2017, 19, 463–482. [Google Scholar] [CrossRef]
- Yang, W.; Fan, F.; Wang, X.; Yu, H. Knowledge innovation network externalities in the Guangdong-Hong Kong-Macao Greater Bay Area: Borrowing size or agglomeration shadow? Technol. Anal. Strateg. Manag. 2022, 34, 1020–1037. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, T. Knowledge structure, network structure, exploitative and exploratory innovations. Technol. Anal. Strateg. Manag. 2020, 32, 666–682. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, H.; Wang, L. Network closure or structural hole? The conditioning effects of network-level social capital on innovation performance. Entrep. Theory Pract. 2015, 39, 1189–1212. [Google Scholar] [CrossRef]
- Sigler, T.; Neal, Z.; Martinus, K. The brokerage roles of city-regions in global corporate networks. Reg. Stud. 2023, 57, 239–250. [Google Scholar] [CrossRef]
- Ma, H.; Fang, C.; Pang, B.; Wang, S. Structure of Chinese city network as driven by technological knowledge flows. Chin. Geogr. Sci. 2015, 25, 498–510. [Google Scholar] [CrossRef]
- Sun, W.; Zhao, Y.; Sun, L. Big data analytics for venture capital application: Towards innovation performance improvement. Int. J. Inf. Manag. 2020, 50, 557–565. [Google Scholar] [CrossRef]
- Haner, U. Innovation quality—A conceptual framework. Int. J. Prod. Econ. 2002, 80, 31–37. [Google Scholar] [CrossRef]
- Higham, K.; de Rassenfosse, G.; Jaffe, A. Patent quality: Towards a systematic framework for analysis and measurement. Res. Policy 2021, 50, 104215. [Google Scholar] [CrossRef]
- Singh, J. Distributed R&D, cross-regional knowledge integration and quality of innovative output. Res. Policy 2008, 37, 77–96. [Google Scholar] [CrossRef]
- Chen, C.; Lin, B.; Lin, J.; Hsiao, Y. Technological diversity, knowledge flow and capacity, and industrial innovation. Technol. Anal. Strateg. Manag. 2018, 30, 1365–1377. [Google Scholar] [CrossRef]
- Hu, J.; Pan, X.; Huang, Q. Quantity or quality? The impacts of environmental regulation on firms’ innovation-Quasi-natural experiment based on China’s carbon emissions trading pilot. Technol. Forecast. Soc. Change 2020, 158, 120122. [Google Scholar] [CrossRef]
- Liu, S.; Du, J.; Zhang, W.; Tian, X.; Kou, G. Innovation quantity or quality? The role of political connections. Emerg. Mark. Rev. 2021, 48, 100819. [Google Scholar] [CrossRef]
Variable | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1. Quantity | 1 | |||||||||||
2. Quality | 0.488 *** | 1 | ||||||||||
3. SHO | 0.374 *** | 0.212 *** | 1 | |||||||||
4. SHK | 0.289 *** | 0.124 *** | 0.352 *** | 1 | ||||||||
5. SHU | 0.071 *** | 0.040 *** | 0.075 *** | 0.081 *** | 1 | |||||||
6. SCA | 0.333 *** | 0.174 *** | 0.336 *** | 0.590 *** | −0.017 | 1 | ||||||
7. AGE | 0.172 *** | 0.076 *** | 0.211 *** | 0.303 *** | 0.003 | 0.497 *** | 1 | |||||
8. KS | 0.466 *** | 0.211 *** | 0.433 *** | 0.531 *** | 0.088 *** | 0.583 *** | 0.373 *** | 1 | ||||
9. DC | 0.397 *** | 0.130 *** | 0.311 *** | 0.323 *** | 0.068 *** | 0.192 *** | 0.074 *** | 0.396 *** | 1 | |||
10. DO | 0.061 *** | −0.066 *** | 0.025 ** | 0.089 *** | 0.108 *** | 0.020 | 0.078 *** | 0.191 *** | −0.043 *** | 1 | ||
11. DK | 0.059 *** | −0.071 *** | 0.027 ** | 0.094 *** | 0.112 *** | 0.021 * | 0.085 *** | 0.198 *** | −0.024 * | 0.425 *** | 1 | |
12. DU | −0.005 | 0.021 * | −0.009 | −0.006 | −0.031 ** | 0.002 | −0.011 | −0.019 | −0.057 *** | 0.079 *** | −0.273 *** | 1 |
Mean | 143.863 | 1.685 | 1.025 | 0.977 | 1.541 | 5.355 | 11.840 | 4.085 | 0.005 | 0.006 | 0.043 | 0.135 |
SD | 640.616 | 17.834 | 0.214 | 0.474 | 0.309 | 2.511 | 8.226 | 1.925 | 0.012 | 0.001 | 0.013 | 0.011 |
Innovation Quantity | Innovation Quality | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
SHO | 0.113 *** (0.015) | 0.167 *** (0.019) | 0.117 *** (0.016) | 0.171 *** (0.019) | 0.155 *** (0.040) | 0.209 *** (0.074) | 0.172 *** (0.042) | 0.206 *** (0.073) |
SHO2 | 0.057 *** (0.014) | 0.003 (0.031) | 0.037 ** (0.016) | −0.013 (0.031) | ||||
SHK | 0.031 (0.026) | 0.023 (0.026) | 0.341 *** (0.079) | 0.347 *** (0.080) | ||||
SHO × SHK | −0.079 *** (0.017) | −0.082 *** (0.017) | −0.116 (0.077) | −0.098 (0.079) | ||||
SHO2 × SHK | 0.071 ** (0.029) | 0.071 ** (0.031) | ||||||
SHU | 0.054 *** (0.015) | 0.049 *** (0.016) | −0.032 (0.039) | −0.048 (0.048) | ||||
SHO × SHU | −0.029 * (0.018) | −0.036 * (0.022) | −0.049 (0.047) | 0.029 (0.080) | ||||
SHO2 × SHU | 0.054 *** (0.019) | 0.088 ** (0.037) | ||||||
SHK × SHU | 0.027 (0.017) | 0.029 (0.055) | ||||||
SHO × SHK × SHU | 0.014 (0.020) | −0.038 (0.086) | ||||||
SHO2 × SHK × SHU | 0.041 * (0.038) | |||||||
SCA | 0.353 *** (0.020) | 0.350 *** (0.020) | 0.359 *** (0.020) | 0.358 *** (0.020) | 0.457 *** (0.054) | 0.438 *** (0.054) | 0.459 *** (0.054) | 0.443 *** (0.054) |
AGE | −0.144 *** (0.015) | −0.138 *** (0.015) | −0.141 *** (0.015) | −0.136 *** (0.015) | −0.091 ** (0.041) | −0.099 ** (0.041) | −0.096 ** (0.041) | −0.104 ** (0.041) |
KS | 1.621 *** (0.021) | 1.593* ** (0.030) | 1.612 *** (0.021) | 1.589 *** (0.030) | 1.362 *** (0.056) | 1.120 *** (0.074) | 1.360 *** (0.057) | 1.119 *** (0.074) |
DC | −0.014 (0.015) | 0.001 (0.015) | −0.013 (0.015) | 0.001 (0.015) | −0.045 * (0.025) | −0.046 * (0.025) | −0.046 * (0.025) | −0.046 * (0.025) |
DO | −0.090 (0.099) | −0.087 (0.099) | −0.087 (0.099) | −0.082 (0.099) | 1.136 ** (0.544) | 1.026 * (0.539) | 1.124 ** (0.544) | 1.024 * (0.538) |
DK | 0.118 (0.104) | 0.116 (0.104) | 0.113 (0.104) | 0.106 (0.104) | −3.248 *** (0.625) | −3.140 *** (0.617) | −3.236 *** (0.626) | −3.139 *** (0.617) |
DU | 0.169 *** (0.052) | 0.172 *** (0.052) | 0.164 *** (0.052) | 0.166 *** (0.05) | 0.204 (0.200) | 0.274 (0.201) | 0.219 (0.200) | 0.289 (0.200) |
Year | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
_cons | 3.046 *** (0.037) | 3.070 *** (0.037) | 3.043 *** (0.037) | 3.067 *** (0.037) | −2.046 *** (0.146) | −2.063 *** (0.147) | −2.031 *** (0.147) | −2.060 *** (0.147) |
N | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 |
LR chi2 | 9260.76 | 9287.04 | 9276.57 | 9304.10 | 2713.28 | 2744.23 | 2721.82 | 2753.27 |
Log likelihood | −25,569.34 | −25,556.20 | −25,561.43 | −25,547.67 | −4008.36 | −3992.89 | −4004.09 | −3988.37 |
Innovation Quantity | Innovation Quality | |||||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 | Model 7 | Model 8 | |
SHO | 0.035 *** (0.012) | 0.095 *** (0.024) | 0.040 *** (0.012) | 0.103 *** (0.023) | 0.140 *** (0.042) | 0.212 *** (0.081) | 0.149 *** (0.044) | 0.211 *** (0.081) |
SHO2 | 0.035 ** (0.015) | 0.008 (0.029) | 0.015 (0.017) | 0.005 (0.030) | ||||
SHK | −0.019 (0.024) | −0.027 (0.024) | 0.290 *** (0.093) | 0.299 *** (0.092) | ||||
SHO × SHK | −0.084 *** (0.021) | −0.091 *** (0.021) | −0.119 * (0.080) | −0.104 (0.076) | ||||
SHO2 × SHK | 0.044 * (0.026) | 0.038 (0.026) | ||||||
SHU | 0.109 *** (0.013) | 0.102 *** (0.015) | −0.054 (0.067) | −0.063 (0.075) | ||||
SHO × SHU | −0.037 *** (0.012) | −0.053 * (0.032) | −0.019 (0.047) | 0.057 (0.064) | ||||
SHO2 × SHU | 0.051 ** (0.021) | 0.072 ** (0.034) | ||||||
SHK × SHU | 0.015 (0.017) | 0.021 (0.064) | ||||||
SHO × SHK × SHU | 0.027 (0.028) | −0.061 (0.065) | ||||||
SHO2 × SHK × SHU | 0.021 * (0.030) | |||||||
SCA | 0.073 *** (0.019) | 0.071 *** (0.019) | 0.089 *** (0.019) | 0.088 *** (0.019) | 0.374 *** (0.064) | 0.360 *** (0.065) | 0.373 *** (0.063) | 0.361 *** (0.065) |
AGE | −0.101 *** (0.013) | −0.098 *** (0.013) | −0.098 *** (0.013) | −0.095 *** (0.013) | −0.052 (0.090) | −0.063 (0.089) | −0.058 (0.090) | −0.069 (0.090) |
KS | 2.124 *** (0.019) | 2.146 *** (0.027) | 2.101 *** (0.019) | 2.127 *** (0.027) | 1.497 *** (0.077) | 1.298 *** (0.103) | 1.500 *** (0.080) | 1.302 *** (0.104) |
BC | 0.004 (0.007) | 0.016 ** (0.006) | 0.004 (0.007) | 0.015 ** (0.006) | 0.016 (0.021) | 0.018 (0.020) | 0.017 (0.021) | 0.020 (0.020) |
ADO | 0.006 (0.014) | 0.005 (0.014) | 0.008 (0.014) | 0.007 (0.014) | 0.018 (0.054) | 0.020 (0.055) | 0.020 (0.054) | 0.022 (0.054) |
ADK | −0.090 *** (0.019) | −0.086 *** (0.019) | −0.083 *** (0.019) | −0.079 *** (0.019) | 1.021 *** (0.082) | 1.012 *** (0.084) | 1.009 *** (0.076) | 0.999 *** (0.078) |
ADU | 0.039 ** (0.018) | 0.040 ** (0.018) | 0.035 * (0.018) | 0.035 ** (0.018) | 0.628 *** (0.076) | 0.652 *** (0.076) | 0.636 *** (0.076) | 0.662 *** (0.076) |
_cons | 2.109 *** (0.013) | 2.130 *** (0.014) | 2.107 *** (0.013) | 2.128 *** (0.014) | −2.320 *** (0.082) | −2.356 *** (0.090) | −2.312 *** (0.082) | −2.363 *** (0.091) |
N | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 | 6331 |
Wald chi2 | 30,479.49 | 32,774.76 | 31,128.28 | 33,209.17 | 1931.12 | 1933.47 | 1968.11 | 1981.42 |
Log likelihood | −20,756.14 | −20,741.07 | −20,718.75 | −20,702.24 | −4083.27 | −4073.09 | −4079.19 | −4068.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Li, Q.; Lyu, J. Quantity or Quality? The Impact of Multilevel Network Structural Holes on Firm Innovation. Systems 2024, 12, 57. https://doi.org/10.3390/systems12020057
Zhao Y, Li Q, Lyu J. Quantity or Quality? The Impact of Multilevel Network Structural Holes on Firm Innovation. Systems. 2024; 12(2):57. https://doi.org/10.3390/systems12020057
Chicago/Turabian StyleZhao, Yan, Qiuying Li, and Jianlin Lyu. 2024. "Quantity or Quality? The Impact of Multilevel Network Structural Holes on Firm Innovation" Systems 12, no. 2: 57. https://doi.org/10.3390/systems12020057
APA StyleZhao, Y., Li, Q., & Lyu, J. (2024). Quantity or Quality? The Impact of Multilevel Network Structural Holes on Firm Innovation. Systems, 12(2), 57. https://doi.org/10.3390/systems12020057