How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Transformation and Sustainability
2.2. Digital Transformation and Green Supply Chain
2.3. The “Technology-Organization-Environment” (TOE) Theory
3. Theoretical Framework
3.1. Environment Dimensions
3.1.1. Market Environment
3.1.2. Institutional Environment
3.2. Organization Dimensions
4. Data and Measurements
4.1. Manufacturing Digital Transformation
4.2. Regional Market and Policy Environment Characteristics
4.3. Measurements on Organizational Dimension Variables
4.4. Green Supply Chain Development
5. Empirical Studies
5.1. Methodology
5.1.1. Test method on Environmental Dimension
5.1.2. Test Method on Environmental Dimension
5.2. Empirical Results on the Environmental Dimension
5.3. Empirical Results on the Organizational Dimension
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Digital Transformation Area | Core Vocabulary Used in Text Analysis | The Function of Technology in the Enterprise (Example) |
---|---|---|
Digital technology use | Words describing specific applications or specific scenarios of Internet technology, such as e-commerce, industrial Internet, digital marketing, smart factory, etc. (77 words in total) | Drive business model innovation |
Cloud Computing Technology | Words describing cloud computing technologies and applications such as cloud computing, cloud storage, industrial cloud, graph computing, physical information systems, etc. (18 words in total) | Reduce corporate sales costs |
Artificial Intelligence Technology | Vocabulary that describes artificial intelligence technologies and applications such as business intelligence, semantic recognition, deep learning, etc. (24 words in total) | Improve data analysis capabilities; Reduce administrative costs |
Big Data Technology | Vocabulary describing Big Data technologies and applications such as Big Data, digital platforms, integrated systems, information terminals, etc. (32 words in total) | Precision marketing; Optimization of management processes |
Blockchain Technology | Vocabulary describing Block chain technologies and applications such as blockchain, digital currency, distributed computing etc. (5 words in total) | Anti-counterfeiting |
References
- Fahimnia, B.; Sarkis, J.; Eshragh, A. A tradeoff model for green supply chain planning: A leanness-versus-greenness analysis. Omega 2015, 54, 173–190. [Google Scholar] [CrossRef]
- Guo, F.; Liu, Q.; Liu, D.; Guo, Z. On production and green transportation coordination in a sustainable global supply chain. Sustainability 2017, 9, 2071. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Peng, Y.; Ma, C.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Ocicka, B.; Baraniecka, A.; Jefmański, B. Exploring Supply Chain Collaboration for Green Innovations: Evidence from the High-Tech Industry in Poland. Energies 2022, 15, 1750. [Google Scholar] [CrossRef]
- Li, L.; Li, W. The Promoting Effect of Green Technology Innovations on Sustainable Supply Chain Development: Evidence from China’s Transport Sector. Sustainability 2022, 14, 4673. [Google Scholar] [CrossRef]
- Tarofder, A.K.; Jawabri, A.; Haque, A.; Sherief, S.R. Validating technology-organization- environment (TOE) framework in web 2.0 adoption in supply chain management. Ind. Eng. Manag. Syst. 2019, 18, 482–494. [Google Scholar] [CrossRef]
- Duan, W.; Hu, H.; Zhang, Y. What determines the performance of small and medium-sized enterprises supply chain financing? A qualitative comparative analysis of fuzzy sets based on the technology-organization-environment framework. Front. Psychol. 2022, 13, 976218. [Google Scholar] [CrossRef]
- Guan, W.; Ding, W.; Zhang, B.; Verny, J.; Hao, R. Do supply chain related factors enhance the prediction accuracy of blockchain adoption? A machine learning approach. Technol. Forecast. Soc. Chang. 2023, 192, 122552. [Google Scholar] [CrossRef]
- Koronios, K.; Dimitropoulos, P.; Kriemadis, A.; Douvis, J.; Papaloukas, M.; Ratten, V. Empowerment and performance in SMEs: Examining the effect of employees’ ethical values and emotional intelligence. In A Guide to Planning and Managing Open Innovative Ecosystems; Emerald Publishing Limited: Bingley, UK, 2020; pp. 83–98. [Google Scholar]
- Dimitropoulos, P.; Koronios, K. Corporate Environmental Responsibility, Accounting and Corporate Finance in the EU: A Quantitative Analysis Approach; Springer Nature: New York, NY, USA, 2021; pp. 5–15. [Google Scholar]
- Passas, R.K.; Zafeiriou, E.; Garefalakis, A.; Zopounidis, C. ESG Controversies: A Quantitative and Qualitative Analysis for the Sociopolitical Determinants in EU Firms. Sustainability 2022, 14, 12879. [Google Scholar] [CrossRef]
- Yang, W.; Li, T.; Cao, X. Examining the impacts of socio-economic factors, urban form and transportation development on CO2 emissions from transportation in China: A panel data analysis of China’s provinces. Habitat Int. 2015, 49, 212–220. [Google Scholar] [CrossRef]
- Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef]
- Ministry of Transport of the P.R.C. (MOT). Available online: https://www.mot.gov.cn/2022zhengcejd/202208/t20220817_3666575.html (accessed on 17 August 2022).
- Saraji, M.K.; Streimikiene, D.; Kyriakopoulos, G.L. Fermatean fuzzy critic-copras method for evaluating the challenges to industry 4.0 adoption for a sustainable digital transformation. Sustainability 2021, 13, 9577. [Google Scholar] [CrossRef]
- Bican, P.M.; Brem, A. Digital business model, digital transformation, digital entrepreneurship: Is there a sustainable “digital”? Sustainability 2020, 12, 5239. [Google Scholar] [CrossRef]
- Kunkel, S.; Tyfield, D. Digitalisation, sustainable industrialisation and digital rebound—Asking the right questions for a strategic research agenda. Energy Res. Soc. Sci. 2021, 82, 102295. [Google Scholar] [CrossRef]
- Agostinelli, S.; Cumo, F.; Guidi, G.; Tomazzoli, C. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence. Energies 2021, 14, 2338. [Google Scholar] [CrossRef]
- Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy digital twin technology for industrial energy management: Classification, challenges and future. Renew. Sustain. Energy Rev. 2022, 161, 112407. [Google Scholar] [CrossRef]
- Gregori, P.; Holzmann, P. Digital sustainable entrepreneurship: A business model perspective on embedding digital technologies for social and environmental value creation. J. Clean. Prod. 2020, 272, 122817. [Google Scholar] [CrossRef]
- Teng, S.Y.; Galvis, L.; Blanco, C.M.; Özkan, L.; Barendse, R.; Postma, G.; Jansen, J. Machine-learned digital phase switch for sustainable chemical production. J. Clean. Prod. 2023, 382, 135168. [Google Scholar] [CrossRef]
- Zhang, Y.; Feng, M.; Fang, Z.; Yi, F.; Liu, Z. Impact of digital village construction on agricultural carbon emissions: Evidence from mainland China. Int. J. Environ. Res. Public Health 2023, 20, 4189. [Google Scholar] [CrossRef]
- Gao, Q.; Cheng, C.; Sun, G.; Li, J. The impact of digital inclusive finance on agricultural green total factor productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- Nitoslawski, S.A.; Galle, N.J.; van den Bosc, C.K.; Steenberg, J.W.N. Smarter ecosystems for smarter cities? A review of trends, technologies, and turning points for smart urban forestry. Sustain. Cities Soc. 2019, 51, 101770. [Google Scholar] [CrossRef]
- Manjon, M.; Aouni, Z.; Crutzen, N. Green and digital entrepreneurship in smart cities. Ann. Reg. Sci. 2022, 68, 429–462. [Google Scholar] [CrossRef]
- Killian, Z.M.; Kozek, M. Comprehensive smart home energy management system using mixed-integer quadratic-programming. Appl. Energy 2018, 222, 662–672. [Google Scholar] [CrossRef]
- Kuzior, A.; Vyshnevskyi, O.; Trushkina, N. Assessment of the Impact of Digitalization on Greenhouse Gas Emissions on the Example of EU Member States. Prod. Eng. Arch. 2022, 28, 407–419. [Google Scholar] [CrossRef]
- Kuzior, A.; Sira, M.; Brozek, P. Using Blockchain and Artificial Intelligence in Energy Management as a Tool to Achieve Energy Efficiency. Virtual Econ. 2022, 5, 69–90. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, X.; Huang, S. Impacts on environmental quality and required environmental regulation adjustments: A perspective of directed technical change driven by big data. J. Clean. Prod. 2020, 275, 124126. [Google Scholar] [CrossRef]
- Su, Y.; Yu, Y.; Zhang, N. Carbon emissions and environmental management based on big data and streaming data: A bibliometric analysis. Sci. Total Environ. 2020, 733, 138984. [Google Scholar] [CrossRef]
- Wyatt, D.W.; Li, H.; Tate, J.E. The impact of road grade on carbon dioxide (CO2) emission of a passenger vehicle in real-world driving. Transp. Res. Part D Transp. Environ. 2014, 32, 160–170. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.T.; Hashim, H.; Ho, C.S.; Fan, Y.V.; Klemeš, J.J. Sustaining the low-carbon emission development in asia and beyond: Sustainable energy, water, transportation and low-carbon emission technology. J. Clean. Prod. 2017, 146, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Specht, P.; Bamler, J.; Jović, M.; Meyer-Larsen, N. Digital information services needed for a sustainable inland waterway transportation business. Sustainability 2022, 14, 6392. [Google Scholar] [CrossRef]
- Papa, A. Digital technologies and sustainability—Identified synergies, challenges and anticipated impact on the transportation business segment. J. Res. Innov. Sustain. Soc. 2023, 5, 72–75. [Google Scholar] [CrossRef]
- Kuzior, A.; Staszek, M. Energy management in the railway industry: A case study of rail freight carrier in Poland. Energies 2021, 14, 6875. [Google Scholar] [CrossRef]
- Khanna, M.; Atallah, S.S.; Kar, S.; Sharma, B.; Wu, L.; Yu, C.; Chowdhary, G.; Soman, C.; Guan, K. Digital transformation for a sustainable agriculture in the united states: Opportunities and challenges. Agric. Econ. 2022, 53, 924–937. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Zhang, J.; Zhao, X. Impacts of digital technology on energy sustainability: China case study. Appl. Energy 2022, 323, 119329. [Google Scholar] [CrossRef]
- Watson, R.T.; Ketter, W.; Recker, J.; Seidel, S. Sustainable energy transition: Intermittency policy based on digital mirror actions. J. Assoc. Inf. Syst. 2022, 23, 631–638. [Google Scholar] [CrossRef]
- Lin, R. Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Clean. Prod. 2013, 40, 32–39. [Google Scholar] [CrossRef]
- Yang, Z.; Lin, Y. The effects of supply chain collaboration on green innovation performance: An interpretive structural modeling analysis. Sustain. Prod. Consump. 2020, 23, 1–10. [Google Scholar] [CrossRef]
- Hu, J.; Li, X. Construction and optimization of green supply chain management mode of agricultural enterprises in the digital economy. Int. J. Inf. Syst. Supply Chain Manag. 2021, 15, 1–18. [Google Scholar] [CrossRef]
- Li, P.; Rao, C.; Goh, M.; Yang, Z. Pricing strategies and profit coordination under a double echelon green supply chain. J. Clean. Prod. 2021, 278, 123694. [Google Scholar] [CrossRef]
- Ugarte, G.M.; Golden, J.S.; Dooley, K.J. Lean versus green: The impact of lean logistics on greenhouse gas emissions in consumer goods supply chains. J. Purch. Supply Manag. 2016, 22, 98–109. [Google Scholar] [CrossRef]
- Hazen, B.T.; Cegielski, C.; Hanna, J.B. Diffusion of green supply chain management: Examining perceived quality of green reverse logistics. Int. J. Logist. Manag. 2011, 22, 373–389. [Google Scholar] [CrossRef]
- Sheu, J.; Chou, Y.; Hu, C. An integrated logistics operational model for green-supply chain management. Transp. Res. Pt. e-Logist. Transp. Rev. 2005, 41, 287–313. [Google Scholar] [CrossRef]
- Sarkar, B.; Sarkar, M. Application of Optimization in Production, Logistics, Inventory, Supply Chain Management and Block Chain; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2021. [Google Scholar]
- Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Jiang, P.; Xu, K.; Liu, Q.; Zhou, X.; Liu, C. Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey. Renew. Sustain. Energy Rev. 2020, 132, 110112. [Google Scholar] [CrossRef]
- Brandín, R.; Abrishami, S. Information traceability platforms for asset data lifecycle: Blockchain-based technologies. Smart Sustain. Built Environ. 2021, 10, 364–386. [Google Scholar] [CrossRef]
- Gligor, D.M.; Davis-Sramek, B.; Tan, A.; Vitale, A.; Russo, I.; Golgeci, I.; Wan, X. Utilizing blockchain technology for supply chain transparency: A resource orchestration perspective. J. Bus. Logist. 2022, 43, 140–159. [Google Scholar] [CrossRef]
- Guo, S.; Sun, X.; Lam, H.K.S. Applications of blockchain technology in sustainable fashion supply chains: Operational transparency and environmental efforts. IEEE Trans. Eng. Manag. 2023, 70, 1312–1328. [Google Scholar] [CrossRef]
- Long, Y.; Feng, T.; Fan, Y.; Liu, L. Adopting blockchain technology to enhance green supply chain integration: The moderating role of organizational culture. Bus. Strateg. Environ. 2022; in press. [Google Scholar] [CrossRef]
- Yeh, W.; Chuang, M. Using multi-objective genetic algorithm for partner selection in green supply chain problems. Expert Syst. Appl. 2011, 38, 4244–4253. [Google Scholar] [CrossRef]
- Caniëls, M.C.J.; Cleophas, E.; Semeijn, J. Implementing green supply chain practices: An empirical investigation in the shipbuilding industry. Marit. Policy Manag. 2016, 43, 1005–1020. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Li, B.; Yin, S. A prescription for urban sustainability transitions in china: Innovative partner selection management of green building materials industry in an integrated supply chain. Sustainability 2020, 12, 2581. [Google Scholar] [CrossRef] [Green Version]
- Tornatzky, L.G.; Fleischer, M.; Chakrabarti, A.K. Processes of Technological Innovation; Lexington Books: Lexington, KY, USA, 1990. [Google Scholar]
- Morawiec, P.; Sołtysik-Piorunkiewicz, A. ERP system development for business agility in industry 4.0—A literature review based on the TOE framework. Sustainability 2023, 15, 4646. [Google Scholar] [CrossRef]
- Wang, Y.; Su, X. Driving factors of digital transformation for manufacturing enterprises: A multi-case study from china. Int. J. Technol. Manag. 2021, 87, 229–253. [Google Scholar] [CrossRef]
- Angeles, R. 7G’s environmental initiative through the lens of the technology-organization-environment (TOE) framework. Comput. Technol. Appl. 2013, 4, 39–68. [Google Scholar]
- Maduku, D.K. Antecedents of mobile marketing adoption by SMEs:Does industry variance matter? J. Organ. Comp. Electron. Commer. 2021, 31, 222–249. [Google Scholar] [CrossRef]
- Malik, S.; Chadhar, M.; Vatanasakdakul, S.; Chetty, M. Factors affecting the organizational adoption of blockchain technology: Extending the technology–organization– environment (TOE) framework in the australian context. Sustainability 2021, 13, 9404. [Google Scholar] [CrossRef]
- Bosch-Rekveldt, M.; Jongkind, Y.; Mooi, H.; Bakker, H.; Verbraeck, A. Grasping project complexity in large engineering projects: The TOE (technical, organizational and environmental) framework. Int. J. Proj. Manag. 2011, 29, 728–739. [Google Scholar] [CrossRef]
- Ganguly, K.K. Understanding the challenges of the adoption of blockchain technology in the logistics sector: The TOE framework. Technol. Anal. Strateg. Manag. 2022; 1–15, ahead of print. [Google Scholar] [CrossRef]
- Chittipaka, V.; Kumar, S.; Sivarajah, U.; Bowden, J.L.; Baral, M.M. Blockchain technology for supply chains operating in emerging markets: An empirical examination of technology-organization-environment (TOE) framework. Ann. Oper. Res. 2022, in press. [CrossRef]
- Liu, G.; Wang, S. Digital transformation and trade credit provision: Evidence from China. Res. Int. Bus. Financ. 2023, 64, 101805. [Google Scholar] [CrossRef]
- Galindo-Martin, M.A.; Castano-Martinez, M.S.; Méndez-Picazo, M.T. Digital transformation, digital dividends and entrepreneurship: A quantitative analysis. J. Bus. Res. 2019, 101, 522–527. [Google Scholar] [CrossRef]
- Kong, G.; Huang, J.; Liu, S. Digital Transformation and Within-Firm Pay Gap: Evidence from China. Emerg. Mark. Financ. Trade 2023, 59, 1748–1766. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J. Digital transformation and firm cost stickiness: Evidence from China. Financ. Res. Lett. 2023, 52, 103510. [Google Scholar] [CrossRef]
- Grančay, M.; Dudáš, T. Bilateral trade flows and comparative advantage: Does the size matter? Econ. Soc. 2019, 41, 397–413. [Google Scholar] [CrossRef] [Green Version]
- He, A.; Xue, Q.; Zhao, R.; Wang, D. Renewable energy technological innovation, market forces, and carbon emission efficiency. Sci. Total Environ. 2021, 796, 148908. [Google Scholar] [CrossRef]
- Zhang, L.; Kou, C.; Zheng, J.; Li, Y. Decoupling Analysis of CO2 Emissions in Transportation Sector from Economic Growth during 1995–2015 for Six Cities in Hebei, China. Sustainability 2018, 10, 4149. [Google Scholar] [CrossRef] [Green Version]
- Gershenberg, I. Labor, Capital, and Management Slack in Multinational and Local Firms in Kenyan Manufacturing. Econ. Dev. Cult. Chang. 1986, 35, 163–178. [Google Scholar] [CrossRef]
- Findlay, R. Factor Proportions and Comparative Advantage in the Long Run. J. Polit. Econ. 1970, 78, 27–34. [Google Scholar] [CrossRef]
- Qin, D.; Song, H. Sources of investment inefficiency: The case of fixed-asset investment in China. J. Dev. Econ. 2009, 90, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Deng, F.; Jin, Y.; Ye, M.; Zheng, S. New fixed assets investment project environmental performance and influencing factors—An empirical analysis in China’s optics valley. Int. J. Environ. Health Res. 2019, 16, 4891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Qi, Z.; Shu, Y. Multiple relationships between fixed-asset investment and industrial structure evolution in China–Based on Directed Acyclic Graph (DAG) analysis and VAR model. Struct. Chang. Econ. Dyn. 2020, 55, 222–231. [Google Scholar] [CrossRef]
- Chen, F.; Zhao, T.; Liao, Z. The impact of technology-environmental innovation on CO2 emissions in China’s transportation sector. Environ. Sci. Pollut. Res. 2020, 27, 29485–29501. [Google Scholar] [CrossRef]
- Hosseini-Motlagh, S.; Ebrahimi, S.; Jokar, A. Sustainable supply chain coordination under competition and green effort scheme. J. Oper. Res. Soc. 2021, 72, 304–319. [Google Scholar] [CrossRef]
- Anderson, J.E.; Wincoop, E.V. Gravity with Gravitas: A Solution to the Border Puzzle. Am. Econ. Rev. 2003, 93, 170–192. [Google Scholar] [CrossRef] [Green Version]
- Fang, D.; Zhang, X. The Protective Effect of Digital Financial Inclusion on Agricultural Supply Chain during the COVID-19 Pandemic: Evidence from China. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 3202–3217. [Google Scholar] [CrossRef]
- Fang, D.; Guo, Y. Flow of goods to the shock of COVID-19 and toll-free highway policy: Evidence from logistics data in China. Res. Transp. Econ. 2022, 93, 101185. [Google Scholar] [CrossRef]
Variable | Definition | Mean | Std. Dev. |
---|---|---|---|
GCD | Level of GSC development | −0.26 | −0.10 |
DT | Level of digital transformation | 9767.54 | 1083.24 |
MC | Proxy of market competition defined in Section 4.2 | 0.03 | 0.0006 |
ER | Proxy of environment regulation defined in Section 4.2 | 0.04 | 0.0025 |
LCR | The wage-to-asset ratio of scale industrial enterprises | 0.20 | 0.11 |
SE | fixed asset investment in scale industrial enterprises (unit: 100 million CNY) | 10,054.37 | 2918.84 |
OS | The share of state-owned enterprises in scale industrial enterprise | 0.58 | 0.15 |
dis | The geography distance between provincial capital in the Google map (unit: km) | 1305.93 | 744.09 |
Dependent Variable: log(GSC) | ||||||
---|---|---|---|---|---|---|
Equations | (1) | (2) | (3) | (4) | (5) | (6) |
DT | 0.003 ** | 0.002 ** | 0.003 *** | 0.003 *** | 0.003 *** | 0.002 *** |
(1.98) | (2.02) | (2.39) | (2.35) | (3.05) | (2.98) | |
LCR | −0.219 *** | −0.189 *** | ||||
(−4.27) | (−3.60) | |||||
DT × LCR | 0.025 ** | |||||
(2.00) | ||||||
SE | 0.188 *** | 0.181 *** | ||||
(2.99) | (3.05) | |||||
DT × SE | 0.004 | |||||
(1.50) | ||||||
OS | 0.099 *** | 0.085 *** | ||||
(2.93) | (2.38) | |||||
DT × OS | 0.018 *** | |||||
(2.77) | ||||||
lndis | −0.699 ** | −0.699 * | −0.717 * | −0.720 | −0.733 ** | −0.709 * |
(−1.97) | (−1.88) | (−1.85) | (−1.42) | (−1.97) | (−1.88) | |
intercept | 6.546 *** | 5.543 *** | 12.338 *** | 9.472 *** | 6.646 *** | 6.620 *** |
(11.76) | (16.70) | (11.45) | (18.27) | (11.38) | (13.16) | |
Region i FE | Yes | Yes | Yes | Yes | Yes | Yes |
Region j FE | Yes | Yes | Yes | Yes | Yes | Yes |
F | 23.55 *** | 23.53 *** | 32.80 *** | 36.48 *** | 22.40 *** | 25.95 *** |
Ajusted R2 | 0.54 | 0.56 | 0.65 | 0.65 | 0.47 | 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Xiao, X.; Yang, X.; Li, L. How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework. Systems 2023, 11, 416. https://doi.org/10.3390/systems11080416
Li W, Xiao X, Yang X, Li L. How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework. Systems. 2023; 11(8):416. https://doi.org/10.3390/systems11080416
Chicago/Turabian StyleLi, Weimin, Xiaoyu Xiao, Xinyue Yang, and Li Li. 2023. "How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework" Systems 11, no. 8: 416. https://doi.org/10.3390/systems11080416
APA StyleLi, W., Xiao, X., Yang, X., & Li, L. (2023). How Does Digital Transformation Impact Green Supply Chain Development? An Empirical Analysis Based on the TOE Theoretical Framework. Systems, 11(8), 416. https://doi.org/10.3390/systems11080416