Multidimensional Evolution and Driving Factors of Securities Firms’ Collaborative Bond Joint Underwriting Networks in China: A Comprehensive Analysis from 2011 to 2020
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Analysis
3.1. Adequate Opportunity as a Prerequisite for Adjusting Collaborative Relationships
3.2. The Purpose of Adjusting Collaborative Relationships for Securities Firms Is to Maximize Collaborative Utility
4. Data and Methodology
4.1. Data Source and Processing
4.1.1. Data Source
4.1.2. Data Processing
4.2. Research Method
4.2.1. Data Processing
4.2.2. Stochastic Actor-Oriented Model
4.3. Model Specification
4.3.1. Dependent Variables
4.3.2. Independent Variables
4.3.3. Control Variables
4.4. Variable Measurement
4.4.1. Dependent Variables
4.4.2. Independent Variables
- (1)
- Individual Effects
- 1.
- Geographic Similarity
- 2.
- Domain Similarity
- 3.
- Institutional Similarity
- 4.
- Organizational Similarity
- 5.
- Experience Heterogeneity
- 6.
- Scale Heterogeneity
- (2)
- Network Endogenous Effects
- 1.
- Structural Embeddedness
- 2.
- The preferential attachment
4.4.3. Control Variables
5. Research Results
5.1. Multidimensional Evolution of China’s Bond Joint Underwriting Network
5.1.1. Network Structure Evolution
- (1)
- Overall Evolutionary Characteristics
- (2)
- Evolutionary Characteristics of Key Nodes
5.1.2. Evolution of Network Spatial Pattern
5.2. Driving Mechanisms of above Evolution
5.2.1. Estimation of Rate Functions
5.2.2. Estimation of Utility Functions
- (1)
- Opportunity cost of bond joint underwriting cooperation
- (2)
- Factors influencing the adjustment of bond joint underwriting cooperative relationships
- 1.
- Individual effects
- 2.
- Network endogenous effects
6. Conclusions and Discussion
6.1. Conclusions
6.2. Discussion
6.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
2012 | 2014 | 2016 | 2018 | 2020 | |||||
---|---|---|---|---|---|---|---|---|---|
Securities Firms/C/C’ | Securities Firms/C/C’ (Weighted) | Securities Firms/C/C’ | Securities Firms/C/C’ (Weighted) | Securities Firms/C/C’ | Securities Firms/C/C’ (Weighted) | Securities Firms/C/C’ | Securities Firms/C/C’ (Weighted) | Securities Firms/C/C’ | Securities Firms/C/C’ (Weighted) |
UBS Securities/12/0.125 | UBS Securities/33/0.176 | Zhongtai Securities/8/0.123 | CITIC Securities/9/0.145 | China Securities Co., Ltd./42/0.055 | China Securities Co., Ltd./238/0.099 | China Securities Co., Ltd./52/0.059 | China Securities Co., Ltd./474/0.109 | China Securities Co., Ltd./70/0.044 | China Securities Co., Ltd./896/0.109 |
China International Capital /11/0.115 | China International Capital /28/0.149 | Credit Suisse Founder Securities/7/0.108 | Zhong De Securities/9/0.145 | HAITONG Securities/32/0.042 | HAITONG Securities/146/0.061 | Guotai Junan Securities/37/0.042 | Guotai Junan Securities/360/0.082 | Guotai Junan Securities/63/0.039 | CITIC Securities/761/0.093 |
Guotai Junan Securities/6/0.063 | China Merchants Securities/20/0.106 | China Securities Co., Ltd. /6/0.092 | China Securities Co., Ltd. /7/0.113 | Guotai Junan Securities/31/0.041 | Guotai Junan Securities/142/0.059 | Ping’an Securities/35/0.040 | Ping’an Securities/345/0.079 | CITIC Securities/63/0.039 | Guotai Junan Securities/693/0.085 |
Goldman Sachs Gao Hua Securities/6/0.063 | Guotai Junan Securities/13/0.069 | China Great Wall Securities/6/0.092 | China International Capital /7/0.113 | China Merchants Securities/30/0.040 | China Merchants Securities/141/0.059 | HAITONG Securities/34/0.039 | CITIC Securities/316/0.072 | Huatai United Securities/57/0.036 | HAITONG Securities/557/0.068 |
China Merchants Securities/6/0.063 | China Great Wall Securities/12/0.064 | China Merchants Securities/6/0.092 | Guokai Securities/6/0.097 | GF Securities/28/0.037 | GF Securities/131/0.054 | GF Securities/33/0.038 | HAITONG Securities/252/0.058 | HAITONG Securities/57/0.036 | China International Capital /495/0.060 |
References
- Omir, A. Financial instruments—The driving force of the capital market. Bull. Turan Univ. 2021, 02, 184–190. [Google Scholar] [CrossRef]
- Jia, R.X.; Liu, Y.; Hou, X.L. Enterprise cooperation model and its effects on regional economic development: A case study on enterprises in Tongzhou city, Jiangsu province. Geogr. Res. 2005, 04, 641–651. [Google Scholar]
- Demirbag, M.; McGuinness, M.; Akin, A.; Bayyurt, N. The professional service firm (PSF) in a globalised economy: A study of the efficiency of securities firms in an emerging market. Int. Bus. Rev. 2016, 25, 1089–1102. [Google Scholar] [CrossRef]
- Carbó-Valverde, S.; Cuadros-Solas, P.J.; Rodríguez-Fernández, F. The impact of lending relationships on the choice and structure of bond underwriting syndicates. J. Int. Financ. Mark. Inst. Money 2021, 3, 101403. [Google Scholar] [CrossRef]
- Kim, S.J.; Moshirian, F.; Wu, E. Evolution of international stock and bond market integration: Influence of the European Monetary Union. J. Bank. Financ. 2006, 30, 1507–1534. [Google Scholar] [CrossRef]
- Lan, R.X.; Wu, J.X. The Evolution of China’s Bond Market in Modern Times. China Financ. 2021, 24, 105–106. [Google Scholar]
- Granovetter, M. Economic action and social structure: The problem of embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Uzzi, B. The sources and consequences of embeddedness for the economic performance of organizations: The network effect. Am. Sociol. Rev. 1996, 61, 674–698. [Google Scholar] [CrossRef]
- Burt, R.S. Structural Holes: The Social Structure of Competition; Harvard University Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Li, M.; Zhang, H.; Chen, W. Evolution of the global crude oil network. Energy 2018, 148, 534–546. [Google Scholar]
- Noh, Y.; Jeong, H.; Lee, S. A comprehensive framework for constructing the global collaboration network of financial institutions. PLoS ONE 2019, 14, e0214086. [Google Scholar]
- Zeng, Y.; Li, D.; Zhu, J. Evolution of the global financial network and its stability in the process of financial globalization. Phys. A Stat. Mech. Its Appl. 2021, 562, 125105. [Google Scholar]
- Allen, F.; Gale, D. Financial contagion. J. Political Econ. 2000, 108, 1–33. [Google Scholar] [CrossRef]
- Haldane, A.G.; May, R.M. Systemic risk in banking ecosystems. Nature 2011, 469, 351–355. [Google Scholar] [CrossRef]
- Scholtens, B.; Wensveen, D.V. Patterns of financial fragility. J. Financ. Stab. 2003, 1, 255–275. [Google Scholar]
- Fricke, D.; Lux, T. Core-periphery structure in the overnight money market: Evidence from the e-MID trading platform. Comput. Econ. 2015, 45, 359–395. [Google Scholar] [CrossRef]
- Newman, M.E. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 2010, 98, 404–409. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Guo, X. Measuring the resilience of an interbank network. Expert Syst. Appl. 2019, 126, 206–215. [Google Scholar]
- Hao, L.; An, H.; Gao, X. Measuring the resilience of the banking system: The Chinese case. Financ. Res. Lett. 2020, 35, 101253. [Google Scholar]
- Goyal, S.; Vega-Redondo, F. Structural holes in social networks. J. Econ. Theory 2007, 137, 460–492. [Google Scholar] [CrossRef]
- Battiston, S.; Gatti, D.D.; Gallegati, M.; Greenwald, B.; Stiglitz, J.E. Liaisons dangereuses: Increasing connectivity, risk sharing, and systemic risk. J. Econ. Dyn. Control 2012, 36, 1121–1141. [Google Scholar] [CrossRef]
- Stuart, T.E.; Hoang, H.; Hybels, R.C. Interorganizational endorsements and the performance of entrepreneurial ventures. Adm. Sci. Q. 1999, 44, 315–349. [Google Scholar] [CrossRef]
- Gomes-Casseres, B. The Alliance Revolution: The New Shape of Business Rivalry; Harvard University Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Podolny, J.M. Market uncertainty and the social character of economic exchange. Adm. Sci. Q. 1994, 39, 458–483. [Google Scholar] [CrossRef]
- Beunza, D.; Millo, Y. Proximity and innovation in the trading room. Sociol. Trav. 2004, 46, 449–465. [Google Scholar]
- Gulati, R. Social structure and alliance formation patterns: A longitudinal analysis. Adm. Sci. Q. 1995, 40, 619–652. [Google Scholar] [CrossRef]
- Dyer, J.H.; Singh, H. The relational view: Cooperative strategy and sources of inter organizational competitive advantage. Acad. Manag. Rev. 1998, 23, 660–679. [Google Scholar] [CrossRef]
- Lavie, D. Alliance portfolios and firm performance: A study of value creation and appropriation in the U.S. software industry. Strateg. Manag. J. 2007, 28, 1187–1212. [Google Scholar] [CrossRef]
- MacKenzie, D.; Millo, Y. Constructing a market, performing theory: The historical sociology of a financial derivatives exchange. Am. J. Sociol. 2003, 109, 107–145. [Google Scholar] [CrossRef]
- DiMaggio, P.J.; Powell, W.W. The iron cage revisited: Institutional isomorphism and collective rationality in organizational fields. Am. Sociol. Rev. 1983, 48, 147–160. [Google Scholar] [CrossRef]
- Scott, W.R. Institutions and Organizations; Sage Publications: Thousand Oaks, CA, USA, 2001. [Google Scholar]
- Acemoglu, D.; Ozdaglar, A.; Tahbaz-Salehi, A. Systemic risk and stability in financial networks. Am. Econ. Rev. 2015, 105, 564–608. [Google Scholar] [CrossRef]
- Gai, P.; Haldane, A.; Kapadia, S. Complexity, concentration and contagion. J. Monet. Econ. 2011, 58, 453–470. [Google Scholar] [CrossRef]
- Herring, R.J.; Santomero, A.M. The corporate structure of financial conglomerates. J. Financ. Serv. Res. 1991, 5, 471–497. [Google Scholar]
- Rochet, J.C.; Tirole, J. Interbank lending and systemic risk. J. Money Credit. Bank. 1996, 28, 733–762. [Google Scholar] [CrossRef]
- Goyal, S.; Joshi, S. Networks of collaboration in oligopoly. Games Econ. Behav. 2003, 43, 57–85. [Google Scholar] [CrossRef]
- Snijders, T.A.B.; Van de Bunt, G.G.; Steglich, C.E.G. Introduction to stochastic actor-based models for network dynamics. Soc. Netw. 2010, 32, 44–60. [Google Scholar] [CrossRef]
- Snijders, T.A.B.; Steglich, C.E.G.; Van de Bunt, G.G. Introduction to actor-based models for network dynamics. Soc. Netw. 2008, 33, 32–46. [Google Scholar] [CrossRef]
- Van de Bunt, G.G.; Groenewegen, P. An actor-oriented dynamic network approach: The case of interorganizational network evolution. Organ. Res. Methods 2007, 10, 463–482. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, H.; Li, J. Social network analysis of industrial symbiosis: The case of waste-to-energy industry in China. J. Clean. Prod. 2018, 174, 196–205. [Google Scholar]
- Ritala, P.; Golnam, A.; Wegmann, A. Coopetition-based business models: The case of Amazon.com. Ind. Mark. Manag. 2014, 43, 236–249. [Google Scholar] [CrossRef]
- Gomes, R.; Salerno, M. Influence of critical factors of clusters on the innovation of small and medium-sized enterprises: A social network analysis in the Brazilian aeronautics industry. Int. J. Technol. Manag. 2017, 73, 97–116. [Google Scholar]
- Snijders, T.A.B. Models for longitudinal network data. Model. Methods Soc. Netw. Anal. 2005, 1, 215–247. [Google Scholar]
- Steglich, C.; Snijders, T.A.B.; West, P. Applying siena. Methodology 2006, 2, 48–56. [Google Scholar] [CrossRef]
- Snijders, T.A.B. Longitudinal methods of network analysis. Encycl. Complex. Syst. Sci. 2009, 24, 5998–6013. [Google Scholar]
- Balland, P.A. Proximity and the evolution of collaboration networks: Evidence from research and development projects within the Global Navigation Satellite System (GNSS) industry. Reg. Stud. 2012, 46, 741–756. [Google Scholar] [CrossRef]
- Balland, P.A.; Vaan, M.D.; Boschma, R. The dynamics of interfirm networks along the industry life cycle: The case of the global video game industry, 1987–2007. J. Econ. Geogr. 2013, 13, 741–765. [Google Scholar] [CrossRef]
- Balland, P.A.; Belso-Martínez, J.A.; Morrison, A. The dynamics of technical and business knowledge networks in industrial clusters: Embeddedness, status or proximity? Econ. Geogr. 2016, 92, 35–60. [Google Scholar] [CrossRef]
- Zhou, C.; Zeng, G.; Xin, X.R.; Mi, Z.F. The dynamics of China’s electronic information industry innovation networks: An empirical research based on SAO model. Econ. Geogr. 2018, 38, 116–122. [Google Scholar]
- Shi, X.; Lu, L.; Zhang, W. Structural network embeddedness and firm incremental innovation capability: The moderating role of technology cluster. J. Bus. Ind. Mark. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Ter Wal, A.L. The dynamics of the inventor network in German biotechnology: Geographic proximity versus triadic closure. J. Econ. Geogr. 2013, 14, 589–620. [Google Scholar] [CrossRef]
- Von Wieser, F.; Zhang, K. Social Economics: Theorie der Gesellschaftlichen Wirtschaft; Zhejiang University Press: Hangzhou, China, 2012. [Google Scholar]
- Ramstetter, F.P. Opportunity Cost. In International Encyclopedia of the Social Sciences; Sills, D., Ed.; Macmillan and the Free Press: New York, NY, USA, 1968; Volume 11, pp. 361–367. [Google Scholar]
- Coase, R.H. The Regulated Industries: Discussion. American Economic Review. Am. Econ. Rev. 1964, 54, 194–197. [Google Scholar]
- Akerlof, G.A. The Market for ‘Lemons’: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 1970, 84, 488–500. [Google Scholar] [CrossRef]
- Zhang, J.Y. Organization and optimization knowledge flowing path of creative industrial. Stat. Decis. 2017, 05, 46–50. [Google Scholar]
Variables | Description | Data Type |
---|---|---|
Geographic Similarity | Proximity of the securities firm’s geographical location | Matrix (n × n) |
Domain Similarity | Similarity of key underwriting areas of securities firms | Matrix (n × n) |
Institutional Similarity | Similarity of institutional attributes of securities firms | Matrix (n × n) |
Organizational Similarity | Whether the securities firms have a related relationship | Matrix (n × n) |
Experience Heterogeneity | The number of times securities firms appear in the network | Vector (n × 1) |
Scale Heterogeneity | The logarithm of the number of bonds underwritten by a securities firm | Vector (n × 1) |
Structural Embeddedness | Number of securities firms forming ternary closure structures | Vector (n × 1) |
Preferential Attachment | Comprehensive value of cooperation breadth and intensity of securities firms | Vector (n × 1) |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | |
---|---|---|---|---|---|---|---|---|---|---|
Network density | 0.111 | 0.118 | 0.167 | 0.091 | 0.107 | 0.466 | 0.189 | 0.784 | 0.725 | 0.979 |
Average degree | 1.7 | 3.31 | 3.5 | 2.37 | 3.182 | 10.23 | 5.947 | 11.089 | 13.811 | 17.261 |
Condensation coefficient | 0.741 | 0.202 | 0.362 | 0.392 | 0.151 | 0.064 | 0.08 | 0.118 | 0.033 | 0.044 |
Average path length | 1.606 | 2.874 | 1.677 | 2.61 | 3.201 | 2.231 | 2.587 | 2.139 | 1.992 | 1.916 |
Year | Parameter | SD |
---|---|---|
2011–2012 | 3.459 *** | 0.169 |
2012–2013 | 4.215 *** | 0.229 |
2013–2014 | 4.431 *** | 0.232 |
2014–2015 | 5.129 *** | 0.309 |
2015–2016 | 6.667 *** | 0.373 |
2016–2017 | 6.688 *** | 0.402 |
2017–2018 | 7.129 *** | 0.490 |
2018–2019 | 8.818 *** | 0.501 |
2019–2020 | 9.235 *** | 0.551 |
Variables | Parameter | SD |
---|---|---|
Density Effect (Constant) | −1.998 *** | 0.306 |
Geographic Similarity | 0.075 *** | 0.048 |
Domain Similarity | 0.028 * | 0.013 |
Institutional Similarity | 0.024 | 0.021 |
Organizational Similarity | 0.129 | 0.039 |
Experience Heterogeneity | 0.087 | 0.054 |
Scale Heterogeneity | 0.065 *** | 0.052 |
Structural Embeddedness | 0.119 * | 0.062 |
Preferential Attachment | 0.072 ** | 0.055 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Yang, Y.; Ma, H.; Kong, X.; Li, X.; Du, Y.; Chen, D. Multidimensional Evolution and Driving Factors of Securities Firms’ Collaborative Bond Joint Underwriting Networks in China: A Comprehensive Analysis from 2011 to 2020. Systems 2023, 11, 253. https://doi.org/10.3390/systems11050253
Cao Y, Yang Y, Ma H, Kong X, Li X, Du Y, Chen D. Multidimensional Evolution and Driving Factors of Securities Firms’ Collaborative Bond Joint Underwriting Networks in China: A Comprehensive Analysis from 2011 to 2020. Systems. 2023; 11(5):253. https://doi.org/10.3390/systems11050253
Chicago/Turabian StyleCao, Yuan, Ying Yang, Hongkun Ma, Xiangyi Kong, Xueran Li, Yiran Du, and Dou Chen. 2023. "Multidimensional Evolution and Driving Factors of Securities Firms’ Collaborative Bond Joint Underwriting Networks in China: A Comprehensive Analysis from 2011 to 2020" Systems 11, no. 5: 253. https://doi.org/10.3390/systems11050253
APA StyleCao, Y., Yang, Y., Ma, H., Kong, X., Li, X., Du, Y., & Chen, D. (2023). Multidimensional Evolution and Driving Factors of Securities Firms’ Collaborative Bond Joint Underwriting Networks in China: A Comprehensive Analysis from 2011 to 2020. Systems, 11(5), 253. https://doi.org/10.3390/systems11050253