Spatial Correlation Network Analysis of Industrial Green Technology Innovation Efficiency in China
Abstract
:1. Introduction
2. Literature Review
2.1. Green Technology Innovation
2.1.1. Connotation of Green Technology Innovation
2.1.2. Measurements of Green Technology Innovation Efficiency
2.1.3. Measurements of Green Technology Innovation Efficiency
2.1.4. Spatial and Temporal Evolution of the Efficiency of Green Technology Innovation
2.2. Innovation Value Chain Theory
2.3. Purpose and Questions
3. Research Design
3.1. Construction of Industrial Green Technology Innovation Efficiency Index System
3.1.1. Technology R & D Stage Input-Output Variables
3.1.2. Achievement Transformation Stage Input-Output Variables
3.1.3. Commercialization Stage Input-Output Variables
3.2. Research Method
3.2.1. Three-Stage NSBM Model
3.2.2. Improved Gravity Model
3.2.3. Social Network Analysis
- (1)
- Overall Network Characteristics Analysis
- (2)
- Centrality Analysis
- (3)
- Block Model Analysis
3.3. Data Sources
4. Analysis of Spatial Correlation Network Characteristics of Industrial Green Technology Innovation Efficiency in China
4.1. Overall Network Characteristics and Evolutionary Trends
4.2. Network Individual Characteristics and Location Relationship Evolution
4.3. Block Model Analysis
5. Conclusions
5.1. Findings
5.2. Recommendations
5.3. Implications
5.3.1. Theoretical Implications
5.3.2. Practical Implications
5.4. Research Shortcomings and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.F.; Xiao, L.; Wang, X.J. Does air pollution hinder technological innovation in China? A perspective of innovation value chain. J. Clean. Prod. 2021, 278, 123326. [Google Scholar] [CrossRef]
- Yao, M.C.; Duan, J.J.; Wang, Q.S. Spatial and temporal evolution analysis of industrial green technology innovation efficiency in the Yangtze River economic belt. Int. J. Environ. Res. Public Health 2022, 19, 6361. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Path-breaking industrial development reduces carbon emissions: Evidence from Chinese Provinces, 1999–2011. Energy Policy 2022, 167, 113046. [Google Scholar] [CrossRef]
- Yang, C.; Liu, S. Spatial correlation analysis of low-carbon innovation: A case study of manufacturing patents in China. J. Clean. Prod. 2020, 273, 122893. [Google Scholar] [CrossRef]
- Aigner, D.J.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Luo, Q.L.; Miao, C.L.; Sun, L.Y.; Meng, X.N.; Duan, M.M. Efficiency evaluation of green technology innovation of China’s strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. J. Clean. Prod. 2019, 238, 117782. [Google Scholar] [CrossRef]
- Liu, C.Y.; Gao, X.Y.; Ma, W.L.; Chen, X.Y. Research on regional differences and influencing factors of green technology innovation efficiency of China’s high-tech industry. J. Comput. Appl. Math. 2020, 369, 112597. [Google Scholar] [CrossRef]
- Zeng, J.Y.; Škare, M.; Lafont, J. The co-integration identification of green innovation efficiency in Yangtze River Delta region. J. Bus. Res. 2021, 134, 252–262. [Google Scholar] [CrossRef]
- Zhang, J.; Ouyang, Y.; Ballesteros-Pérez, P.; Li, H.; Philbin, S.P.; Li, Z.; Skitmore, M. Understanding the impact of environmental regulations on green technology innovation efficiency in the construction industry. Sustain. Cities Soc. 2021, 65, 102647. [Google Scholar] [CrossRef]
- Miao, C.; Duan, M.; Zuo, Y.; Wu, X. Spatial heterogeneity and evolution trend of regional green innovation efficiency--an empirical study based on panel data of industrial enterprises in China’s provinces. Energy Policy 2021, 156, 112370. [Google Scholar] [CrossRef]
- Li, J.; Du, Y. Spatial effect of environmental regulation on green innovation efficiency: Evidence from prefectural-level cities in China. J. Clean. Prod. 2021, 286, 125032. [Google Scholar] [CrossRef]
- Hu, D.; Jiao, J.; Tang, Y.; Han, X.; Sun, H. The effect of global value chain position on green technology innovation efficiency: From the perspective of environmental regulation. Ecol. Indic. 2021, 121, 107195. [Google Scholar] [CrossRef]
- Lv, C.; Shao, C.; Lee, C.-C. Green technology innovation and financial development: Do environmental regulation and innovation output matter? Energy Econ. 2021, 98, 105237. [Google Scholar] [CrossRef]
- Liu, K.; Xue, Y.T.; Chen, Z.F.; Miao, Y. The spatiotemporal evolution and influencing factors of urban green innovation in China. Sci. Total Environ. 2023, 857, 159426. [Google Scholar] [CrossRef]
- Xu, S.R.; Wu, T.; Zhang, Y. The spatial-temporal variation and convergence of green innovation efficiency in the Yangtze River Economic Belt in China. Environ. Sci. Pollut. Res. Int. 2020, 27, 26868–26881. [Google Scholar] [CrossRef]
- Braun, E.; Wield, D. Regulation as a means for the social control of technology. Technol. Anal. Strateg. Manag. 1994, 6, 259–272. [Google Scholar] [CrossRef]
- Aguilera-Caracuel, J.; Ortiz-de-Mandojana, N. Green Innovation and Financial Performance. Organ. Environ. 2013, 26, 365–385. [Google Scholar] [CrossRef]
- Xu, Q.R.; Wang, Y. A New Exploration of Green Technology Innovation: A Life Cycle View. Sci. Manag. Res. 1999, 17, 001. [Google Scholar] [CrossRef]
- Liu, W. Research progress overview of green innovation and development at home and abroad. J. Hebei Univ. Environ. Eng. 2012, 22, 17–20. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKgchrJ08w1e7fm4X_1ttJAlSnrrQalYEVnCsXO8PvphMzBdCivZaFgTfh8ZDXhOjGFt_yb7QQnGr&uniplatform=NZKPT (accessed on 7 March 2023).
- Zhuang, Q.Q.; Wu, B.; Hong, Q.L. Market-oriented green technology innovation system:theoretical connotation, practical exploration and promotion strategy. Economist 2020, 11, 29–38. [Google Scholar] [CrossRef]
- Sun, C.H.; Kalirajan, K.P. Gauging the source of growth of high-tech and low-tech industries: The case of Korean manufacturing Aust. Econ. Pap. 2005, 44, 170–185. [Google Scholar] [CrossRef]
- Shen, L.; Qian, L. Green innovation efficiency and its spatial spillover effects in 22 major countries in the world. J. N. China U. Sci. Technol. 2020, 20, 44–53. Available online: https://kns.cnki.net/kcms2/article/abstract?v=3uoqIhG8C44YLTlOAiTRKibYlV5Vjs7i8oRR1PAr7RxjuAJk4dHXoo2exviFNhrFknUwym-H_zyHaTMy6j5QhApHzp3MQKxI&uniplatform=NZKPT (accessed on 7 March 2023).
- Zhang, M.F.; Hong, Y.X.; Wang, P.; Zhu, B.Z. Impacts of environmental constraint target on green innovation efficiency: Evidence from China. Sustain. Cities Soc. 2022, 83, 103973. [Google Scholar] [CrossRef]
- Zhang, L.Y.; Ma, X.; Ock, Y.S.; Qing, L.L. Research on Regional Differences and Influencing Factors of Chinese Industrial Green Technology Innovation Efficiency Based on Dagum Gini Coefficient Decomposition. Land 2022, 11, 122. [Google Scholar] [CrossRef]
- Shao, S.; Luan, R.R.; Yang, Z.B.; Li, C.Y. Does directed technological change get greener: Empirical evidence from Shanghai’s industrial green development transformation. Ecol. Indic. 2016, 69, 758–770. [Google Scholar] [CrossRef]
- Chen, X.H.; Zhou, P.; Hu, D.B. Influences of the ongoing digital transformation of the Chinese Economy on innovation of sustainable green technologies. Sci. Total Environ. 2023, 875, 162708. [Google Scholar] [CrossRef]
- Cheng, Z.H.; Yu, X.J. Can central environmental protection inspection induce corporate green technology innovation? J. Clean. Prod. 2023, 387, 135902. [Google Scholar] [CrossRef]
- Han, Y.; Zhe, C.H.; Liu, X.M. Is the carbon emissions trading system conducive to the urban green technology innovation level? Evid. China Energy Rep. 2023, 9, 3787–3799. [Google Scholar] [CrossRef]
- Yan, Z.M.; Sun, Z.; Shi, R.; Zhao, M.J. Smart city and green development: Empirical evidence from the perspective of green technological innovation. Technol. Forecast. Soc. Chang. 2023, 191, 122507. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, L.Q. Research on proactive technology innovation efficiency of industrial enterprises: Analysis based on improved three stage SBM-DEA model. Stat. Inform. Form 2020, 35, 50–61. [Google Scholar]
- Fan, J.; Xiao, Z. Analysis of spatial correlation network of China’s green innovation. J. Clean. Prod. 2021, 299, 126815. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, X.; Tang, M.; Lan, H. Spatio-temporal evolution of green innovation network and its multidimensional proximity analysis: Empirical evidence from China. J. Clean. Prod. 2021, 283, 124649. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Chen, J.; Jiang, D.Y.; Sun, Y.P.e. Assessment of the spatial association network of green innovation: Role of energy resources in green recovery. Resour. Policy 2022, 79, 103072. [Google Scholar] [CrossRef]
- Sun, L.W.; Han, Y. Spatial Correlation Network Structure and Influencing Factors of Two-Stage Green Innovation Efficiency: Evidence from China. Sustainability 2022, 14, 11584. [Google Scholar] [CrossRef]
- Hansen, M.T.; Birkinshaw, J. The Innovation Value Chain. Harv. Bus. Rev. 2007, 4, 121–130. [Google Scholar]
- Roper, S.; Du, J.; Love, J.H. Modelling the innovation value chain. Res. Policy 2008, 37, 961–977. [Google Scholar] [CrossRef]
- Yu, Y.Z.; Liu, D.Y. The effect of the space outflow of China’s regional innovation and the effect of the outflow of value chanins: A study, from the perspective of the innovative value chain, on the model of the panel of multidimentsional space. J. Manag. World 2013, 7, 6–20+70+187. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, J.; Dong, Q.L.; Zhao, Y.; Wang, Y.Y.; Wang, Y. Green technology innovation efficiency of energy-intensive industries in China from the perspective of shared resources: Dynamic change and improvement path. Technol. Forecast. Soc. Chang. 2021, 170, 120890. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, S.M. Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach. Technol. Forecast. Soc. Chang. 2022, 182, 121836. [Google Scholar] [CrossRef]
- Du, M.; Fan, D. Research on technological innovation resource allocation efficiency in knowledge intensive manufacturing industries—Semi—Parametric analysis based on dynamic StoNED model. Inq. Econ. Iss. China 2019, 11, 142–150. [Google Scholar]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.J. Measurement on China’s ecological welfare performance and analysis on spatial correlation network characteristics. Stat. Decis. 2021, 37, 52–57. [Google Scholar] [CrossRef]
- Shang, H.; Jiang, L.; Pan, X.Y.; Pan, X. Green technology innovation spillover effect and urban eco-efficiency convergence: Evidence from Chinese cities. Energy Econ. 2022, 114, 106307. [Google Scholar] [CrossRef]
- Yao, M.C.; Duan, J.J.; Zhang, R.J.; Xuan, Z.Y. Spatial correlation structure and influencing mechanism of green innovation efficiency of China’s high-tech industries. Resour. Environ. Yangtze Basin 2022, 31, 2345–2356. [Google Scholar]
- Sun, Z.R.; Fan, J.; Sun, Y.; Liu, H.C. Structural characteristics and influencing factors of spatial correlation network of green science and technology innovation efficiency in China. Econ. Geogr. 2022, 42, 33–43. [Google Scholar] [CrossRef]
Innovation Stage | Indicator Type | Evaluation Dimensions | Description and Measurement |
---|---|---|---|
Technology R & D | Human inputs | Full-time equivalent of R & D personnel | |
Inputs | Capital inputs | Internal expenditure of R & D funds | |
Technical inputs | The number of R & D projects | ||
Intermediate | Desired Outputs | The number of valid invention patents | |
Outputs | The new product development projects | ||
Achievement transformation | Inputs | Human inputs | The personnel of non-R & D science and technology |
Capital inputs | The non-R & D inputs | ||
The new product development funds | |||
Technical inputs | The number of valid invention patents | ||
The new product development projects | |||
Intermediate outputs | Desired outputs | The utility model appearance patent | |
commercialization | Human inputs | The annual average number of net employees | |
Inputs | Capital inputs | The stock of new fixed assets | |
Technical inputs | The utility model appearance patent | ||
Final outputs | Desired outputs | The new product sales revenue | |
Undesired outputs | Industrial wastewater emissions | ||
Industrial SO2 emissions | |||
Industrial fume and dust emissions | |||
Energy consumption |
Region | Technology R & D | Achievement Transformation | Commercialization | ||||||
---|---|---|---|---|---|---|---|---|---|
Degree Centrality | Closeness Centrality | Betweenness Centrality | Degree Centrality | Closeness Centrality | Betweenness Centrality | Degree Centrality | Closeness Centrality | Betweenness Centrality | |
Beijing | 24.138 | 46.774 | 0.055 | 20.690 | 43.939 | 0.025 | 20.690 | 45.313 | 0.025 |
Tianjin | 27.586 | 47.541 | 0.158 | 20.690 | 43.939 | 0.025 | 20.690 | 45.313 | 0.025 |
Hebei | 41.379 | 63.043 | 4.180 | 37.931 | 60.417 | 2.976 | 37.931 | 60.417 | 4.152 |
Shanxi | 34.483 | 60.417 | 3.078 | 37.931 | 60.417 | 6.809 | 41.379 | 61.702 | 4.456 |
Inner Mongolia | 31.034 | 59.184 | 0.565 | 31.034 | 58.000 | 0.392 | 27.586 | 52.727 | 3.217 |
Liaoning | 34.483 | 60.417 | 0.771 | 31.034 | 55.769 | 2.384 | 31.034 | 58.000 | 2.622 |
Jilin | 17.241 | 54.717 | 0.000 | 10.345 | 41.429 | 0.000 | 10.345 | 42.647 | 0.000 |
Heilongjiang | 24.138 | 56.863 | 0.108 | 10.345 | 41.429 | 0.000 | 10.345 | 42.647 | 0.000 |
Shanghai | 13.793 | 51.786 | 0.000 | 13.793 | 44.615 | 0.000 | 13.793 | 44.615 | 0.000 |
Jiangsu | 93.103 | 93.548 | 9.437 | 62.069 | 72.500 | 8.287 | 58.621 | 70.732 | 6.837 |
Zhejiang | 62.069 | 72.500 | 4.933 | 41.379 | 63.043 | 5.292 | 41.379 | 63.043 | 4.408 |
Anhui | 44.828 | 64.444 | 1.653 | 41.379 | 63.043 | 1.481 | 37.931 | 61.702 | 1.676 |
Fujian | 27.586 | 55.769 | 1.320 | 27.586 | 51.786 | 1.589 | 34.483 | 55.769 | 3.025 |
Jiangxi | 31.034 | 56.863 | 2.268 | 34.483 | 55.769 | 4.736 | 27.586 | 50.000 | 2.032 |
Shandong | 62.069 | 72.500 | 11.517 | 51.724 | 65.909 | 9.752 | 58.621 | 69.048 | 12.322 |
Henan | 58.621 | 70.732 | 8.673 | 62.069 | 72.500 | 16.935 | 68.966 | 76.316 | 18.580 |
Hubei | 55.172 | 69.048 | 7.537 | 44.828 | 59.184 | 2.176 | 51.724 | 67.442 | 7.708 |
Hunan | 55.172 | 65.909 | 3.820 | 55.172 | 63.043 | 7.147 | 55.172 | 63.043 | 5.456 |
Guangdong | 55.172 | 65.909 | 10.996 | 44.828 | 59.184 | 9.251 | 48.276 | 59.184 | 9.798 |
Guangxi | 37.931 | 59.184 | 4.764 | 34.483 | 55.769 | 1.179 | 34.483 | 54.717 | 2.424 |
Hainan | 17.241 | 52.727 | 0.000 | 17.241 | 41.429 | 0.000 | 17.241 | 42.029 | 0.287 |
Chongqing | 48.276 | 63.043 | 2.722 | 41.379 | 56.863 | 4.076 | 44.828 | 59.184 | 4.730 |
Sichuan | 48.276 | 63.043 | 3.307 | 37.931 | 55.769 | 3.935 | 44.828 | 58.000 | 6.214 |
Guizhou | 31.034 | 56.863 | 1.348 | 31.034 | 52.727 | 2.694 | 31.034 | 53.704 | 1.110 |
Yunnan | 31.034 | 56.863 | 0.188 | 24.138 | 50.877 | 0.537 | 24.138 | 51.786 | 0.224 |
Shaanxi | 58.621 | 70.732 | 7.390 | 58.621 | 70.732 | 19.404 | 48.276 | 65.909 | 10.923 |
Gansu | 37.931 | 61.702 | 0.319 | 27.586 | 52.727 | 6.759 | 31.034 | 55.769 | 2.152 |
Qinghai | 27.586 | 58.000 | 0.000 | 20.690 | 49.153 | 0.056 | 24.138 | 51.786 | 0.031 |
Ningxia | 41.379 | 63.043 | 0.273 | 34.483 | 59.184 | 0.576 | 31.034 | 55.769 | 2.811 |
Xinjiang | 41.379 | 63.043 | 0.000 | 48.276 | 65.909 | 0.000 | 48.276 | 65.909 | 0.000 |
Average | 40.460 | 61.874 | 3.046 | 35.172 | 56.235 | 3.949 | 35.862 | 56.807 | 3.908 |
Innovation Stage | Blocks | Acceptance Relation Matrix | Relations Received from Other Blocks | Relations Sent to Other Blocks | Expected Internal Relationship Ratio | Actual Internal Relationship Ratio | |||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | ||||||
Technology R & D | I | 27 | 6 | 10 | 0 | 21 | 16 | 20.69 | 62.79 |
II | 17 | 24 | 16 | 10 | 14 | 43 | 20.69 | 35.82 | |
III | 2 | 2 | 40 | 5 | 60 | 9 | 24.14 | 81.63 | |
IV | 2 | 6 | 34 | 31 | 15 | 42 | 24.14 | 42.47 | |
Achievement transformation | I | 39 | 7 | 8 | 0 | 15 | 15 | 27.59 | 72.22 |
II | 14 | 18 | 15 | 10 | 17 | 39 | 17.24 | 31.58 | |
III | 1 | 4 | 41 | 4 | 42 | 9 | 24.14 | 82.00 | |
IV | 0 | 6 | 19 | 29 | 14 | 25 | 20.14 | 53.70 | |
commercialization | I | 32 | 6 | 7 | 0 | 22 | 13 | 24.14 | 71.11 |
II | 17 | 20 | 8 | 7 | 19 | 32 | 17.24 | 38.46 | |
III | 2 | 3 | 51 | 4 | 41 | 9 | 27.59 | 85.00 | |
IV | 3 | 10 | 26 | 22 | 11 | 39 | 20.69 | 36.07 |
Innovation Stage | Blocks | Density Matrix | Image Matrix | ||||||
---|---|---|---|---|---|---|---|---|---|
I | II | III | IV | I | II | III | IV | ||
Technology R & D | I | 0.643 | 0.122 | 0.179 | 0.000 | 1 | 0 | 0 | 0 |
II | 0.347 | 0.571 | 0.286 | 0.179 | 1 | 1 | 1 | 0 | |
III | 0.036 | 0.036 | 0.714 | 0.078 | 0 | 0 | 1 | 0 | |
IV | 0.036 | 0.107 | 0.531 | 0.554 | 0 | 0 | 1 | 1 | |
Achievement transformation | I | 0.542 | 0.130 | 0.111 | 0.000 | 1 | 0 | 0 | 0 |
II | 0.259 | 0.600 | 0.313 | 0.238 | 1 | 1 | 1 | 0 | |
III | 0.014 | 0.083 | 0.732 | 0.071 | 0 | 0 | 1 | 0 | |
IV | 0.000 | 0.143 | 0.339 | 0.690 | 0 | 0 | 1 | 1 | |
commercialization | I | 0.571 | 0.125 | 0.097 | 0.000 | 1 | 0 | 0 | 0 |
II | 0.354 | 0.667 | 0.148 | 0.167 | 1 | 1 | 0 | 0 | |
III | 0.028 | 0.056 | 0.708 | 0.063 | 0 | 0 | 1 | 0 | |
IV | 0.054 | 0.238 | 0.413 | 0.524 | 0 | 0 | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, D.; Wu, X. Spatial Correlation Network Analysis of Industrial Green Technology Innovation Efficiency in China. Systems 2023, 11, 240. https://doi.org/10.3390/systems11050240
Fan D, Wu X. Spatial Correlation Network Analysis of Industrial Green Technology Innovation Efficiency in China. Systems. 2023; 11(5):240. https://doi.org/10.3390/systems11050240
Chicago/Turabian StyleFan, Decheng, and Xiaolin Wu. 2023. "Spatial Correlation Network Analysis of Industrial Green Technology Innovation Efficiency in China" Systems 11, no. 5: 240. https://doi.org/10.3390/systems11050240
APA StyleFan, D., & Wu, X. (2023). Spatial Correlation Network Analysis of Industrial Green Technology Innovation Efficiency in China. Systems, 11(5), 240. https://doi.org/10.3390/systems11050240