How Do Clusters Drive Firm Performance in the Regional Innovation System? A Causal Complexity Analysis in Chinese Strategic Emerging Industries
Abstract
:1. Introduction
2. Theoretical Development
2.1. Interorganizational Interdependence and Firm Performance in Clusters
2.2. Ambidextrous Innovation and Firm Performance in Clusters
2.3. Network Embeddedness and Firm Performance in Clusters
2.4. A Configurational Analysis of Conjunction Effects
3. Methodology
3.1. Sample and Data Collection
3.2. Measurement
3.2.1. Interorganizational Interdependence
3.2.2. Ambidextrous Innovation
3.2.3. Network Embeddedness
3.2.4. Firm Performance
3.3. Validity and Reliability
3.4. Data Analysis Using fsQCA
4. Results
4.1. Necessary Conditions
4.2. Sufficiency Analysis
4.3. Robustness Test
5. Discussion
5.1. Main Conclusions
5.2. Theoretical Contributions
5.3. Managerial Implications
5.4. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Constructs | Items | Item Description | Reference |
---|---|---|---|
Resource Interdependence (RI) | RI1 | Acquiring rare resources from partners in the cluster | [88,89] |
RI2 | Acquiring valuable resources from partners in the cluster | ||
RI3 | Acquiring nonsubstitutable resources from partners in the cluster | ||
Task Interdependence (TI) | TI1 | There is a lot of coordination in the cooperation process | [60,93,94] |
TI2 | There is a lot of task decomposition between partners in the cooperation process | ||
TI3 | There is a lot of frequent adjustment of the division of labor between partners in the cooperation process | ||
Local Network Embeddedness (LME) | LME1 | Close communication with local suppliers | [98,99,100] |
LME2 | Close communication with local customers | ||
LME3 | Close communication with local peer companies | ||
LME4 | Close communication with local universities and research institutions | ||
LME5 | Close communication with local science-technology intermediaries | ||
LME6 | Long-term cooperation with local suppliers | ||
LME7 | Long-term cooperation with local customers | ||
LME8 | Long-term cooperation with local peer companies | ||
LME9 | Long-term cooperation with local universities and research institutions | ||
LME10 | Long-term cooperation with local science-technology intermediaries | ||
Non-Local Network Embeddedness (NME) | NME1 | Close communication with non-local suppliers | |
NME2 | Close communication with non-local customers | ||
NME3 | Close communication with non-local peer companies | ||
NME4 | Close communication with non-local universities and research institutions | ||
NME5 | Close communication with non-local science-technology intermediaries | ||
NME6 | Long-term cooperation with non-local suppliers | ||
NME7 | Long-term cooperation with non-local customers | ||
NME8 | Long-term cooperation with non-local peer companies | ||
NME9 | Long-term cooperation with non-local universities and research institutions | ||
NME10 | Long-term cooperation with non-local science-technology intermediaries | ||
Exploratory Innovation (EXPR) | EXPR1 | We frequently utilize new opportunities in new markets | [65,96] |
EXPR2 | We experiment with new business strategies in an existing market | ||
EXPR3 | We utilize immature technology | ||
EXPR4 | We invent new products and services | ||
Exploitative Innovation (EXPI) | EXPI1 | We regularly improve existing technology for products and services | |
EXPI2 | We regularly implement small adaptations to existing products and services | ||
EXPI3 | We introduce improved, but existing technologies for product feature extension | ||
EXPI4 | We improve our provision’s efficiency of products and services | ||
Firm Performance (PERF) | PERF1 | Relative to your principal competitors, rate your firm performance on market share | [101,102,103] |
PERF2 | Relative to your principal competitors, rate your firm performance on turnover | ||
PERF3 | Relative to your principal competitors, rate your firm performance on profitability | ||
PERF4 | Relative to your principal competitors, rate your firm performance on assets growth rate | ||
PERF5 | Relative to your principal competitors, rate your firm performance on revenue growth rate | ||
PERF6 | Relative to your principal competitors, rate your firm performance on the firm’s overall reputation |
References
- Hervas-Oliver, J.-L.; Gonzalez, G.; Caja, P.; Sempere-Ripoll, F. Clusters and Industrial Districts: Where Is the Literature Going? Identifying Emerging Sub-Fields of Research. Eur. Plan. Stud. 2015, 23, 1827–1872. [Google Scholar] [CrossRef]
- Porter, M.E. On Competition; Harvard Business School Press: Boston, MA, USA, 1998. [Google Scholar]
- Martin, R.; Sunley, P. Deconstructing Clusters: Chaotic Concept or Policy Panacea? J. Econ. Geogr. 2003, 3, 5–35. [Google Scholar] [CrossRef]
- Kukalis, S. Agglomeration Economies and Firm Performance: The Case of Industry Clusters. J. Manag. 2010, 36, 453–481. [Google Scholar] [CrossRef]
- He, Z.; Rayman-Bacchus, L. Cluster Network and Innovation under Transitional Economies: An Empirical Study of the Shaxi Garment Cluster. Chin. Manag. Stud. 2010, 4, 360–384. [Google Scholar] [CrossRef]
- Li, J.; Geng, S. Industrial Clusters, Shared Resources and Firm Performance. Entrep. Reg. Dev. 2012, 24, 357–381. [Google Scholar] [CrossRef]
- Cheng, H.; Niu, M.-S.; Niu, K.-H. Industrial Cluster Involvement, Organizational Learning, and Organizational Adaptation: An Exploratory Study in High Technology Industrial Districts. J. Knowl. Manag. 2014, 18, 971–990. [Google Scholar] [CrossRef]
- Chandrashekar, D.; Hillemane, B.S.M. Exploring the Factors of Cluster Linkages That Influence Innovation Performance of Firms in a Cluster. Econ. Innov. New Technol. 2019, 28, 1–22. [Google Scholar] [CrossRef]
- Speldekamp, D.; Knoben, J.; Saka-Helmhout, A. Clusters and Firm-Level Innovation: A Configurational Analysis of Agglomeration, Network and Institutional Advantages in European Aerospace. Res. Policy 2020, 49, 103921. [Google Scholar] [CrossRef]
- Ryu, W.; Brush, T.H.; Bae, J. How Agglomeration Affects Alliance Governance and Innovation Performance: The Role of Cluster Size. Manag. Decis. Econ. 2023, 44, 297–310. [Google Scholar] [CrossRef]
- Bailey, D.; Faraj, S.; Hinds, P.; von Krogh, G.; Leonardi, P. Special Issue of Organization Science: Emerging Technologies and Organizing. Organ. Sci. 2019, 30, 642–646. [Google Scholar] [CrossRef]
- Hansen, U.E.; Lema, R. The Co-Evolution of Learning Mechanisms and Technological Capabilities: Lessons from Energy Technologies in Emerging Economies. Technol. Forecast. Soc. Chang. 2019, 140, 241–257. [Google Scholar] [CrossRef]
- Pentland, B.T.; Yoo, Y.; Recker, J.; Kim, I. From Lock-In to Transformation: A Path-Centric Theory of Emerging Technology and Organizing. Organ. Sci. 2022, 33, 194–211. [Google Scholar] [CrossRef]
- Xu, K.; Geng, C.; Wei, X.; Jiang, H. Financing Development, Financing Constraint and R&D Investment of Strategic Emerging Industries in China. J. Bus. Econ. Manag. 2020, 21, 1010–1034. [Google Scholar] [CrossRef]
- Kaplan, S.; Vakili, K. The Double-Edged Sword of Recombination in Breakthrough Innovation. Strateg. Manag. J. 2015, 36, 1435–1457. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhang, W. Configuration Analysis of Influencing Factors of Operating Efficiency Based on FsQCA: Evidence from China’s Property Insurance Industry. Chin. Manag. Stud. 2021, 15, 1085–1103. [Google Scholar] [CrossRef]
- Tilleman, S.G.; Russo, M.V.; Nelson, A.J. Institutional Logics and Technology Development: Evidence from the Wind and Solar Energy Industries. Organ. Sci. 2020, 31, 649–670. [Google Scholar] [CrossRef]
- Capaldo, A.; Petruzzelli, A.M. Partner Geographic and Organizational Proximity and the Innovative Performance of Knowledge-Creating Alliances. Eur. Manag. Rev. 2014, 11, 63–84. [Google Scholar] [CrossRef]
- Gilding, M.; Brennecke, J.; Bunton, V.; Lusher, D.; Molloy, P.L.; Codoreanu, A. Network Failure: Biotechnology Firms, Clusters and Collaborations Far from the World Superclusters. Res. Policy 2020, 49, 103902. [Google Scholar] [CrossRef]
- Shi, X.; Lu, L.; Zhang, W.; Zhang, Q. Structural Network Embeddedness and Firm Incremental Innovation Capability: The Moderating Role of Technology Cluster. J. Bus. Ind. Mark. 2021, 36, 1988–2000. [Google Scholar] [CrossRef]
- Tavares, M.S.D.A.; Gohr, C.F.; Morioka, S.; da Cunha, T.R. Systematic Literature Review on Innovation Capabilities in Clusters. Innov. Manag. Rev. 2021, 18, 192–220. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, B. The Effects of Organizational Isomorphism on Innovation Performance through Knowledge Search in Industrial Cluster. Chin. Manag. Stud. 2017, 11, 209–229. [Google Scholar] [CrossRef]
- Guo, J.; Guo, B.; Zhou, J.; Wu, X. How Does the Ambidexterity of Technological Learning Routine Affect Firm Innovation Performance within Industrial Clusters? The Moderating Effects of Knowledge Attributes. Technol. Forecast Soc. Chang. 2020, 155, 119990. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, X.; Zhang, X. The Impact of a Multilevel Innovation Network and Government Support on Innovation Performance—An Empirical Study of the Chengdu–Chongqing City Cluster. Sustainability 2022, 14, 7334. [Google Scholar] [CrossRef]
- Zeng, J.; Liu, D.; Yi, H. Agglomeration, Structural Embeddedness, and Enterprises’ Innovation Performance: An Empirical Study of Wuhan Biopharmaceutical Industrial Cluster Network. Sustainability 2019, 11, 3922. [Google Scholar] [CrossRef]
- Sun, Q.; Hou, R.; Hailekiros, G.S. Dual-Network Embeddedness, Absorptive Capacity, and Enterprise Innovation Performance: Evidence from the Chinese Hi-Tech Manufacturing Industry. Int. J. Manuf. Technol. Manag. 2021, 35, 69–88. [Google Scholar] [CrossRef]
- Suominen, A.; Seppänen, M.; Dedehayir, O. A Bibliometric Review on Innovation Systems and Ecosystems: A Research Agenda. Eur. J. Innov. Manag. 2018, 22, 335–360. [Google Scholar] [CrossRef]
- Ferrary, M. Specialized Organizations and Ambidextrous Clusters in the Open Innovation Paradigm. Eur. Manag. J. 2011, 29, 181–192. [Google Scholar] [CrossRef]
- Wolf, T.; Cantner, U.; Graf, H.; Rothgang, M. Cluster Ambidexterity towards Exploration and Exploitation: Strategies and Cluster Management. J. Technol. Transf. 2019, 44, 1840–1866. [Google Scholar] [CrossRef]
- Yang, B.; LIM, X.; Kou, K. Research on the Influence of Network Embeddedness on Innovation Performance: Evidence from China’s Listed Firms. J. Innov. Knowl. 2022, 7, 100210. [Google Scholar] [CrossRef]
- Raisch, S.; Birkinshaw, J.; Probst, G.; Tushman, M.L. Organizational Ambidexterity: Balancing Exploitation and Exploration for Sustained Performance. Organ. Sci. 2009, 20, 685–695. [Google Scholar] [CrossRef]
- Jansen, J.J.P.; Simsek, Z.; Cao, Q. Ambidexterity and Performance in Multiunit Contexts: Cross-Level Moderating Effects of Structural and Resource Attributes. Strateg. Manag. J. 2012, 33, 1286–1303. [Google Scholar] [CrossRef]
- He, Z.-L.; Wong, P.-K. Exploration vs. Exploitation: An Empirical Test of the Ambidexterity Hypothesis. Organ. Sci. 2004, 15, 481–494. [Google Scholar] [CrossRef]
- Harmancioglu, N.; Sääksjärvi, M.; Hultink, E.J. Cannibalize and Combine? The Impact of Ambidextrous Innovation on Organizational Outcomes under Market Competition. Ind. Mark. Manag. 2020, 85, 44–57. [Google Scholar] [CrossRef]
- Gabler, C.B.; Ogilvie, J.L.; Rapp, A.; Bachrach, D.G. Is There a Dark Side of Ambidexterity? Implications of Dueling Sales and Service Orientations. J. Serv. Res. 2017, 20, 379–392. [Google Scholar] [CrossRef]
- Partanen, J.; Kohtamäki, M.; Patel, P.C.; Parida, V. Supply Chain Ambidexterity and Manufacturing SME Performance: The Moderating Roles of Network Capability and Strategic Information Flow. Int. J. Prod. Econ. 2020, 221, 107470. [Google Scholar] [CrossRef]
- Lavie, D.; Stettner, U.; Tushman, M.L. Exploration and Exploitation Within and Across Organizations. Acad. Manag. Ann. 2010, 4, 109–155. [Google Scholar] [CrossRef]
- Yan, J.; Tsinopoulos, C.; Xiong, Y. Unpacking the Impact of Innovation Ambidexterity on Export Performance: Microfoundations and Infrastructure Investment. Int. Bus. Rev. 2021, 30, 101766. [Google Scholar] [CrossRef]
- Solís-Molina, M.; Hernández-Espallardo, M.; Rodríguez-Orejuela, A. Performance Implications of Organizational Ambidexterity versus Specialization in Exploitation or Exploration: The Role of Absorptive Capacity. J. Bus. Res. 2018, 91, 181–194. [Google Scholar] [CrossRef]
- Shubbak, M.H. Innovation Capability, Network Embeddedness and Economic Performance: Profiling Solar Power Innovators in China. Int. J. Technol. Learn. Innov. Dev. 2018, 10, 258–294. [Google Scholar] [CrossRef]
- Schilling, M.A.; Fang, C. When Hubs Forget, Lie, and Play Favorites Interpersonal Network Structure, Information Distortion, and Organizational Learning. Strateg. Manag. J. 2014, 35, 974–994. [Google Scholar] [CrossRef]
- Ahuja, G.; Polidoro, F.; Mitchell, W. Structural Homophily or Social Asymmetry? The Formation of Alliances by Poorly Embedded Firms. Strateg. Manag. J. 2009, 30, 941–958. [Google Scholar] [CrossRef]
- Alizadeh, Y.; Jetter, A.J. Pathways for Balancing Exploration and Exploitation in Innovations: A Review and Expansion of Ambidexterity Theory. Int. J. Innov. Technol. Manag. 2019, 16, 1950032. [Google Scholar] [CrossRef]
- Franco, M.; Esteves, L.; Rodrigues, M. Clusters as a Mechanism of Sharing Knowledge and Innovation: Case Study from a Network Approach. Glob. Bus. Rev 2020, 1, 0972150920957270. [Google Scholar] [CrossRef]
- Wältermann, M.; Wolff, G.; Rank, O. Formal and Informal Cross-Cluster Networks and the Role of Funding: A Multi-Level Network Analysis of the Collaboration among Publicly and Privately Funded Cluster Organizations and Their Managers. Soc. Netw. 2019, 58, 116–127. [Google Scholar] [CrossRef]
- Fiss, P.C. Building Better Causal Theories: A Fuzzy Set Approach to Typologies in Organization Research. Acad. Manag. J. 2011, 54, 393–420. [Google Scholar] [CrossRef]
- Furnari, S.; Crilly, D.; Misangyi, V.F.; Greckhamer, T.; Fiss, P.C.; Aguilera, R.V. Capturing Causal Complexity: Heuristics for Configurational Theorizing. Acad. Manag. Rev. 2021, 46, 778–799. [Google Scholar] [CrossRef]
- Xie, X.; Fang, L.; Zeng, S. Collaborative Innovation Network and Knowledge Transfer Performance: A FsQCA Approach. J. Bus. Res. 2016, 69, 5210–5215. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Z.; Zhao, Z.; Ma, J. Industrial Policy and Innovation Capability of Strategic Emerging Industries: Empirical Evidence from Chinese New Energy Vehicle Industry. Sustainability 2019, 11, 2785. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry: Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Xia, J.; Wang, Y.; Lin, Y.; Yang, H.; Li, S. Alliance Formation in the Midst of Market and Network: Insights From Resource Dependence and Network Perspectives. J. Manag. 2018, 44, 1899–1925. [Google Scholar] [CrossRef]
- Wang, T.; Wu, J.; Gu, J.; Hu, L. Impact of Open Innovation on Organizational Performance in Different Conflict Management Styles: Based on Resource Dependence Theory. Int. J. Confl. Manag. 2020, 32, 199–222. [Google Scholar] [CrossRef]
- Li, S.; Han, S.; Shen, T. How Can a Firm Innovate When Embedded in a Cluster?—Evidence from the Automobile Industrial Cluster in China. Sustainability 2019, 11, 1837. [Google Scholar] [CrossRef]
- Galaso, P.; Kovářík, J. Collaboration Networks, Geography and Innovation: Local and National Embeddedness. Pap. Reg. Sci. 2021, 100, 349–377. [Google Scholar] [CrossRef]
- Bocquet, R.; Mothe, C. Can a Governance Structure Foster Cluster Ambidexterity through Knowledge Management? An Empirical Study of Two French SME Clusters. Knowl. Manag. Res. Pract. 2015, 13, 329–343. [Google Scholar] [CrossRef]
- Pfeffer, J. A Resource Dependence Perspective on Interorganizational Relations. In Intercorporate Relations: The Structural Analysis of Business; Mizruchi, M.S., Schwartz, M., Eds.; Cambridge University Press: Cambridge, UK, 1987; pp. 25–55. [Google Scholar]
- Granovetter, M. Economic Action and Social Structure: The Problem of Embeddedness. Am. J. Sociol. 1985, 91, 481–510. [Google Scholar] [CrossRef]
- Drees, J.M.; Heugens, P.P.M.A.R. Synthesizing and Extending Resource Dependence Theory: A Meta-Analysis. J. Manag. 2013, 39, 1666–1698. [Google Scholar] [CrossRef]
- Xia, J. Mutual Dependence, Partner Substitutability, and Repeated Partnership: The Survival of Cross-Border Alliances. Strateg. Manag. J. 2011, 32, 229–253. [Google Scholar] [CrossRef]
- Gulati, R.; Wohlgezogen, F.; Zhelyazkov, P. The Two Facets of Collaboration: Cooperation and Coordination in Strategic Alliances. Acad. Manag. Ann. 2012, 6, 531–583. [Google Scholar] [CrossRef]
- Gulati, R.; Sytch, M. Dependence Asymmetry and Joint Dependence in Interorganizational Relationships: Effects of Embeddedness on a Manufacturer’s Performance in Procurement Relationships. Adm. Sci. Q. 2007, 52, 32–69. [Google Scholar] [CrossRef]
- Fredrich, V.; Bouncken, R.B.; Kraus, S. The Race Is on: Configurations of Absorptive Capacity, Interdependence and Slack Resources for Interorganizational Learning in Coopetition Alliances. J. Bus. Res. 2019, 101, 862–868. [Google Scholar] [CrossRef]
- March, J.G. Exploration and Exploitation in Organizational Learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Raisch, S.; Birkinshaw, J. Organizational Ambidexterity: Antecedents, Outcomes, and Moderators. J. Manag. 2008, 34, 375–409. [Google Scholar] [CrossRef]
- Jansen, J.J.P.; Bosch, F.A.J.V.D.; Volberda, H.W. Exploratory Innovation, Exploitative Innovation, and Performance: Effects of Organizational Antecedents and Environmental Moderators. Manag. Sci. 2006, 52, 1661–1674. [Google Scholar] [CrossRef]
- Ozer, M.; Zhang, W. The Effects of Geographic and Network Ties on Exploitative and Exploratory Product Innovation. Strateg. Manag. J. 2015, 36, 1105–1114. [Google Scholar] [CrossRef]
- Cao, Q.; Gedajlovic, E.; Zhang, H.P. Unpacking Organizational Ambidexterity: Dimensions, Contingencies, and Synergistic Effects. Organ. Sci. 2009, 20, 781–796. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, M.Y.; Zhang, H. Firm Growth Performance and Relative Innovation Orientation of Exploration vs Exploitation: Moderating Effects of Cluster Relationships. Manag. Organ. Rev. 2021, 17, 143–172. [Google Scholar] [CrossRef]
- Du, W.; Pan, S.L.; Wu, J. How Do IT Outsourcing Vendors Develop Capabilities? An Organizational Ambidexterity Perspective on a Multi-Case Study. J. Inf. Technol. 2020, 35, 49–65. [Google Scholar] [CrossRef]
- Ahuja, G. Collaboration Networks, Structural Holes, and Innovation: A Longitudinal Study. Adm. Sci. Q. 2000, 45, 425–455. [Google Scholar] [CrossRef]
- Appio, F.P.; Martini, A.; Massa, S.; Testa, S. Collaborative Network of Firms: Antecedents and State-of-the-Art Properties. Int. J. Prod. Res. 2017, 55, 2121–2134. [Google Scholar] [CrossRef]
- Polidoro, F.; Ahuja, G.; Mitchell, W. When the Social Structure Overshadows Competitive Incentives: The Effects of Network Embeddedness on Joint Venture Dissolution. Acad. Manag. J. 2011, 54, 203–223. [Google Scholar] [CrossRef]
- Gulati, R.; Gargiulo, M. Where Do Interorganizational Networks Come From? Am. J. Sociol. 1999, 104, 1439–1493. [Google Scholar] [CrossRef]
- Mazzola, E.; Perrone, G.; Kamuriwo, D.S. The Interaction between Inter-Firm and Interlocking Directorate Networks on Firm’s New Product Development Outcomes. J. Bus. Res. 2016, 69, 672–682. [Google Scholar] [CrossRef]
- Wei, W.; He, Z.; Rayman-Bacchus, L.; Xiang, G. Do Industrial Clusters Still Matter to Trust-Building in the Internet Era? A Network Embeddedness Perspective. SAGE Open 2019, 9, 2158244019870191. [Google Scholar] [CrossRef]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and Knowledge: Local Buzz, Global Pipelines and the Process of Knowledge Creation. Prog. Hum. Geogr. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Alcácer, J.; Zhao, M.Y. Local R&D Strategies and Multilocation Firms: The Role of Internal Linkages. Manag. Sci. 2012, 58, 734–753. [Google Scholar] [CrossRef]
- Whittington, K.B.; Owen-Smith, J.; Powell, W.W. Networks, Propinquity, and Innovation in Knowledge-Intensive Industries. Adm. Sci. Q. 2009, 54, 90–122. [Google Scholar] [CrossRef]
- Bathelt, H. Buzz-and-Pipeline Dynamics: Towards a Knowledge-Based Multiplier Model of Clusters. Geogr. Compass 2007, 1, 1282–1298. [Google Scholar] [CrossRef]
- Khanna, R.; Guler, I. Degree Assortativity in Collaboration Networks and Invention Performance. Strateg. Manag. J. 2022, 43, 1402–1430. [Google Scholar] [CrossRef]
- Kim, T.-Y.; Oh, H.; Swaminathan, A. Framing Interorganizational Network Change: A Network Inertia Perspective. Acad. Manage. Rev. 2006, 31, 704–720. [Google Scholar] [CrossRef]
- Xie, X.; Gao, Y.; Zang, Z.; Meng, X. Collaborative Ties and Ambidextrous Innovation: Insights from Internal and External Knowledge Acquisition. Ind. Innov. 2020, 27, 285–310. [Google Scholar] [CrossRef]
- Lyu, Y.; He, B.; Zhu, Y.; Li, L. Network Embeddedness and Inbound Open Innovation Practice: The Moderating Role of Technology Cluster. Technol. Forecast. Soc. Chang. 2019, 144, 12–24. [Google Scholar] [CrossRef]
- Casciaro, T.; Piskorski, M.J. Power Imbalance, Mutual Dependence, and Constraint Absorption: A Closer Look at Resource Dependence Theory. Adm. Sci. Q. 2005, 50, 167–199. [Google Scholar] [CrossRef]
- Jiang, H.; Xia, J.; Cannella, A.A.; Xiao, T. Do Ongoing Networks Block out New Friends? Reconciling the Embeddedness Constraint Dilemma on New Alliance Partner Addition. Strateg. Manag. J. 2018, 39, 217–241. [Google Scholar] [CrossRef]
- Xie, X.; Wang, H. How Can Open Innovation Ecosystem Modes Push Product Innovation Forward? An FsQCA Analysis. J. Bus. Res. 2020, 108, 29–41. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Meyer, A.D. What Is Strategy’s Distinctive Competence? J. Manag. 1991, 17, 821–833. [Google Scholar] [CrossRef]
- Haynie, J.M.; Shepherd, D.A.; McMullen, J.S. An Opportunity for Me? The Role of Resources in Opportunity Evaluation Decisions. J. Manag. Stud. 2009, 46, 337–361. [Google Scholar] [CrossRef]
- Gulati, R.; Singh, H. The Architecture of Cooperation: Managing Coordination Costs and Appropriation Concerns in Strategic Alliances. Adm. Sci. Q. 1998, 43, 781–814. [Google Scholar] [CrossRef]
- Chatterjee, D.; Ravichandran, T. Governance of Interorganizational Information Systems: A Resource Dependence Perspective. Inf. Syst. Res. 2013, 24, 261–278. [Google Scholar] [CrossRef]
- Bailey, D.E.; Leonardi, P.M.; Chong, J. Minding the Gaps: Understanding Technology Interdependence and Coordination in Knowledge Work. Organ. Sci. 2010, 21, 713–730. [Google Scholar] [CrossRef]
- Sharma, R.; Yetton, P. The Contingent Effects of Management Support and Task Interdependence on Successful Information Systems Implementation. MIS Q. 2003, 27, 533–555. [Google Scholar] [CrossRef]
- Langfred, C.W. The Downside of Self-Management: A Longitudinal Study of the Effects of Conflict on Trust, Autonomy, and Task Interdependence in Self-Managing Teams. Acad. Manag. J. 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Tsai, M.C.; Wang, C. Linking Service Innovation to Firm Performance: The Roles of Ambidextrous Innovation and Market Orientation Capability. Chin. Manag. Stud. 2017, 11, 730–750. [Google Scholar] [CrossRef]
- Ben Rejeb, W.; Berraies, S.; Talbi, D. The Contribution of Board of Directors’ Roles to Ambidextrous Innovation: Do Board’s Gender Diversity and Independence Matter? Eur. J. Innov. Manag. 2019, 23, 40–66. [Google Scholar] [CrossRef]
- Li, J.Y.; Cao, J.X.; Liu, Y.Q. A Study on the Effects of Dual Network Embeddedness on Organizational Learning and Internationalization Performance. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 5519–5529. [Google Scholar] [CrossRef]
- Martino, R.D.; Reid, D.M.H.; Zygliodopoulos, S.C. Balancing Localization and Globalization: Exploring the Impact of Firm Internationalization on a Regional Cluster. Entrep. Reg. Dev. 2007, 18, 1–24. [Google Scholar] [CrossRef]
- Karna, A.; Täube, F.; Sonderegger, P. Evolution of Innovation Networks across Geographical and Organizational Boundaries: A Study of R&D Subsidiaries in the Bangalore IT Cluster. Eur. Manag. Rev. 2013, 10, 211–226. [Google Scholar] [CrossRef]
- Täube, F.A.; Karna, A.; Sonderegger, P. Economic Geography and Emerging Market Clusters: A Co-Evolutionary Study of Local and Non-Local Networks in Bangalore. Int. Bus. Rev. 2019, 28, 101496. [Google Scholar] [CrossRef]
- Li, H.; Atuahene-Gima, K. Product Innovation Strategy and the Performance of New Technology Ventures in China. Acad. Manag. J. 2001, 44, 1123–1134. [Google Scholar] [CrossRef]
- Baum, J.R.; Wally, S. Strategic Decision Speed and Firm Performance. Strateg. Manag. J. 2003, 24, 1107–1129. [Google Scholar] [CrossRef]
- Koellinger, P. The Relationship between Technology, Innovation, and Firm Performance—Empirical Evidence from e-Business in Europe. Res. Policy 2008, 37, 1317–1328. [Google Scholar] [CrossRef]
- Larty, J.; Jack, S.; Lockett, N. Building Regions: A Resource-Based View of a Policy-Led Knowledge Exchange Network. Reg. Stud. 2017, 51, 994–1007. [Google Scholar] [CrossRef]
- Sjödin, D.; Parida, V.; Kohtamäki, M. Relational Governance Strategies for Advanced Service Provision: Multiple Paths to Superior Financial Performance in Servitization. J. Bus. Res. 2019, 101, 906–915. [Google Scholar] [CrossRef]
- Lee, J.-N.; Park, Y.; Straub, D.W.; Koo, Y. Holistic Archetypes of IT Outsourcing Strategy: A Contingency Fit and Configurational Approach. MIS Q. 2019, 43, 1201–1225. [Google Scholar] [CrossRef]
- Misangyi, V.F.; Greckhamer, T.; Furnari, S.; Fiss, P.C.; Crilly, D.; Aguilera, R. Embracing Causal Complexity: The Emergence of a Neo-Configurational Perspective. J. Manag. 2017, 43, 255–282. [Google Scholar] [CrossRef]
- Leppänen, P.; George, G.; Alexy, O. When Do Novel Business Models Lead to High Performance? A Configurational Approach to Value Drivers, Competitive Strategy, and Firm Environment. Acad. Manag. J. 2023, 66, 164–194. [Google Scholar] [CrossRef]
- Llopis-Albert, C.; Rubio, F.; Valero, F. Impact of Digital Transformation on the Automotive Industry. Technol. Forecast. Soc. Chang. 2021, 162, 120343. [Google Scholar] [CrossRef]
- Jacqueminet, A.; Durand, R. Ups and Downs: The Role of Legitimacy Judgment Cues in Practice Implementation. Acad. Manag. J. 2019, 63, 1485–1507. [Google Scholar] [CrossRef]
- Park, Y.; Mithas, S. Organized Complexity of Digital Business Strategy: A Configurational Perspective. MIS Q. 2020, 44, 85–127. [Google Scholar] [CrossRef]
- Rihoux, B.; Ragin, C.C. Configurational Comparative Methods: Qualitative Comparative Analysis, 1st ed.; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 2008. [Google Scholar]
- Campbell, J.T.; Sirmon, D.G.; Schijven, M. Fuzzy Logic and the Market: A Configurational Approach to Investor Perceptions of Acquisition Announcements. Acad. Manag. J. 2016, 59, 163–187. [Google Scholar] [CrossRef]
- Du, Y.; Kim, P.H. One Size Does Not Fit All: Strategy Configurations, Complex Environments, and New Venture Performance in Emerging Economies. J. Bus. Res. 2021, 124, 272–285. [Google Scholar] [CrossRef]
- Greckhamer, T.; Misangyi, V.F.; Fiss, P.C. The Two QCAs: From a Small-N to a Large-N Set Theoretic Approach. In Configurational Theory and Methods in Organizational Research; Emerald Group Publishing Limited: Bradford, UK, 2013; pp. 49–75. [Google Scholar] [CrossRef]
- Park, Y.; Sawy, O.E.; Fiss, P. The Role of Business Intelligence and Communication Technologies in Organizational Agility: A Configurational Approach. J. Assoc. Inf. Syst. 2017, 18, 648–686. [Google Scholar] [CrossRef]
- Pappas, I.O.; Woodside, A.G. Fuzzy-Set Qualitative Comparative Analysis (FsQCA): Guidelines for Research Practice in Information Systems and Marketing. Int. J. Inf. Manag. 2021, 58, 102310. [Google Scholar] [CrossRef]
- Shah, R.; Goldstein, S.M. Use of Structural Equation Modeling in Operations Management Research: Looking Back and Forward. J.Oper.Manag. 2006, 24, 148–169. [Google Scholar] [CrossRef]
- Ozturk, O. Bibliometric Review of Resource Dependence Theory Literature: An Overview. Manag. Rev. Q. 2021, 71, 525–552. [Google Scholar] [CrossRef]
- Li, H.; de Zubielqui, G.C.; O’Connor, A. Entrepreneurial Networking Capacity of Cluster Firms: A Social Network Perspective on How Shared Resources Enhance Firm Performance. Small. Bus. Econ. 2015, 45, 523–541. [Google Scholar] [CrossRef]
- Tian, H.; Iqbal, S.; Anwar, F.; Akhtar, S.; Khan, M.A.S.; Wang, W. Network Embeddedness and Innovation Performance: A Mediation Moderation Analysis Using PLS-SEM. Bus. Process Manag. J. 2021, 27, 1590–1609. [Google Scholar] [CrossRef]
- Pfeffer, J.; Salancik, G.R. The External Control of Organizations: A Resource Dependence Perspective; Harper & Row: New York, NY, USA, 1978. [Google Scholar]
- Gebreeyesus, M.; Mohnen, P. Innovation Performance and Embeddedness in Networks: Evidence from the Ethiopian Footwear Cluster. World. Dev. 2013, 41, 302–316. [Google Scholar] [CrossRef]
- Martínez-Pérez, Á.; García-Villaverde, P.M.; Elche, D. The Mediating Effect of Ambidextrous Knowledge Strategy between Social Capital and Innovation of Cultural Tourism Clusters Firms. Int. J. Contemp. Hosp. Manag. 2016, 28, 1484–1507. [Google Scholar] [CrossRef]
- Expósito-Langa, M.; Tomás-Miquel, J.-V.; Molina-Morales, F.X. Innovation in Clusters: Exploration Capacity, Networking Intensity and External Resources. J. Organ. Chang. Manag. 2015, 28, 26–42. [Google Scholar] [CrossRef]
- Rothaermel, F.T. Incumbent’s Advantage through Exploiting Complementary Assets via Interfirm Cooperation. Strateg. Manag. J. 2001, 22, 687–699. [Google Scholar] [CrossRef]
- Voss, G.B.; Voss, Z.G. Strategic Ambidexterity in Small and Medium-Sized Enterprises: Implementing Exploration and Exploitation in Product and Market Domains. Organ. Sci. 2013, 24, 1459–1477. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, S.-R.; Xu, H.; Barnes, B.R. Unleashing the Dynamics of Product-Market Ambidexterity in the Pursuit of International Opportunities: Insights from Emerging Market Firms. Int. Bus. Rev. 2020, 29, 101614. [Google Scholar] [CrossRef]
- Lavie, D.; Rosenkopf, L. Balancing Exploration and Exploitation in Alliance Formation. Acad. Manag. J. 2006, 49, 797–818. [Google Scholar] [CrossRef]
- Tallman, S.; Phene, A. Leveraging Knowledge Across Geographic Boundaries. Organ. Sci. 2007, 18, 252–260. [Google Scholar] [CrossRef]
- Turkina, E.; Van Assche, A. Global Connectedness and Local Innovation in Industrial Clusters. J. Int. Bus. Stud. 2018, 49, 706–728. [Google Scholar] [CrossRef]
- Brito, R.P.; Miguel, P.L.S. Power, Governance, and Value in Collaboration: Differences between Buyer and Supplier Perspectives. J. Supply. Chain. Manag. 2017, 53, 61–87. [Google Scholar] [CrossRef]
- Engel, J.S. Global Clusters of Innovation: Lessons from Silicon Valley. Calif. Manag. Rev. 2015, 57, 36–65. [Google Scholar] [CrossRef]
- Turkina, E.; Oreshkin, B.; Kali, R. Regional Innovation Clusters and Firm Innovation Performance: An Interactionist Approach. Reg. Stud. 2019, 53, 1193–1206. [Google Scholar] [CrossRef]
- Cheng, R.; Wang, J.; Liao, P.-C. Temporal Visual Patterns of Construction Hazard Recognition Strategies. Int. J. Env. Res. Public Health 2021, 18, 8779. [Google Scholar] [CrossRef]
Variables | Percentage (%) | |
---|---|---|
Firm size (Number of employees) | <10 | 13 |
11–50 | 33.6 | |
51–100 | 21.6 | |
101–300 | 19.5 | |
>300 | 12.3 | |
Firm age (years) | <3 | 30.5 |
3–5 | 33.6 | |
6–10 | 14.7 | |
11–15 | 14.7 | |
>15 | 6.5 | |
Firm ownership | State-owned Enterprises | 18.2 |
Private Enterprises | 47.9 | |
Foreign Invested Enterprises | 14.7 | |
Sino–Foreign Joint Ventures | 10.3 | |
Others | 8.9 | |
Industry sector | Energy efficient and environmental technologies | 19.5 |
Next-generation information technology (IT) | 30.8 | |
Biotechnology | 15.1 | |
New energy | 10.6 | |
New-energy vehicles (NEVs) | 9.2 | |
High-end equipment manufacturing | 6.9 | |
New materials | 7.9 |
Constructs | Items | Loadings | Alpha | CR | AVE |
---|---|---|---|---|---|
Resource Interdependence (RI) | RI1 | 0.850 | 0.874 | 0.8739 | 0.698 |
RI2 | 0.841 | ||||
RI3 | 0.815 | ||||
Task Interdependence (TI) | TI1 | 0.855 | 0.874 | 0.8742 | 0.6985 |
TI2 | 0.828 | ||||
TI3 | 0.824 | ||||
Local Network Embeddedness (LME) | LME1 | 0.824 | 0.961 | 0.961 | 0.7114 |
LME2 | 0.845 | ||||
LME3 | 0.856 | ||||
LME4 | 0.838 | ||||
LME5 | 0.871 | ||||
LME6 | 0.861 | ||||
LME7 | 0.834 | ||||
LME8 | 0.823 | ||||
LME9 | 0.844 | ||||
LME10 | 0.837 | ||||
Non-Local Network Embeddedness (NME) | NME1 | 0.851 | 0.962 | 0.9616 | 0.7145 |
NME2 | 0.85 | ||||
NME3 | 0.832 | ||||
NME4 | 0.832 | ||||
NME5 | 0.874 | ||||
NME6 | 0.821 | ||||
NME7 | 0.835 | ||||
NME8 | 0.852 | ||||
NME9 | 0.829 | ||||
NME10 | 0.875 | ||||
Exploratory Innovation (EXPR) | EXPR1 | 0.837 | 0.900 | 0.9004 | 0.6934 |
EXPR2 | 0.853 | ||||
EXPR3 | 0.803 | ||||
EXPR4 | 0.837 | ||||
Exploitative Innovation (EXPI) | EXPI1 | 0.814 | 0.902 | 0.9027 | 0.6988 |
EXPI2 | 0.844 | ||||
EXPI3 | 0.824 | ||||
EXPI4 | 0.861 | ||||
Firm Performance (PERF) | PERF1 | 0.817 | 0.930 | 0.9303 | 0.6899 |
PERF2 | 0.832 | ||||
PERF3 | 0.852 | ||||
PERF4 | 0.825 | ||||
PERF5 | 0.816 | ||||
PERF6 | 0.841 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
1 RI | 1 | ||||||
2 TI | 0.889 | 1 | |||||
3 LME | 0.906 | 0.922 | 1 | ||||
4 NME | 0.920 | 0.924 | 0.961 | 1 | |||
5 EXPR | 0.883 | 0.882 | 0.915 | 0.929 | 1 | ||
6 EXPI | 0.901 | 0.874 | 0.926 | 0.932 | 0.887 | 1 | |
7 PERF | 0.913 | 0.911 | 0.940 | 0.949 | 0.916 | 0.916 | 1 |
Variables | Mean | SD | Min. | Max. | Calibration Values | ||
---|---|---|---|---|---|---|---|
Fully In (95th) | Crossover (50th) | Fully Out (5th) | |||||
1 RI | 3.8573 | 1.10675 | 1.00 | 5.00 | 5.00 | 4.33 | 1.33 |
2 TI | 3.8137 | 1.12820 | 1.00 | 5.00 | 5.00 | 4.33 | 1.33 |
3 LME | 3.7870 | 1.08677 | 1.40 | 4.90 | 5.00 | 4.20 | 1.10 |
4 NME | 3.7942 | 1.08761 | 1.20 | 4.80 | 4.60 | 4.30 | 1.50 |
5 EXPR | 3.7671 | 1.08732 | 1.25 | 5.00 | 4.75 | 4.25 | 1.50 |
6 EXPI | 3.7851 | 1.10034 | 1.25 | 5.00 | 5.00 | 4.00 | 1.00 |
7 PERF | 3.8083 | 1.07917 | 1.17 | 5.00 | 4.67 | 4.33 | 1.50 |
Condition | Consistency | Coverage | Condition | Consistency | Coverage |
---|---|---|---|---|---|
RI | 0.822 | 0.836 | NME | 0.830 | 0.805 |
~RI | 0.564 | 0.589 | ~NME | 0.523 | 0.575 |
TI | 0.786 | 0.834 | EXPI | 0.876 | 0.780 |
~TI | 0.595 | 0.596 | ~EXPI | 0.465 | 0.569 |
LME | 0.809 | 0.826 | EXPR | 0.807 | 0.800 |
~LME | 0.572 | 0.595 | ~EXPR | 0.532 | 0.570 |
Outcome: Firm Performance | ||||||
---|---|---|---|---|---|---|
Condition | Configurations | |||||
1 | 2 | 3 | 4 | 5 | 6 | |
RI | • | • | • | |||
TI | • | • | • | |||
LME | • | • | • | |||
NME | ⓧ | • | • | • | • | |
EXPI | ● | ● | ● | ● | ● | ● |
EXPR | • | • | • | |||
Consistency | 0.965 | 0.963 | 0.959 | 0.946 | 0.960 | 0.957 |
Raw coverage | 0.477 | 0.680 | 0.698 | 0.710 | 0.668 | 0.685 |
Unique coverage | 0.009 | 0.008 | 0.015 | 0.029 | 0.001 | 0.007 |
Overall solution coverage | 0.787 | |||||
Overall solution consistency | 0.901 |
Outcome: Firm Performance Model: PERF = f(RI, TI, LME, NME, EXPR, EXPI) | ||||
---|---|---|---|---|
Configurations (Based on Data from Group 1) | Group 1 | Group 2 | ||
Raw Coverage | Consistency | Raw Coverage | Consistency | |
1. RI * TI * NME * EXPI | 0.701 | 0.956 | 0.657 | 0.972 |
2. RI * LME * NME * EXPI | 0.720 | 0.951 | 0.676 | 0.968 |
3. RI * TI * EXPI * EXPR | 0.684 | 0.981 | 0.644 | 0.969 |
4. RI * LME * EXPI * EXPR | 0.686 | 0.961 | 0.654 | 0.970 |
5. RI * NME * EXPI * EXPR | 0.703 | 0.963 | 0.671 | 0.964 |
6. TI * LME * NME * EXPI * EXPR | 0.669 | 0.974 | 0.640 | 0.972 |
Overall Solution coverage | 0.794 | 0.678 | ||
Overall Solution consistency | 0.917 | 0.969 |
Outcome: Firm Performance | |||
---|---|---|---|
Model: PERF = f(RI, TI, LME, NME, EXPR, EXPI) | |||
Case Frequency Threshold: 4 | |||
Consistency Thresholds: 0.85 | |||
Configurations: | Raw Coverage | Unique Coverage | Consistency |
RI * EXPI * EXPR | 0.71 | 0.03 | 0.947 |
TI * LME *~NME * EXPI | 0.477 | 0.009 | 0.965 |
RI * TI * NME * EXPI | 0.68 | 0.022 | 0.964 |
TI * NME * EXPI * EXPR | 0.669 | 0.001 | 0.961 |
LME * NME * EXPI * EXPR | 0.685 | 0.008 | 0.957 |
LME * NME * LYCX * EXPR | 0.685 | 0.008 | 0.957 |
Overall Solution coverage: | 0.772 | ||
Overall Solution consistency: | 0.906 |
Path from | To | Path Coefficient | p-Value |
---|---|---|---|
Local Network Embeddedness (LME) | Firm Performance (PERF) | 0.047 | 0.001 ** |
Non-Local Network Embeddedness (NME) | Firm Performance (PERF) | 0.940 | 0.000 ** |
Exploratory Innovation (EXPR) | Firm Performance (PERF) | 0.231 | 0.002 ** |
Exploitative Innovation (EXPI) | Firm Performance (PERF) | 0.052 | 0.057 |
Local Network Embeddedness (LME) | Exploratory Innovation (EXPR) | 0.095 | 0.341 |
Local Network Embeddedness (LME) | Exploitative Innovation (EXPI) | 0.60 | 0.062 |
Non-Local Network Embeddedness (NME) | Exploratory Innovation (EXPR) | 0.767 | 0.000 ** |
Non-Local Network Embeddedness (NME) | Exploitative Innovation (EXPI) | 0.659 | 0.000 ** |
Related Studies | Our Study | ||
---|---|---|---|
Perspective | The findings are mainly about the effect of single or dual strategies in different contexts | The findings are about the combinations of cluster factors that likely lead to high performance | |
Performance enhancement strategies in clusters | Interorganizational Interdependence (II) |
|
|
Ambidextrous Innovation (AI) |
|
| |
Network Embeddedness (NE) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Liang, Y.; Tu, H. How Do Clusters Drive Firm Performance in the Regional Innovation System? A Causal Complexity Analysis in Chinese Strategic Emerging Industries. Systems 2023, 11, 229. https://doi.org/10.3390/systems11050229
Zhao L, Liang Y, Tu H. How Do Clusters Drive Firm Performance in the Regional Innovation System? A Causal Complexity Analysis in Chinese Strategic Emerging Industries. Systems. 2023; 11(5):229. https://doi.org/10.3390/systems11050229
Chicago/Turabian StyleZhao, Liangjie, Yan Liang, and Haojie Tu. 2023. "How Do Clusters Drive Firm Performance in the Regional Innovation System? A Causal Complexity Analysis in Chinese Strategic Emerging Industries" Systems 11, no. 5: 229. https://doi.org/10.3390/systems11050229
APA StyleZhao, L., Liang, Y., & Tu, H. (2023). How Do Clusters Drive Firm Performance in the Regional Innovation System? A Causal Complexity Analysis in Chinese Strategic Emerging Industries. Systems, 11(5), 229. https://doi.org/10.3390/systems11050229