Predicting the Use of Chatbots for Consumer Channel Selection in Multichannel Environments: An Exploratory Study
Abstract
:1. Introduction
2. The Literature Review and Hypothesis Development
2.1. Quality of the Offer in Multichannel Retail
2.2. Perceived Ease of Use in Multichannel Retail
2.3. Security of Using Multichannel Retail
2.4. Consumer Satisfaction
2.5. Chatbots in Customer Communication
2.6. Attractiveness of the Channel
3. Research Methodology
4. Results
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Zhang, X.; Zhang, S.; Du, B. To Compete or to Collaborate? Logistics Service Sharing and Retailers’ Resale in Competitive Online Channels. Systems 2023, 11, 358. [Google Scholar] [CrossRef]
- Fletcher, K.A.; Gbadamosi, A. Examining social media live stream’s influence on the consumer decision-making: A thematic analysis. Electron. Commer. Res. 2022. [Google Scholar] [CrossRef]
- Bedgood, L. 3 Strategies to Wow Your Customers with Omnichannel Experiences. Business 2 Community. 2017. Available online: https://www.business2community.com/strategy/3-strategies-wow-customers-omnichannel-experiences-01850534 (accessed on 7 June 2023).
- Wang, C.; Mao, Z.; O’kane, J.; Wang, J. An exploration on e-retailers’ home delivery–strategic elements and their prioritization. Bus. Process Manag. J. 2016, 22, 614–633. [Google Scholar] [CrossRef]
- Hoyer, W.D.; Kroschke, M.; Schmitt, B.; Kraume, K.; Shankar, V. Transforming the Customer Experience Through New Technologies. J. Interact. Mark. 2020, 51, 57–71. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, B.; An, K. Analysis of Omni-Channel Evolution Game Strategy for E-Commerce Enterprises in the Context of Online and Offline Integration. Systems 2023, 11, 321. [Google Scholar] [CrossRef]
- Charlesworth, A. Digital Marketing: A Practical Approach, 3rd ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Gené-Albesa, J. Interaction channel choice in a multichannel environment, an empirical study. Int. J. Bank Mark. 2007, 25, 490–506. [Google Scholar] [CrossRef]
- Bavaresco, R.; Silveira, D.; Reis, E.; Barbosa, J.; Righi, R.; Costa, C.; Antunes, R.; Gomes, M.; Gatti, C.; Vanzin, M.; et al. Conversational agents in business: A systematic literature review and future research directions. Comput. Sci. Rev. 2020, 36, 100239. [Google Scholar] [CrossRef]
- Dellaert, B.G.C.; Shu, S.B.; Arentze, T.A.; Baker, T.; Diehl, K.; Donkers, B.; Fast, N.J.; Haubl, G.; Johnson, H.; Karmarkar, U.R.; et al. Consumer decisions with artificially intelligent voice assistants. Mark. Lett. 2020, 31, 335–347. [Google Scholar] [CrossRef]
- Stahl, B.C. (Ed.) Perspectives in Artificial Intelligence. In Artificial Intelligence for a Better Future: An Ecosystem Perspective on the Ethics of AI and Emerging Digital Technologies; Springer Nature: Berlin/Heidelberg, Germany, 2021; pp. 7–17. [Google Scholar]
- Joshi, H. Perception and Adoption of Customer Service Chatbots among Millennials: An Empirical Validation in the Indian Context. In Proceedings of the 17th International Conference on Web Information Systems and Technologies–WEBIST 2021, Online, 26–28 October 2021; pp. 197–208. [Google Scholar]
- Verhoef, P.C.; Kannan, P.K.; Inman, J. From Multi-channel retailing to omni-channel retailing: Introduction to the special issue on multi-channel retailing. J. Retail. 2015, 91, 174–181. [Google Scholar] [CrossRef]
- Bălan, C. Chatbots and Voice Assistants: Digital Transformers of the Company–Customer Interface—A Systematic Review of the Business Research Literature. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 995–1019. [Google Scholar] [CrossRef]
- Nirala, K.K.; Singh, N.K.; Purani, V.S. A survey on providing customer and public administration based services using AI: Chatbot. Multimed. Tools Appl. 2022, 81, 22215–22246. [Google Scholar] [CrossRef]
- DeAndrade, I.M.; Tumelero, C. Increasing customer service efficiency through artificial intelligence chatbot. Rev. Gestão 2022, 29, 238–251. [Google Scholar]
- Parboteeah, D.V.; Valacich, J.S.; Wells, J.D. The influence of website characteristics on a consumer’s urge to buy impulsively. Informs 2009, 20, 60–78. [Google Scholar] [CrossRef]
- Xiao, B.; Benbasat, I. E-commerce product recommendation agents: Use, characteristics and impact. MIS Q. 2007, 31, 137–209. [Google Scholar] [CrossRef]
- Huang, M.-H.; Rust, R.T. Artificial Intelligence in Service. J. Serv. Res. 2018, 21, 155–172. [Google Scholar] [CrossRef]
- Eren, B.A. Determinants of customer satisfaction in chatbot use: Evidence from a banking application in Turkey. Int. J. Bank Mark. 2021, 39, 294–311. [Google Scholar] [CrossRef]
- Patil, D.; Kulkarni, D.S. Artificial Intelligence in Financial Services: Customer Chatbot Advisor Adoption. Int. J. Innov. Technol. Explor. Eng. 2019, 9, 4296–4303. [Google Scholar] [CrossRef]
- Seitz, L.; Bekmeier-Feuerhahn, S.; Gohil, K. Can we trust a chatbot like a physician? A qualitative study on understanding the emergence of trust toward diagnostic chatbots. Int. J. Hum.-Comput. Stud. 2022, 165, 102848. [Google Scholar] [CrossRef]
- Ashfaq, M.; Yun, J.; Yu, S.; Loureiro, S.M.C. I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intentionof AI-powered service agents. Telemat. Inform. 2020, 54, 101473. [Google Scholar] [CrossRef]
- Pizzi, G.; Scarpi, D.; Pantano, E. Artificial intelligence and the new forms of interaction: Who has the control when interacting with a chatbot? J. Bus. Res. 2021, 129, 878–890. [Google Scholar] [CrossRef]
- Gümü¸s, N.; Çark, Ö. The Effect of Customers’ Attitudes Towards Chatbots on their Experience and Behavioural Intention in Turkey. Interdiscip. Descr. Complex Syst. 2021, 19, 420–436. [Google Scholar] [CrossRef]
- Shumanov, M.; Johnson, L. Making conversations with chatbots more personalized. Comput. Hum. Behav. 2021, 117, 106627. [Google Scholar] [CrossRef]
- Xiao, L.; Guo, F.; Yu, F.; Liu, S. The Effects of online shopping context cues on consumers’ purchase intention for cross-border e-commerce sustainability. Sustainability 2019, 11, 2777. [Google Scholar] [CrossRef]
- Kokku, R. Omni and multi-channel: Relationship with utilitarian/hedonic benefits, shopping value and channel patronage. Int. Rev. Manag. Mark. 2021, 11, 11. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Lee, M.; Huang, Q. Information privacy concern and deception in online retailing: The moderating effect of online–offline information integration. Internet Res. 2019, 30, 511–537. [Google Scholar] [CrossRef]
- Kasilingam, D.L. Understanding the attitude and intention to use smartphone chatbots for shopping. Technol. Soc. 2020, 62, 101280. [Google Scholar] [CrossRef]
- Jiang, H.; Cheng, Y.; Yang, J.; Gao, S. AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Comput. Hum. Behav. 2022, 134, 107329. [Google Scholar] [CrossRef]
- Rese, A.; Ganster, L.; Baier, D. Chatbots in retailers’ customer communication: How to measure their acceptance? J. Retail. Consum. Serv. 2020, 56, 102176. [Google Scholar] [CrossRef]
- Hassanein, K.; Head, M. Manipulating perceived social presence through the web interface and its impact on attitude towards online shopping. Int. J. Hum.-Comput. Stud. 2007, 65, 689–708. [Google Scholar] [CrossRef]
- de Sá Siqueira, M.A.; Müller, B.C.N.; Bosse, T. When Do We Accept Mistakes from Chatbots? The Impact of Human-Like Communication on User Experience in Chatbots That Make Mistakes. Int. J. Hum.–Comput. Interact. 2023. [Google Scholar] [CrossRef]
- Agarwal, S. Trust or No Trust in Chatbots: A Dilemma of Millennial. In Cognitive Computing for Human-Robot Interaction; Elsevier: Cambridge, MA, USA, 2021; pp. 103–119. [Google Scholar]
- Lee, S.; Oh, J.; Moon, W.-K. Adopting Voice Assistants in Online Shopping: Examining the Role of Social Presence, Performance Risk, and Machine Heuristic. Int. J. Hum.–Comput. Interact. 2022. [Google Scholar] [CrossRef]
- Murtarelli, G.; Gregory, A.; Romenti, S. A conversation-based perspective for shaping ethical human-machine interactions: The particular challenge of chatbots. J. Bus. Res. 2021, 129, 927–935. [Google Scholar] [CrossRef]
- Van Pinxteren, M.M.; Pluymaekers, M.; Lemmink, J.G. Human-like communication in conversational agents: A literature review research agenda. J. Serv. Manag. 2020, 31, 203–225. [Google Scholar] [CrossRef]
- Araújo, T.; Casais, B. Customer Acceptance of Shopping-Assistant Chatbots. In Marketing and Smart Technologies; Rocha, Á., Reis, J.L., Peter, M.K., Bogdanovi’c, Z., Eds.; Springer: Singapore, 2020; Volume 167, pp. 278–287. [Google Scholar]
- Jocevski, M.; Arvidsson, N.; Miragliotta, G.; Ghezzi, A.; Mangiaracina, R. Transitions Towards omni-channel retailing strategies: A business model perspective. Int. J. Retail. Distrib. Manag. 2019, 47, 78–93. [Google Scholar] [CrossRef]
- Miklosik, A.; Evans, N.; Qureshi, A.M.A. The Use of Chatbots in Digital Business Transformation: A Systematic Literature Review. IEEE Access 2021, 9, 106530–106539. [Google Scholar] [CrossRef]
- Sheehan, B.; Jin, H.S.; Gottlieb, U. Customer service chatbots: Anthropomorphism and adoption. J. Bus. Res. 2020, 115, 14–24. [Google Scholar] [CrossRef]
- McLean, G.; Osei-Frimpong, K. Hey Alexa … examine the variables influencing the use of artificial intelligent in-home voice assistants. Comput. Hum. Behav. 2019, 99, 28–37. [Google Scholar] [CrossRef]
- Chen, L.; Dong, T.; Peng, J.; Ralescu, D. Uncertainty Analysis and Optimization Modeling with Application to Supply Chain Management: A Systematic Review. Mathematics 2023, 11, 2530. [Google Scholar] [CrossRef]
- Chen, L.; Dong, T.; Nan, G.; Xiao, Q.; Xu, M.; Ming, J. Impact of the introduction of marketplace channel on e-tailer’s logistics service strategy. Manag. Decis. Econ. 2023, 44, 2835–2855. [Google Scholar] [CrossRef]
- Pantano, E.; Viassone, M. Engaging consumers on new integrated multichannel retail settings: Challenges for retailers. J. Retail. Consum. Serv. 2015, 25, 106–114. [Google Scholar] [CrossRef]
- Fernandes, T.; Oliveira, E. Understanding consumers’ acceptance of automated technologies in service encounters: Drivers of digital voice assistants adoption. J. Bus. Res. 2021, 122, 180–191. [Google Scholar] [CrossRef]
- Chiagouris, L.; Ray, I. Customers on the web are not all created equal: The moderating role of Internet shopping experience. Int. Rev. Retail. Distrib. Consum. Res. 2010, 20, 251–271. [Google Scholar] [CrossRef]
- Luo, X.M.; Tong, S.L.; Fang, Z.; Qu, Z. Frontiers: Machines vs. Humans: The Impact of Artificial Intelligence Chatbot Disclosure on Customer Purchases. Mark. Sci. 2019, 38, 937–947. [Google Scholar] [CrossRef]
- Whang, C.; Im, H. “I Like Your Suggestion!” the role of human likeness and parasocial relationship on the website versus voice shopper’s perception of recommendations. Psychol. Mark. 2021, 38, 581–595. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, R.; Liu, B. Analysis on Consumers’ Purchase and Shopping Well-Being in Online Shopping Carnivals with Two Motivational Dimensions. Sustainability 2018, 10, 4603. [Google Scholar] [CrossRef]
- Frischmann, T.; Hinz, O.; Skiera, B. Retailers’ use of shipping cost strategies: Free shipping or partitioned prices? Int. J. Electron. Comm. 2012, 16, 65–87. [Google Scholar] [CrossRef]
- Flanagin, A.J.; Metzger, M.J. Perceptions of internet information credibility. J. Mass Commun. Q. 2000, 77, 515–540. [Google Scholar] [CrossRef]
- Neslin, S.A.; Shankar, V. Key Issues in Multichannel Customer Management: Current Knowledge and Future Directions. J. Interact. Mark. 2009, 23, 70–81. [Google Scholar] [CrossRef]
- Aljukhadar, M.; Senecal, S. Usage and success factors of commercial recommendation agents: A consumer qualitative study of MyProductAdvisor.com. J. Interact. Mark. 2011, 5, 130–152. [Google Scholar] [CrossRef]
- Minnema, A.; Bijmolt, T.H.; Gensler, S.; Wiesel, T. To Keep or Not to Keep: Effects of Online Customer Reviews on Product Returns. J. Retail. 2016, 92, 253–267. [Google Scholar] [CrossRef]
- Roy, R.; Naidoo, V. Enhancing chatbot effectiveness: The role of anthropomorphic conversational styles and time orientation. J. Bus. Res. 2021, 126, 23–34. [Google Scholar] [CrossRef]
- Levy, M.; Weitz, B.A.; Grewal, D. Retailing Management; Weitz, B.A., Grewal, D., Eds.; McGraw-Hill Education: Dubuque, IA, USA, 2019. [Google Scholar]
- Wells, J.D.; Valacich, J.S.; Hess, T.J. What signal are you sending? How website quality influences perceptions of product quality and purchase intentions. MIS Q. 2011, 35, 373–396. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, S.; Field, J.M. Development and Validation of the pick-up service quality scale of the Buy-Online-Pick-up-in-Store Service. Oper. Manag. Res. 2020, 13, 218–232. [Google Scholar] [CrossRef]
- Wirtz, J.; Patterson, P.G.; Kunz, W.H.; Gruber, T.; Lu, V.N.; Paluch, S.; Martins, A. Brave new world: Service robots in the frontline. J. Serv. Manag. 2018, 29, 907–931. [Google Scholar] [CrossRef]
- Wu, J.-F.; Chang, Y.P. Multichannel integration quality, online perceived value and online purchase intention. Internet Res. 2016, 26, 1228–1248. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Sebatianelli, R.; Tamimi, N.; Rajan, M. Perceived quality of online shopping: Does gender make a difference? J. Internet Commer. 2008, 7, 445–469. [Google Scholar] [CrossRef]
- Beck, N.; Rygl, D. Categorization of multiple channel retailing in multi-, cross-, and omni-channel retailing for retailers and retailing. J. Retail. Consum. Serv. 2015, 27, 170–178. [Google Scholar] [CrossRef]
- Zhang, M.; Ren, C.; Wang, G.A.; He, Z. The Impact of channel integration on consumer responses in omni-channel retailing: The mediating effect of consumer empowerment. Electron. Commer. Res. Appl. 2018, 28, 181–193. [Google Scholar] [CrossRef]
- Pham, T.S.H.; Ahammad, M.F. Antecedents and consequences of online customer satisfaction: A holistic process perspective. Technol. Forecast. Soc. Chang. 2017, 124, 332–342. [Google Scholar] [CrossRef]
- Hsiao, C.C.; Yen, H.J.R.; Li, E.Y. Exploring consumer value of multi-channel shopping: A perspective of means-end theory. Internet Res. 2012, 22, 318–339. [Google Scholar] [CrossRef]
- Li, H. Are e-books a different channel? Multichannel management of digital products. Quant. Mark. Econ. 2021, 19, 179–225. [Google Scholar] [CrossRef]
- Aljazzaf, Z.M.; Perry, M.; Capretz, M.A.M. Online trust: Definition and principles. In Proceedings of the ICCGI’10: 2010 Fifth International Multi-Conference on Computing in the Global Information Technology, Valencia, Spain, 20–25 September 2010; pp. 163–168. [Google Scholar]
- Corritore, C.L.; Kracher, B.; Wiedenbeck, S. On-line trust: Concepts, evolving themes, a model. Int. J. Hum.-Comput. Stud. 2003, 58, 737–758. [Google Scholar] [CrossRef]
- von Briel, F. The future of omnichannel retail: A four-stage Delphi study. Technol. Forecast. Soc. Chang. 2018, 132, 217–229. [Google Scholar] [CrossRef]
- Cheng, Y.; Jiang, H. How Do AI-driven Chatbots Impact User Experience? Examining Gratifications, Perceived Privacy Risk, Satisfaction, Loyalty, and Continued Use. J. Broadcast. Electron. Media 2020, 64, 592–614. [Google Scholar] [CrossRef]
- Savastano, M.; Bellini, F.; D’ascenzo, F.; De Marco, M. Technology adoption for the integration of online–offline purchasing. Int. J. Retail. Distrib. Manag. 2019, 47, 474–492. [Google Scholar] [CrossRef]
- Fanea-Ivanovici, M.; Baber, H. The role of entrepreneurial intentions, perceived risk and perceived trust in crowdfunding intentions. Eng. Econ. 2021, 32, 433–445. [Google Scholar] [CrossRef]
- Hasan, R.; Shams, R.; Rahman, M. Consumer trust and perceived risk for voice-controlled artificial intelligence: The case of Siri. J. Bus. Res. 2021, 131, 591–597. [Google Scholar] [CrossRef]
- Chen, I.-F.; Lu, C.-J. Demand Forecasting for Multichannel Fashion Retailers by Integrating Clustering and Machine Learning Algorithms. Processes 2021, 9, 1578. [Google Scholar] [CrossRef]
- Silva, G.R.S.; Canedo, E.D. Towards User-Centric Guidelines for Chatbot Conversational Design. Int. J. Hum.–Comput. Interact. 2022, 1–23. [Google Scholar] [CrossRef]
- Ladhari, R.; Souiden, N.; Dufour, B. The Role of emotions in utilitarian service settings: The effects of emotional satisfaction on product perception and behavioral intentions. J. Retail. Consum. Serv. 2017, 34, 10–18. [Google Scholar] [CrossRef]
- Petermans, A.; Kent, A. (Eds.) Retail Design A contextual lens. In Retail Design Theoretical Perspectives; Routledge: Abingdon, VA, USA, 2017; pp. 14–29. [Google Scholar]
- Wu, J.; Chang, Y.; Pan, H. Impact of Multichannel Integration Quality on Online Purchase Intention and Its Mechanism. J. Manag. Sci. 2014, 27, 86–98. [Google Scholar]
- Sundermeir, S.M.; Winkler, M.R.; John, S.; Colón-Ramos, U.; Kaur, R.; Hickson, A.; Dombrowski, R.D.; Hill, A.B.; Bode, B.; DeAngelo, J.; et al. A Commentary on the Healthy Community Stores Case Study Project: Implications for Retailers, Policy, and Future Research. Int. J. Environ. Res. Public Health 2022, 19, 8824. [Google Scholar] [CrossRef]
- Jenneboer, L.; Herrando, C.; Constantinides, E. The Impact of Chatbots on Customer Loyalty: A Systematic Literature Review. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 212–229. [Google Scholar] [CrossRef]
- Lei, S.I.; Shen, H.; Ye, S. A comparison between chatbot and human service: Customer perception and reuse intention. Int. J. Contemp. Hosp. Manag. 2021, 33, 3977–3995. [Google Scholar] [CrossRef]
- Chung, M.; Ko, E.; Joung, H.; Kim, S.J. Chatbot e-service and customer satisfaction regarding luxury brands. J. Bus. Res. 2020, 117, 587–595. [Google Scholar] [CrossRef]
- Gerea, C.; Herskovic, V. Transitioning from Multichannel to Omnichannel Customer Experience in Service-Based Companies: Challenges and Coping Strategies. J. Theor. Appl. Electron. Commer. Res. 2022, 17, 394–413. [Google Scholar] [CrossRef]
- Gu, Z.; Tayi, G.K. Consumer mending and online retailer fit-uncertainty mitigating strategies. QME-Quant. Mark. Econ. 2015, 13, 251–282. [Google Scholar] [CrossRef]
- Andrés-Sánchez, J.; Gené-Albesa, J. Explaining Policyholders’ Chatbot Acceptance with an Unified Technology Acceptance and Use of Technology-Based Model. J. Theor. Appl. Electron. Commer. Res. 2023, 18, 1217–1237. [Google Scholar] [CrossRef]
- Pal, D.; Roy, P.; Arpnikanondt, C.; Thapliyal, H. The effect of trust and its antecedents towards determining users’ behavioral intention with voice-based consumer electronic devices. Heliyon 2022, 8, e09271. [Google Scholar] [CrossRef]
- Tian, Y.; Ma, J.; Xie, L.; Koivumäki, T.; Seppänen, V. Coordination and control of multi-channel supply chain driven by consumers’ channel preference and sales effort. Chaos Solitons Fractals 2020, 132, 109576. [Google Scholar] [CrossRef]
Constructs | Items | |
---|---|---|
Quality of the offer in multichannel retail (QO) [52,55,56] | QO 1 | The information about the offers available on the channel is always up to date. |
QO 2 | Transparency is maintained throughout the distribution of the information. | |
QO 3 | The channel provides a complete overview of all products that interest me. | |
Perceived ease of use in multichannel retail (PEU) [18,27,58,62,63] | PEU 1 | The channel provides me with comfortable and convenient information options. |
PEU 2 | Using the channel allows me to adapt exactly to my personal needs. | |
PEU 3 | When I use the channel, I can always obtain the latest products/services. | |
PEU 4 | My life is more convenient due to digital channels. | |
Security of using multichannel retail (SU) [70,71,72] | SU 1 | When I use the channel for purchases or post-contract services, the security of my personal data is guaranteed. |
SU 2 | During the process of shopping, customers who use digital channels have access to support available. | |
SU 3 | The security of the funds in the transaction at the time of payment is important. | |
Consumer satisfaction (CS) [20,31,67,73,77] | CS 1 | Most customers, like myself, are pleased with our interactions with retail. |
CS 2 | I am satisfied with making use of a variety of different channels. | |
CS 3 | Multichannel shopping has proven to be an effective effort thus far. | |
Chatbots in customer communication (CCC) [23,25,42,78] | CCC 1 | I successfully replied to multichannel online communications. |
CCC 2 | Because of the use of chatbots, I can establish conversations at any time regarding relevant offers based on my preferences. | |
CCC 3 | The chatbot allows me to best meet the newly developed trendiness expectations. | |
Attractiveness of the channel (AC) [8,45,46,56,80] | AC 1 | In general, the information-seeking channel is very attractive and appropriate. |
AC 2 | The channel is easily accessible to me and available at all times. | |
AC 3 | The digital channel system consistently delivers accurate results. | |
Channel selection (CMS) [1,54,55] | CMS 1 | I use channels to learn about the products/services offered before buying online. |
CMS 2 | When using the channel, the risk of incorrect/incomplete information is lower than with other channels. | |
CMS 3 | The channel provides a large variety of products/services from which to select. |
Factor Loadings | Cronbach’s Alpha | CR | AVE | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | MC | FS | EC | RB | MC | FS | EC | RB | MC | FS | EC | RB | MC | FS | EC | ||
QO | QO 1 | 0.791 | 0.810 | 0.784 | 0.787 | 0.813 | 0.796 | 0.830 | 0.807 | 0.874 | 0.802 | 0.884 | 0.879 | 0.705 | 0.602 | 0.687 | 0.708 |
QO 2 | 0.874 | 0.688 | 0.823 | 0.863 | |||||||||||||
QO 3 | 0.836 | 0.706 | 0.794 | 0.845 | |||||||||||||
PEU | PEU 1 | 0.723 | 0.771 | 0.783 | 0.741 | 0.795 | 0.783 | 0.727 | 0.803 | 0.894 | 0.793 | 0.879 | 0.867 | 0.781 | 0.661 | 0.609 | 0.701 |
PEU 2 | 0.818 | 0.822 | 0.778 | 0.874 | |||||||||||||
PEU 3 | 0.834 | 0.743 | 0.825 | 0.884 | |||||||||||||
PEU 4 | 0.867 | 0.725 | 0.869 | 0.792 | |||||||||||||
SU | SU 1 | 0.863 | 0.787 | 0.782 | 0.764 | 0.822 | 0.814 | 0.758 | 0.881 | 0.896 | 0.817 | 0.865 | 0.874 | 0.712 | 0.631 | 0.694 | 0.608 |
SU 2 | 0.842 | 0.689 | 0.849 | 0.845 | |||||||||||||
SU 3 | 0.736 | 0.769 | 0.726 | 0.769 | |||||||||||||
CS | CS 1 | 0.873 | 0.812 | 0.843 | 0.825 | 0.841 | 0.842 | 0.726 | 0.836 | 0.889 | 0.851 | 0.861 | 0.896 | 0.717 | 0.611 | 0.675 | 0.714 |
CS 2 | 0.858 | 0.743 | 0.796 | 0.902 | |||||||||||||
CS 3 | 0.834 | 0.778 | 0.834 | 0.848 | |||||||||||||
CCC | CCC 1 | 0.803 | 0.823 | 0.863 | 0.878 | 0.862 | 0.881 | 0.926 | 0.924 | 0.907 | 0.882 | 0.927 | 0.899 | 0.726 | 0.651 | 0.729 | 0.742 |
CCC 2 | 0.867 | 0.803 | 0.822 | 0.854 | |||||||||||||
CCC 3 | 0.911 | 0.805 | 0.846 | 0.831 | |||||||||||||
AC | AC 1 | 0.889 | 0.774 | 0.793 | 0.743 | 0.831 | 0.829 | 0.905 | 0.884 | 0.889 | 0.830 | 0.918 | 0.897 | 0.703 | 0.607 | 0.715 | 0.658 |
AC 2 | 0.874 | 0.708 | 0.812 | 0.767 | |||||||||||||
AC 3 | 0.926 | 0.787 | 0.884 | 0.886 | |||||||||||||
CMS | CMS 1 | 0.885 | 0.821 | 0.838 | 0.867 | 0.827 | 0.823 | 0.911 | 0.887 | 0.908 | 0.834 | 0.927 | 0.878 | 0.710 | 0.625 | 0.717 | 0.653 |
CMS 2 | 0.922 | 0.774 | 0.819 | 0.914 | |||||||||||||
CMS 3 | 0.890 | 0.778 | 0.825 | 0.794 |
Hypotheses | Path | RB | MC | FS | EC | Results | ||||
---|---|---|---|---|---|---|---|---|---|---|
Std. Coef. | t-Value | Std. Coef. | t-Value | Std. Coef. | t-Value | Std. Coef. | t-Value | |||
H1 | QO→AC | 0.177 | 3.078 | 0.282 | 3.963 | 0.166 | 3.016 | 0.268 | 3.505 | Supported |
H2 | QO→CS | 0.168 | 2.917 | 0.181 | 2.854 | 0.235 | 2.935 | 0.223 | 4.162 | Supported |
H3 | PEU→AC | 0.278 | 4.977 | 0.241 | 2.893 | 0.268 | 4.838 | 0.218 | 3.681 | Supported |
H4 | PEU→CS | 0.212 | 3.279 | 0.145 | 2.825 | 0.259 | 4.263 | 0.109 | 2.328 | Supported |
H5 | SU→PEU | 0.249 | 4.441 | 0.142 | 3.216 | 0.221 | 3.725 | 0.104 | 2.257 | Supported |
H6 | CS→AC | 0.137 | 2.378 | 0.251 | 4.582 | 0.130 | 2.751 | 0.147 | 2.928 | Supported |
H7 | CS→CMS | 0.131 | 2.342 | 0.224 | 4.219 | 0.108 | 2.462 | 0.156 | 3.737 | Supported |
H8 | CCC→CS | 0.246 | 4.427 | 0.193 | 4.683 | 0.258 | 4.573 | 0.288 | 4.111 | Supported |
H9 | CCC→PEU | 0.232 | 2.835 | 0.168 | 3.017 | 0.204 | 3.295 | 0.137 | 2.475 | Supported |
H10 | CCC→AC | 0.238 | 2.883 | 0.279 | 3.025 | 0.124 | 2.697 | 0.211 | 2.849 | Supported |
H11 | CCC→CMS | 0.240 | 2.891 | 0.284 | 3.152 | 0.103 | 2.445 | 0.174 | 3.152 | Supported |
H12 | AC→CMS | 0.234 | 2.847 | 0.286 | 4.692 | 0.113 | 2.551 | 0.181 | 3.337 | Supported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oncioiu, I. Predicting the Use of Chatbots for Consumer Channel Selection in Multichannel Environments: An Exploratory Study. Systems 2023, 11, 522. https://doi.org/10.3390/systems11100522
Oncioiu I. Predicting the Use of Chatbots for Consumer Channel Selection in Multichannel Environments: An Exploratory Study. Systems. 2023; 11(10):522. https://doi.org/10.3390/systems11100522
Chicago/Turabian StyleOncioiu, Ionica. 2023. "Predicting the Use of Chatbots for Consumer Channel Selection in Multichannel Environments: An Exploratory Study" Systems 11, no. 10: 522. https://doi.org/10.3390/systems11100522
APA StyleOncioiu, I. (2023). Predicting the Use of Chatbots for Consumer Channel Selection in Multichannel Environments: An Exploratory Study. Systems, 11(10), 522. https://doi.org/10.3390/systems11100522