Digital Economy and Intelligent Manufacturing Coupling Coordination: Evidence from China
Abstract
:1. Introduction
2. Literature Review and Mechanism Construction
2.1. Literature Review
2.2. Coupling Coordination Mechanisms of DE and IM
3. Empirical Design
3.1. Sample and Data Collection
3.2. Index System Construction and Measurement
3.2.1. Index Composition
3.2.2. Measuring Method
- (1)
- Index standardization: .
- (2)
- Index normalization: .
- (3)
- Entropy of each index: , among which, .
- (4)
- Weights of indicators: .
- (5)
- Scores for each provincial administrative region: .
3.3. Model Specification
3.3.1. Coupling Coordination Degree Model
3.3.2. Coupling Evolution Model
3.3.3. Obstacle Degree Model
3.3.4. Fixed Effects Model
3.3.5. Exploratory Spatial Data Analysis
4. Empirical Results
4.1. Subsystem Development Index and Coupling Coordination Degree
4.2. Coupling Evolution Analysis
4.3. Subsystem Development Index and Coupling Coordination Degree
4.4. Influence Factors Analysis
4.5. Spatial Effect Analysis
4.6. Discussion
5. Conclusions
5.1. Main Conclusions
5.2. Policy Recommendations
5.3. Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, W.R.; Xie, T.; Wang, Z.W.; Ma, L.S. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Hosan, S.; Karmaker, S.C.; Rahman, M.M.; Chapman, A.J.; Saha, B.B. Dynamic links among the demographic dividend, digitalization, energy intensity and sustainable economic growth: Empirical evidence from emerging economies. J. Clean. Prod. 2022, 330, 129858. [Google Scholar] [CrossRef]
- Balcerzak, A.P.; Pietrzak, M.B. Digital economy in Visegrad Countries. Multiple-criteria Decision Analysis at Regional Level in The Years 2012 and 2015. J. Compet. 2017, 9, 5–18. [Google Scholar] [CrossRef]
- Ma, X.J.; Wang, C.X.; Dong, B.Y.; Gu, G.C.; Chen, R.M.; Li, Y.F.; Zou, H.F.; Zhang, W.F.; Li, Q.N. Carbon emissions from energy consumption in China: Its measurement and driving factors. Sci. Total Environ. 2019, 648, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Heubaum, H.; Biermann, F. Integrating global energy and climate governance: The changing role of the International Energy Agency. Energy Policy 2015, 87, 229–239. [Google Scholar] [CrossRef]
- Zhang, G.X.; Deng, N.N.; Mou, H.Z.; Zhang, Z.G.; Chen, X.F. The impact of the policy and behavior of public participation on environmental governance performance: Empirical analysis based on provincial panel data in China. Energy Policy 2019, 129, 1347–1354. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, Y.; Yang, F.; Shi, Q.F. Spatial-temporal heterogeneity of green innovation in China. J. Clean. Prod. 2021, 282, 124464. [Google Scholar] [CrossRef]
- Yin, S.; Yu, Y.Y. An adoption-implementation framework of digital green knowledge to improve the performance of digital green innovation practices for industry 5.0. J. Clean. Prod. 2022, 363, 132608. [Google Scholar] [CrossRef]
- Yin, S.; Zhang, N.; Ullah, K.; Gao, S. Enhancing Digital Innovation for the Sustainable Transformation of Manufacturing Industry: A Pressure-State-Response System Framework to Perceptions of Digital Green Innovation and Its Performance for Green and Intelligent Manufacturing. Systems 2022, 10, 72. [Google Scholar] [CrossRef]
- Zhou, J.; Li, P.G.; Zhou, Y.H.; Wang, B.C.; Zang, J.Y.; Meng, L. Toward New-Generation Intelligent Manufacturing. Engineering 2018, 4, 11–20. [Google Scholar] [CrossRef]
- He, B.; Bai, K.J. Digital twin-based sustainable Intelligent manufacturing: A review. Adv. Manuf. 2021, 9, 1–21. [Google Scholar] [CrossRef]
- Chen, J.H.; Zhang, W.Y.; Wang, H. Intelligent bearing structure and temperature field analysis based on finite element simulation for sustainable and green manufacturing. J. Intell. Manuf. 2021, 32, 745–756. [Google Scholar] [CrossRef]
- Fisher, O.J.; Watson, N.J.; Escrig, J.E.; Gomes, R.L. Intelligent Resource Use to Deliver Waste Valorisation and Process Resilience in Manufacturing Environments Moving towards sustainable process manufacturing. Johns. Matthey Technol. Rev. 2020, 64, 93–99. [Google Scholar] [CrossRef]
- Li, K.; Kim, D.J.; Lang, K.R.; Kauffman, R.J.; Naldi, M. How should we understand the digital economy in Asia? Critical assessment and research agenda. Electron. Commer. Res. Appl. 2020, 44, 101004. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, O. The dark corners of industry 4.0-Grounding economic governance 2.0. Technol. Soc. 2018, 55, 140–145. [Google Scholar] [CrossRef]
- Rajput, S.; Singh, S.P. Industry 4.0 Model for circular economy and cleaner production. J. Clean. Prod. 2020, 277, 123853. [Google Scholar] [CrossRef]
- Fang, X.D.; Chen, H.C. Using vendor management inventory system for goods inventory management in IoT manufacturing. Enterp. Inf. Syst. 2022, 16, 1–27. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high-quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Ma, Q.; Tariq, M.; Mahmood, H.; Khan, Z. The nexus between digital economy and carbon dioxide emissions in China: The moderating role of investments in research and development. Technol. Soc. 2022, 68, 101910. [Google Scholar] [CrossRef]
- Zhang, J.N.; Lyu, Y.W.; Li, Y.T.; Geng, Y. Digital economy: An innovation driving factor for low-carbon development. Environ. Impact Assess. Rev. 2022, 96, 106821. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Yi, M.; Liu, Y.F.; Sheng, M.S.; Wen, L. Effects of digital economy on carbon emission reduction: New evidence from China. Energy Policy 2022, 171, 113271. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.M.; Wang, D.; Zhou, J.P. Digital economy and carbon emission performance: Evidence at China’s city level. Energy Policy 2022, 165, 112927. [Google Scholar] [CrossRef]
- Shahbaz, M.; Wang, J.D.; Dong, K.Y.; Zhao, J. The impact of digital economy on energy transition across the globe: The mediating role of government governance. Renew. Sustain. Energy Rev. 2022, 166, 112620. [Google Scholar] [CrossRef]
- Luo, S.Y.; Yimamu, N.; Li, Y.R.; Wu, H.T.; Irfan, M.; Hao, Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Bus. Strategy Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- Wu, J.; Lin, K.X.; Sun, J.S. Improving urban energy efficiency: What role does the digital economy play? J. Clean. Prod. 2023, 842, 138104. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, J. Digital Economy, Clean Energy Consumption, and High-Quality Economic Development: The Case of China. Sustainability 2023, 15, 13588. [Google Scholar] [CrossRef]
- Barenji, A.V.; Liu, X.L.; Guo, H.Y.; Li, Z. A digital twin-driven approach towards smart manufacturing: Reduced energy consumption for a robotic cellular. Int. J. Comput. Integr. Manuf. 2020, 34, 844–859. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent Manufacturing in the Context of Industry 4.0: A Review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Wan, N.; Li, L.; Ye, C.M.; Wang, B. Risk Assessment in Intelligent Manufacturing Process: A Case Study of an Optical Cable Automatic Arranging Robot. IEEE Access 2019, 7, 105892–105901. [Google Scholar] [CrossRef]
- Kim, J.; Seo, D.; Moon, J.; Kim, J.; Kim, H.; Jeong, J. Design and Implementation of an HCPS-Based PCB Smart Factory System for Next-Generation Intelligent Manufacturing. Appl. Sci. 2022, 12, 7645. [Google Scholar] [CrossRef]
- Lan, X.Y.; Chen, H. Simulation analysis of production scheduling algorithm for intelligent manufacturing cell based on artificial intelligence technology. Soft Comput. 2023, 27, 6007–6017. [Google Scholar] [CrossRef]
- Sun, F.L.; Diao, Z.F. Federated Learning and Blockchain-Enabled Intelligent Manufacturing for Sustainable Energy Production in Industry 4.0. Processes 2023, 11, 1482. [Google Scholar] [CrossRef]
- Yang, Z.H.; Shen, Y. The impact of intelligent manufacturing on industrial green total factor productivity and its multiple mechanisms. Front. Environ. Sci. 2023, 10, 1058664. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Analysis of the influence of entrepreneurial psychology on the index system of digital development of the equipment manufacturing industry. Front. Psychol. 2022, 13, 1026603. [Google Scholar] [CrossRef]
- Jiao, R.G.; Commuri, S.; Panchal, J.; Milisavljevic-Syed, J.; Allen, J.K.; Mistree, F.; Schaefer, D. Design Engineering in the Age of Industry 4.0. J. Mech. Des. 2021, 143, 070801. [Google Scholar] [CrossRef]
- Martin-Gomez, A.; Avila-Gutierrez, M.J.; Aguayo-Gonzalez, F. Holonic Reengineering to Foster Sustainable Cyber-Physical Systems Design in Cognitive Manufacturing. Appl. Sci. 2021, 11, 2941. [Google Scholar] [CrossRef]
- Garcia, A.; Bregon, A.; Martinez-Prieto, M.A. A non-intrusive Industry 4.0 retrofitting approach for collaborative maintenance in traditional manufacturing. Comput. Ind. Eng. 2022, 164, 107896. [Google Scholar] [CrossRef]
- Turner, C.; Oyekan, J.; Garn, W.; Duggan, C.; Abdou, K. Industry 5.0 and the Circular Economy: Utilizing LCA with Intelligent Products. Sustainability 2022, 14, 14847. [Google Scholar] [CrossRef]
- Barbosa, C.R.H.; Sousa, M.C.; Almeida, M.F.L.; Calili, R.F. Smart Manufacturing and Digitalization of Metrology: A Systematic Literature Review and a Research Agenda. Sensors 2022, 22, 6114. [Google Scholar] [CrossRef]
- Liu, L.L.; Wan, X.; Gao, Z.G.; Zhang, X.Y. An improved MPGA-ACO-BP algorithm and comprehensive evaluation system for intelligence workshop multi-modal data fusion. Adv. Eng. Inform. 2023, 56, 101980. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.D.; Ran, Q.Y.; Wu, H.T.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Ma, S.Y.; Zhang, Y.F.; Liu, Y.; Yang, H.D.; Lv, J.X.; Ren, S. Data-driven sustainable intelligent manufacturing based on demand response for energy-intensive industries. J. Clean. Prod. 2020, 274, 123155. [Google Scholar] [CrossRef]
- Tian, H.N.; Li, Y.F.; Zhang, Y. Digital and intelligent empowerment: Can big data capability drive green process innovation of manufacturing enterprises? J. Clean. Prod. 2022, 377, 134261. [Google Scholar] [CrossRef]
- Jiang, S.X.; Li, Y.F.; You, N. Corporate digitalization, application modes, and green growth: Evidence from the innovation of Chinese listed companies. Front. Environ. Sci. 2023, 10, 1103540. [Google Scholar] [CrossRef]
- Zhou, G.H.; Zhang, C.; Li, Z.; Ding, K.; Wang, C. Knowledge-driven digital twin manufacturing cell towards intelligent manufacturing. Int. J. Prod. Res. 2020, 58, 1034–1051. [Google Scholar] [CrossRef]
- Sufian, A.T.; Abdullah, B.M.; Ateeq, M.; Wah, R.; Clements, D. Six-Gear Roadmap towards the Smart Factory. Appl. Sci. 2021, 11, 3568. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.; Mao, F. The synergy degree measurement and transformation path of China’s traditional manufacturing industry enabled by digital economy. Math. Biosci. Eng. 2022, 19, 5738–5753. [Google Scholar]
- Zhou, Y.; Zang, J.Y.; Miao, Z.Z.; Minshall, T. Upgrading Pathways of Intelligent Manufacturing in China: Transitioning across Technological Paradigms. Engineering 2019, 5, 691–701. [Google Scholar] [CrossRef]
- Chakroun, A.; Hani, Y.; Elmhamedi, A.; Masmoudi, F. A proposed integrated manufacturing system of a workshop producing brass accessories in the context of industry 4.0. Int. J. Adv. Manuf. Technol. 2023, 127, 2017–2033. [Google Scholar] [CrossRef]
- Liu, Q.; Leng, J.W.; Yan, D.X.; Zhang, D.; Wei, L.J.; Yu, A.L.; Zhao, R.L.; Zhang, H.; Chen, X. Digital twin-based designing of the configuration, motion, control, and optimization model of a flow-type smart manufacturing system. J. Manuf. Syst. 2021, 58, 52–64. [Google Scholar] [CrossRef]
- Laudien, S.M.; Daxböck, B. Business model innovation processes of average market players: A qualitative-empirical analysis. RD Manag. 2017, 47, 420–430. [Google Scholar] [CrossRef]
- Guo, F.; Wang, J.Y.; Wang, F.; Kong, T.; Zhang, X.; Cheng, Z.Y. Measuring China’s digital financial inclusion: Index compilation and spatial characteristics. China Econ. Q. 2020, 19, 1401–1418. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, S.J.; Wang, J.H.; Xu, B. Innovative coupling and coordination: Automobile and digital industries. Technol. Forecast. Soc. Chang. 2022, 176, 121497. [Google Scholar] [CrossRef]
- Wang, L.H.; Shao, J. Digital economy, entrepreneurship and energy efficiency. Energy 2023, 269, 126801. [Google Scholar] [CrossRef]
- Zhang, M.L.; Yin, S. Can China’s Digital Economy and Green Economy Achieve Coordinated Development? Sustainability 2023, 15, 5666. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y. Does intellectual property protection stimulate digital economy development? J. Appl. Econ. 2022, 25, 723–730. [Google Scholar] [CrossRef]
- Li, Z.G.; Wang, J. The Dynamic Impact of digital economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. J. Clean. Prod. 2022, 351, 131570. [Google Scholar] [CrossRef]
- Shen, W.M.; Hao, Q.; Yoon, H.J.; Norrie, D.H. Applications of agent-based systems in intelligent manufacturing: An updated review. Adv. Eng. Inform. 2006, 20, 415–431. [Google Scholar] [CrossRef]
- Wang, Q.; Geng, C.X.; E, H.T.; Song, J.R. Research on capital allocation efficiencies with four-dimensional factor capitals from China’s intelligent manufacturing enterprises. PLoS ONE 2022, 17, e0270588. [Google Scholar] [CrossRef]
- Hsu, L.C. Investment Decision Making Using a Combined Factor Analysis and Entropy-Base Topsis Model. J. Bus. Econ. Manag. 2013, 14, 448–466. [Google Scholar] [CrossRef]
- Kaynak, S.; Altuntas, S.; Dereli, T. Comparing the innovation performance of EU candidate countries: An entropy-based TOPSIS approach. Econ. Res.-Ekon. Istraz. 2017, 30, 31–54. [Google Scholar] [CrossRef]
- Chen, J.D.; Li, Z.W.; Dong, Y.Z.; Song, M.L.; Shahbaz, M.; Xie, Q.J. Coupling coordination between carbon emissions and the eco-environment in China. J. Clean. Prod. 2020, 276, 123848. [Google Scholar] [CrossRef]
- Cheng, K.; He, K.X.; Fu, Q.; Tagawa, K.; Guo, X.X. Assessing the coordination of regional water and soil resources and ecological-environment system based on speed characteristics. J. Clean. Prod. 2022, 339, 130718. [Google Scholar] [CrossRef]
- Wang, D.; Shen, Y.; Zhao, Y.Y.; He, W.; Liu, X.; Qian, X.Y.; Lv, T. Integrated assessment and obstacle factor diagnosis of China’s scientific coal production capacity based on the PSR sustainability framework. Resour. Policy 2020, 68, 101794. [Google Scholar] [CrossRef]
- He, Y.; Liu, G.L. Coupling coordination analysis of low-carbon development, technology innovation, and new urbanization: Data from 30 provinces and cities in China. Front. Public Health 2022, 10, 1047691. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, F.; Gong, B.G.; Zeng, W. Assessing the efficiency of innovation entities in China: Evidence from a nonhomogeneous data envelopment analysis and Tobit. Electron. Commer. Res. 2022, 23, 175–205. [Google Scholar] [CrossRef]
- Hausken, K.; Moxnes, J.F. Innovation, Development and National Indices. Soc. Indic. Res. 2019, 141, 1165–1188. [Google Scholar] [CrossRef]
- Lenihan, H.; McGuirk, H.; Murphy, K.R. Driving innovation: Public policy and human capital. Res. Policy 2019, 48, 103791. [Google Scholar] [CrossRef]
- Jirakraisiri, J.; Badir, Y.F.; Frank, B. Translating green strategic intent into green process innovation performance: The role of green intellectual capital. J. Intellect. Cap. 2021, 22, 43–67. [Google Scholar] [CrossRef]
- Costantini, V.; Monni, S. Environment, human development and economic growth. Ecol. Econ. 2008, 64, 867–880. [Google Scholar] [CrossRef]
- Zhu, X.W. Have carbon emissions been reduced due to the upgrading of industrial structure? Analysis of the mediating effect based on technological innovation. Environ. Sci. Pollut. Res. 2022, 29, 54890–54901. [Google Scholar] [CrossRef] [PubMed]
- Chung, S. Building a national innovation system through regional innovation systems. Technovation 2022, 22, 485–491. [Google Scholar] [CrossRef]
- Wen, H.M.; Yue, J.L.; Li, J.; Xiu, X.D.; Zhong, S. Can digital finance reduce industrial pollution? New evidence from 260 cities in China. PLoS ONE 2022, 17, e0266564. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Zhang, H.Q.; Liu, S.S.; Zhang, H.B. Technological innovation, environmental regulation, and green total factor efficiency of industrial water resources. J. Clean. Prod. 2019, 211, 61–69. [Google Scholar] [CrossRef]
- Wang, J.Q.; Shahbaz, M.; Song, M.L. Evaluating energy economic security and its influencing factors in China. Energy 2021, 229, 120638. [Google Scholar] [CrossRef]
- Li, C.Y. China’s multi-dimensional ecological well-being performance evaluation: A new method based on coupling coordination model. Ecol. Indic. 2022, 143, 109321. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, S.R.; Lyulyov, O.; Pimonenko, T. China’s digital economy development: Incentives and challenges. Technol. Econ. Dev. Econ. 2023, 29, 518–538. [Google Scholar] [CrossRef]
- Ying, L.M.; Li, M.H.; Yang, J. Agglomeration and driving factors of regional innovation space based on intelligent manufacturing and green economy. Environ. Technol. Innov. 2021, 22, 101398. [Google Scholar] [CrossRef]
Element Level | Index Level | Measure Index and Unit | |
---|---|---|---|
Digital Economy X | Digital infrastructure X1 | Cable length X11 | Cable length (km) |
Internet penetration X12 | Broadband Internet users accounted for (%) | ||
Telephone penetration rate X13 | Mobile phone part number per 100 people (units) | ||
Number of Internet domain names X14 | Number of Internet domain names (thousands) | ||
Digital technology innovation X2 | Technological innovation level X21 | Number of patent applications (pieces) | |
Proportion of enterprises with e-commerce transactions X22 | The proportion of e-commerce enterprises | ||
Digital industrialization X3 | Output value of information service industry X31 | Information transmission, software and information technology services business income (CNY 100 million) | |
Digital industry employees X32 | Employees in information transmission, software and information technology service enterprises (10,000) | ||
Total telecommunications business X33 | Telecommunications business volume (CNY 100 million) | ||
Industrial digitization X4 | Digital Financial Inclusion Index X41 | Peking University Digital Financial Inclusion Index | |
Digital transaction X42 | E-commerce sales (CNY 100 million) | ||
Corporate website coverage X43 | Websites per million businesses (number) | ||
The proportion of computers used by enterprises X44 | Every one hundred people use the computer number (units) | ||
Intelligent manufacturing Y | Intelligent R&D investment Y1 | R&D funds are invested in Y11 | Manufacturing R&D funding (CNY ten thousand) |
Talent input Y12 | Manufacturing R&D personnel equivalent to full-time | ||
Technological innovation input Y13 | Manufacturing technology transformation spending (CNY ten thousand) | ||
Intelligent technology Y2 | Intelligent technology innovation Y21 | Number of patent applications for manufacturing inventions (pieces) | |
Intelligent technology accumulation Y22 | Manufacturing invention patent number effectively (pieces) | ||
Smart project request Y23 | Manufacturing R&D project topics (items) | ||
Intelligent product Y3 | Intelligent product development project Y31 | Manufacturing a new product development project (items) | |
Intelligent product sales revenue Y32 | Sales revenue of manufacturing new products (CNY ten thousand) | ||
Intelligent application Y4 | Intelligent equipment application Y41 | Imports of computers, electronic components, instruments, etc. (USD 10,000) | |
Industrial robot application Y42 | Embedded system software (foundation, embed, support and application software) (CNY ten thousand) | ||
Software usage Y43 | Software business revenue (CNY ten thousand) |
Region | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 |
---|---|---|---|---|---|---|---|
Nationwide | 0.903/0.262 | 0.886/0.278 | 0.848/0.294 | 0.838/0.313 | 0.832/0.333 | 0.797/0.357 | 0.801/0.384 |
East | 0.934/0.384 | 0.925/0.400 | 0.912/0.420 | 0.905/0.445 | 0.903/0.478 | 0.898/0.503 | 0.892/0.529 |
Middle | 0.976/0.225 | 0.958/0.243 | 0.912/0.257 | 0.911/0.273 | 0.902/0.287 | 0.845/0.320 | 0.861/0.351 |
West | 0.818/0.166 | 0.794/0.183 | 0.739/0.196 | 0.718/0.209 | 0.712/0.222 | 0.661/0.239 | 0.666/0.264 |
Region Code | Coordination Degree | Rank Division | Relative Development Type |
---|---|---|---|
pr1 | 0.516 | Bare coordination | MS |
pr2 | 0.307 | Mild imbalance | MS |
pr3 | 0.291 | Moderate imbalance | MS |
pr4 | 0.326 | Mild imbalance | MS |
pr5 | 0.496 | Little imbalance | MS |
pr6 | 0.662 | Primary coordination | DS |
pr7 | 0.561 | Bare coordination | MS |
pr8 | 0.395 | Mild imbalance | MS |
pr9 | 0.508 | Bare coordination | DM |
pr10 | 0.765 | Intermediate coordination | DS |
pr11 | 0.134 | Severe imbalance | MS |
pr12 | 0.212 | Moderate imbalance | MS |
pr13 | 0.213 | Moderate imbalance | MS |
pr14 | 0.196 | Severe imbalance | MS |
pr15 | 0.351 | Mild imbalance | MS |
pr16 | 0.251 | Moderate imbalance | MS |
pr17 | 0.339 | Mild imbalance | MS |
pr18 | 0.346 | Mild imbalance | MS |
pr19 | 0.327 | Mild imbalance | MS |
pr20 | 0.185 | Severe imbalance | MS |
pr21 | 0.221 | Moderate imbalance | MS |
pr22 | 0.302 | Mild imbalance | MS |
pr23 | 0.381 | Mild imbalance | MS |
pr24 | 0.196 | Severe imbalance | MS |
pr25 | 0.202 | Moderate imbalance | MS |
pr26 | 0.295 | Moderate imbalance | MS |
pr27 | 0.164 | Severe imbalance | MS |
pr28 | 0.083 | Extreme imbalance | MS |
pr29 | 0.144 | Severe imbalance | MS |
pr30 | 0.151 | Severe imbalance | MS |
Region | 2013 | 2016 | 2019 |
---|---|---|---|
pr1 | X14/X21/X33; Y41/Y22/Y21 | X21/X22/X11; Y41/Y22/Y21 | X21/X33/X11; Y41/Y22/Y21 |
pr2 | X22/X21/X11; Y41/Y22/Y42 | X22/X21/X11; Y41/Y22/Y42 | X22/X21/X11; Y41/Y22/Y42 |
pr3 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y42/Y22 | X22/X21/X42; Y41/Y42/Y22 |
pr4 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y42/Y22 |
pr5 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr6 | X22/X21/X44; Y41/Y22/Y21 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr7 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr8 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr9 | X22/X21/X11; Y41/Y22/Y42 | X21/X22/X33; Y41/Y22/Y21 | X22/X21/X33; Y41/Y22/Y21 |
pr10 | X22/X44/X21; Y41/Y22/Y21 | X22/X44/X21; Y41/Y22/Y42 | X22/X44/X42; Y41/Y22/Y42 |
pr11 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X44/X21; Y41/Y22/Y42 |
pr12 | X22/X21/X44; Y41/Y42/Y22 | X21/X22/X44; Y41/Y42/Y43 | X21/X22/X44; Y41/Y42/Y43 |
pr13 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 |
pr14 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 |
pr15 | X22/X21/X44; Y41/Y22/Y43 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y21 |
pr16 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y42/Y22 | X22/X21/X44; Y41/Y42/Y43 |
pr17 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y43 | X22/X21/X44; Y41/Y22/Y42 |
pr18 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y42/Y22 | X22/X21/X44; Y41/Y42/Y43 |
pr19 | X22/X21/X44; Y22/Y43/Y31 | X22/X44/X21; Y42/Y31/Y23 | X22/X44/X12; Y42/Y41/Y13 |
pr20 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 |
pr21 | X22/X21/X42; Y41/Y22/Y42 | X21/X42/X22; Y41/Y22/Y42 | X21/X22/X42; Y41/Y22/Y42 |
pr22 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 |
pr23 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 |
pr24 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 |
pr25 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y42/Y22 |
pr26 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr27 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 |
pr28 | X22/X21/X11; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X42; Y41/Y22/Y42 |
pr29 | X22/X21/X44; Y41/Y22/Y42 | X21/X22/X44; Y41/Y22/Y42 | X22/X21/X11; Y41/Y22/Y42 |
pr30 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X44; Y41/Y22/Y42 | X22/X21/X43; Y41/Y22/Y42 |
Variable | Mean | p50 | sd | max | min | N |
---|---|---|---|---|---|---|
cd_DEMI | 0.3178642 | 0.2886253 | 0.1661832 | 0.9391482 | 0.053634 | 210 |
op | 0.2630429 | 0.1375129 | 0.2686985 | 1.257114 | 0.0127789 | 210 |
eco | 10.89546 | 10.79819 | 0.4491707 | 13.56274 | 10.04979 | 210 |
hhc | 0.3324753 | 0.248674 | 0.2588408 | 1 | 0.0237893 | 210 |
is | 1.253848 | 1.081782 | 0.68291 | 5.169242 | 0.5722364 | 210 |
ixf | 0.0168461 | 0.0141423 | 0.0112827 | 0.0631469 | 0.0045827 | 210 |
Variable | op | eco | hhc | is | ixf |
---|---|---|---|---|---|
op | 1.000 | ||||
eco | 0.692 * | 1.000 | |||
hhc | 0.146 | 0.162 | 1.000 | ||
is | 0.490 * | 0.390 * | 0.119 | 1.000 | |
ixf | 0.793 * | 0.705 * | 0.274 * | 0.635 * | 1.000 |
VIF | 3.020 | 2.220 | 1.100 | 1.710 | 4.220 |
1/VIF | 0.332 | 0.451 | 0.905 | 0.586 | 0.237 |
Nationwide | Robustness Test | Endogenous Processing | East | Middle | West | |
---|---|---|---|---|---|---|
op | −0.0306 | −0.0253 | 0.0286 | 0.0120 | −0.0256 | 0.197 *** |
(0.0265) | (0.0234) | (0.0371) | (0.0546) | (0.0952) | (0.0655) | |
eco | 0.0656 ** | 0.0963 *** | 0.159 ** | 0.0420 | 0.126 *** | 0.106 *** |
(0.0282) | (0.0171) | (0.0651) | (0.0292) | (0.0282) | (0.0237) | |
hhc | 0.106 *** | 0.0908 *** | 0.0985 *** | 0.167 *** | −0.0102 | 0.111 *** |
(0.0237) | (0.0214) | (0.0373) | (0.0459) | (0.0730) | (0.0200) | |
is | −0.0149 | −0.00487 | 0.0191 | −0.0487 * | 0.00587 | 0.0389 ** |
(0.0125) | (0.0112) | (0.0225) | (0.0253) | (0.0135) | (0.0177) | |
ixf | 5.149 *** | 5.403 *** | 5.499 *** | 2.790 * | 9.733 *** | 4.981 *** |
(1.089) | (1.060) | (1.358) | (1.566) | (1.414) | (1.538) | |
_cons | −0.492 *** | −0.743 *** | −1.818 ** | −0.0816 | −1.200 *** | −1.091 *** |
(0.314) | (0.169) | (0.875) | (0.363) | (0.290) | (0.261) | |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Province | Yes | Yes | Yes | Yes | Yes | Yes |
N | 210 | 210 | 180 | 77 | 56 | 77 |
R2 | 0.991 | 0.992 | 0.989 | 0.993 | 0.991 | 0.991 |
Year | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | |
---|---|---|---|---|---|---|---|---|
Index | ||||||||
Nationwide: Moran’s I | 0.061 | 0.066 | 0.071 | 0.071 | 0.064 | 0.065 | 0.062 | |
p-value | 0.003 | 0.002 | 0.001 | 0.001 | 0.002 | 0.002 | 0.003 | |
East: Moran’s I | −0.062 | −0.056 | −0.041 | −0.026 | −0.011 | −0.046 | −0.049 | |
p-value | 0.399 | 0.382 | 0.34 | 0.307 | 0.271 | 0.354 | 0.362 | |
Middle: Moran’s I | −0.008 | 0.029 | 0.093 | 0.115 | 0.140 | 0.236 | 0.197 | |
p-value | 0.210 | 0.151 | 0.078 | 0.059 | 0.042 | 0.009 | 0.017 | |
West: Moran’s I | 0.036 | 0.044 | 0.058 | 0.060 | 0.055 | 0.063 | 0.076 | |
p-value | 0.024 | 0.018 | 0.011 | 0.010 | 0.013 | 0.009 | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Meng, F. Digital Economy and Intelligent Manufacturing Coupling Coordination: Evidence from China. Systems 2023, 11, 521. https://doi.org/10.3390/systems11100521
Zhang W, Meng F. Digital Economy and Intelligent Manufacturing Coupling Coordination: Evidence from China. Systems. 2023; 11(10):521. https://doi.org/10.3390/systems11100521
Chicago/Turabian StyleZhang, Wanyu, and Fansheng Meng. 2023. "Digital Economy and Intelligent Manufacturing Coupling Coordination: Evidence from China" Systems 11, no. 10: 521. https://doi.org/10.3390/systems11100521
APA StyleZhang, W., & Meng, F. (2023). Digital Economy and Intelligent Manufacturing Coupling Coordination: Evidence from China. Systems, 11(10), 521. https://doi.org/10.3390/systems11100521