Coupling Landscape Connectedness, Ecosystem Service Value, and Resident Welfare in Xining City, Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Calculation of Landscape Connectedness
2.3.2. Ecosystem Service Value Assessment
2.3.3. Assessment of Resident Welfare
2.3.4. Coupling Coordination Degree Model
2.3.5. Relative Development Degree Model
2.3.6. Gray Relational Analysis
3. Results
3.1. Land Use and Land Cover Change
3.1.1. Temporal Characteristics of Land Use and Land Cover Change
3.1.2. Spatial Characteristics of Land Use and Land Cover Change
3.2. Landscape Connectedness Changes
3.3. Ecosystem Service Value Changes and Sensitivity Analysis
3.3.1. Changes in Ecosystem Service Value on a Time Scale
3.3.2. Changes in the Ecosystem Service Value on a Spatial Scale
3.3.3. Sensitivity Analysis
3.4. Resident Welfare Changes
3.5. Changes in the Coupling Relationship among Landscape Patterns, Ecosystem Services, and Resident Welfare
3.5.1. Coupling Coordination Degree
3.5.2. Relative Development Degree
3.6. Gray Relational Degree
4. Discussion
4.1. Drivers of Landscape Connectedness, ESV, and Resident Welfare Change
4.2. Coupling State and Factors of Landscape Connectedness, ESV, and Resident Welfare
4.3. Limitations and Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Churchill, E. Environmental degradation and human well-being: Report of the millennium ecosystem assessment. Popul. Dev. Rev. 2005, 31, 389–398. [Google Scholar]
- Cao, Y.; Kong, L.; Zhang, L.; Ouyang, Z. The balance between economic development and ecosystem service value in the process of land urbanization: A case study of China’s land urbanization from 2000 to 2015. Land Use Policy 2021, 108, 105536. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Wu, J.; Pan, X.; Fang, Z.; Li, J.; Bryan, B.A. Future global urban water scarcity and potential solutions. Nat. Commun. 2021, 12, 4667. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, E. General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Aderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Wei, H.; Liu, H.; Xu, Z.; Ren, J.; Lu, N.; Fan, W.; Zhang, P.; Dong, X. Linking ecosystem services supply, social demand and human well-being in a typical mountain-oasis-desert area, Xinjiang, China. Ecosyst. Serv. 2018, 31, 44–57. [Google Scholar] [CrossRef]
- Kates, R.W.; Parris, T.M.; Leiserowitz, A.A. What is sustainable development? Goals, indicators, values, and practice. Environ. Sci. Policy Sustain. Dev. 2005, 47, 8–21. [Google Scholar]
- Mengist, W.; Soromessa, T.; Legese, G. Ecosystem services research in mountainous regions: A systematic literature review on current knowledge and research gaps. Sci. Total Environ. 2020, 702, 134581. [Google Scholar] [CrossRef]
- Cao, Q.; Yu, D.; Georgescu, M.; Han, Z.; Wu, J. Impacts of land use and land cover change on regional climate: A case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 2015, 10, 124025. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhang, F.; Yu, H.; Kung, H.-t. Quantifying the spatial correlations between landscape pattern and ecosystem service value: A case study in Ebinur Lake Basin, Xinjiang, China. Ecol. Eng. 2018, 113, 94–104. [Google Scholar] [CrossRef]
- Fu, B.J.; Chen, L.X.; Wang, J.; Meng, Q.H.; Zhao, W.W. Land Use Structure and Ecological Processes. Quat. Sci. 2003, 23, 247–255. [Google Scholar]
- Liu, H.Y.; Li, Z.F. Effects of Land Use/Cover Change on Wetland Landscape of Honghe Nature Reserve. Acta Geogr. Sin. 2007, 62, 1215. [Google Scholar]
- Sun, X.B.; Liu, Y.H. Effects of Land Use Change on Wetland Landscape Connectivity and Optimization Assessment of Connectivity -A Case Study of Wetlands in the Coastal Zone of Yancheng Jiangsu. J. Nat. Resour. 2010, 25, 892–903. [Google Scholar]
- Sanchirico, J.N.; Mumby, P. Mapping ecosystem functions to the valuation of ecosystem services: Implications of species-habitat associations for coastal land-use decisions. Theor. Ecol. 2009, 2, 67–77. [Google Scholar] [CrossRef]
- Maes, J.; Paracchini, M.L.; Zulian, G.; Dunbar, M.B.; Alkemade, R. Synergies and trade-offs between ecosystem service supply, biodiversity, and habitat conservation status in europe. Biol. Conserv. 2012, 155, 1–12. [Google Scholar] [CrossRef]
- Fu, B.; Zhang, L.; Xu, Z.; Zhao, Y.; Wei, Y.; Skinner, D. Ecosystem services in changing land use. J. Soils Sediments 2015, 15, 833–843. [Google Scholar] [CrossRef]
- Wang, X.; Dong, X.; Liu, H.; Wei, H.; Fan, W.; Lu, N.; Xu, Z.; Ren, J.; Xing, K. Linking land use change, ecosystem services and human well-being: A case study of the manas river basin of Xinjiang, China. Ecosyst. Serv. 2017, 27, 113–123. [Google Scholar] [CrossRef]
- Dong, X.B.; Liu, M.X. Relationships among LUCC, ecosystem services and human well-being. J. Beijing Norm. Univ. (Nat. Sci.) 2022, 58, 465–475. [Google Scholar]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- Niu, W.Y. The theoretical connotation of sustainable development: The 20th Anniversary of UN Conference on Environment and Development in Rio de Janeiro, Brazil. China Popul. Resour. Environ. 2012, 22, 9–14. [Google Scholar]
- Riao, D.; Zhu, X.; Tong, Z.; Zhang, J.; Wang, A. Study on Land Use/Cover Change and Ecosystem Services in Harbin, China. Sustainability 2020, 12, 6076. [Google Scholar] [CrossRef]
- Gomes, E.; Inacio, M.; Bogdzevi, K.; Kalinauskas, M.; Karnauskait, D.; Pereira, P. Future land-use changes and its impacts on terrestrial ecosystem services: A review. Sci. Total Environ. 2021, 781, 146716. [Google Scholar] [CrossRef] [PubMed]
- Duan, X.Y.; Chen, Y.; Wang, L.Q.; Zheng, G.D.; Tao, L. The impact of land use and land cover changes on the landscape pattern and ecosystem service value in San jiang yuan region of the Qinghai-Tibet Plateau. J. Environ. Manag. 2023, 325, 116539. [Google Scholar] [CrossRef]
- Summers, J.K.; Smith, L.M.; Case, J.L.; Linthurst, R.A. A review of the elements of human well-being with an emphasis on the contribution of ecosystem services. Ambio 2012, 41, 327–340. [Google Scholar] [CrossRef]
- Yang, W.; Tao, J.; Lu, Q. Methodologies of human well-bein g assessment from the ecosystem service perspective. Acta Ecol. Sin. 2021, 41, 730–736. [Google Scholar]
- Chen, L.X.; Fu, B.J. The Ecological Significance and Application of Landscape Connectivity. Chin. J. Ecol. 1996, 15, 37–42. [Google Scholar]
- Mcgarigal, K.S.; Cushman, S.A.; Neel, M.C.; Ene, E. Spatial Pattern Analysis Program for Categorical Maps; Fragstats: Amherst, MA, USA, 2002. [Google Scholar]
- Wang, B.J.; Tang, H.P. Human well-being and its applications and prospects in ecology. J. Ecol. Rural Environ. 2016, 32, 697–702. [Google Scholar]
- Fan, M.; Xiao, Y.T. Impacts of the grain for Green Program on the spatial pattern of land uses and ecosystem services in mountainous settlements in southwest China. Glob. Ecol. Conserv. 2020, 21, e00806. [Google Scholar] [CrossRef]
- Rodriguez-Echeverry, J.; Echeverria, C.; Oyarzun, C.; Morales, L. Impact of land-use change on biodiversity and ecosystem services in the chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Suarez-Castro, A.F.; Martinez-Harms, M.; Maron, M.; McAlpine, C.; Gaston, K.J.; Johansen, K.; Rhodes, J.R. Reframing landscape fragmentation’s effects on ecosystem services. Trends Ecol. Evol. 2015, 30, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Yuan, X.; Zhou, L.; Zhang, M. Integrating ecosystem services and landscape connectivity to construct and optimize ecological security patterns: A case study in the central urban area Chongqing municipality, China. Environ Sci Pollut Res. 2022, 29, 43138–43154. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, B.J.; Fahrig, L. How does landscape structure influence landscape connectivity? Oikos 2002, 99, 552–570. [Google Scholar] [CrossRef]
- Haddad, N.M.; Brudvig, L.A.; Clobert, J.; Davies, K.F.; Gonzalez, A.; Holt, R.D.; Lovejoy, T.E.; Sexton, J.O.; Austin, M.P.; Collins, C.D.; et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 2015, 1, e1500052. [Google Scholar] [CrossRef]
- Fletcher, R.J., Jr.; Didham, R.K.; Banks-Leite, C.; Barlow, J.; Ewers, R.M.; Rosindell, J.; Holt, R.D.; Gonzalez, A.; Pardini, R.; Damschen, E.I.; et al. Is habitat fragmentation good for biodiversity? Biol. Conserv. 2018, 226, 9–15. [Google Scholar] [CrossRef]
- Horcea-Milcu, A.-I.; Leventon, J.; Hanspach, J.; Fischer, J. Disaggregated contributions of ecosystem services to human well-being: A case study from eastern europe. Reg. Environ. Chang. 2016, 16, 1779–1791. [Google Scholar] [CrossRef]
- Zhen, S.J.; Cao, G.C.; Yuan, J.; Jiang, G. The assessment of changes of urban ecological land spatial structure and its ecosystem service value in Xining. Yunnan Geogr. Environ. Res. 2016, 28, 56–62. [Google Scholar]
- Wu, G.L.; Du, G.Z. Discussion on ecological construction and sustainable development of degraded Alpine grassland ecosystem of the Qinghai-Tibetan Plateau. Chin. J. Nat. 2007, 29, 159–164. [Google Scholar]
- Li, J.H.; Yang, G.J.; Wang, S.P. Vegetation and soil characteristics of degraded alpine meadows on the Qinghai-Tibet Plateau, China: A review. Chin. J. Appl. Ecol. 2020, 31, 2109–2118. [Google Scholar]
- Li, A.; Mi, C.H.; Yang, Y.Y.; Shi, R.G.; Hu, S.W.; Li, J. Spatial-temporal differentiation and coupling coordination between ecosystem services and human well-being in Beijing-Tianjin-Hebei region. Ecol. Econ. 2023, 39, 170–178. [Google Scholar]
- Clerici, N.; Cote-Navarro, F.; Escobedo, F.J.; Rubiano, K.; Camilo Villegas, J. Spatio-temporal and cumulative effects of land use-land cover and climate change on two ecosystem services in the colombian andes. Sci. Total Environ. 2019, 685, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. Linking landscape, land system and design approaches to achieve sustainability. J. Land Use Sci. 2019, 14, 173–189. [Google Scholar] [CrossRef]
- Cheng, X.; Tao, Y.; Ou, W. Research Progress on the Relationship between Ecosystem Service and Human Well-being. J. Ecol. Rural Environ. 2021, 37, 885–893. [Google Scholar]
- Hu, Z.; Yang, X.; Yang, J.; Yuan, J.; Zhang, Z. Linking landscape pattern, ecosystem service value, and human well-being in xishuangbanna, southwest China: Insights from a coupling coordination model. Glob. Ecol. Conserv. 2021, 27, e01583. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Han, Z.; Song, W.; Deng, X. Responses of Ecosystem Service to Land Use Change in Qinghai Province. Energies 2016, 9, 303. [Google Scholar] [CrossRef]
- Chen, K.L.; Su, M.X.; Li, S.C.; Lu, J.H.; Chen, Y.Y.; Zhang, F.; Liu, Z.J. The health assessment of the urban ecosystem of Xining city. Geogr. Res. 2010, 29, 214–222. [Google Scholar]
- Fu, Y.; Xiao, J.S.; Jiao, R.X.; Sa, W.J.; Li, X.L. Analysis and simulation prediction on LUCC of Xining city based on RS and GIS. Trans. Chin. Soc. Agric. Eng. 2009, 25, 211–218. [Google Scholar]
- Feng, S.; Gao, X.; Kang, J.; Wu, G.; Zou, C.; Yang, J. Research on Land Use/cover Change and Urban Expansion in Xining City in Recent 30 Years. Arid Zone Res. 2012, 29, 129–136. [Google Scholar]
- Wang, X.M.; Chai, Y.W.; Cheng, C.; Pu, Y.Z. Impact assessment of ecological service value in the rapid urbanization areas of Qinghai-Tibet Plateau: A case study of Xining. China Popul. Resour. Environ. 2014, 24 (Suppl. S2), 435–439. [Google Scholar]
- Liu, J.; Zhuang, D.; Zhang, Z.; Gao, Z.; Deng, X. The establishment of land-use spatial-temporal database and its relative studies in China. Geoinf. Sci 2002, 4, 3–7. [Google Scholar]
- Wu, C.G.; Zhou, Z.X.; Wang, P.C.; Xiao, W.F.; Teng, M.J. The concept and measurement of landscape connectivity and its applications. Acta Ecol. Sin. 2010, 30, 1903–1910. [Google Scholar]
- Zhang, J.; Qu, M.; Wang, C.; Zhao, J.; Cao, Y. Quantifying landscape pattern and ecosystem service value changes: A case study at the county level in the Chinese Loess Plateau. Glob. Ecol. Conserv. 2020, 23, e1110. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K.; Neel, M.C. Parsimony in landscape metrics: Strength, universality, and consistency. Ecol. Indic. 2008, 8, 691–703. [Google Scholar] [CrossRef]
- Hou, L.; Wu, F.; Xie, X. The spatial characteristics and relationships between landscape pattern and ecosystem service value along an urban-rural gradient in Xi’an city, China. Ecol. Indic. 2020, 108, 105720. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, L.; Fu, B. Analysis of the integrating approach on landscape pattern and ecological processes. Prog. Geogr. 2007, 26, 1–10. [Google Scholar]
- O’Neill, R.V.; Krummel, J.R.; Gardner, R.H.; Sugihara, G.; Jackson, B.; DeAngelis, D.L.; Milne, B.T.; Turner, M.G.; Zygmunt, B.; Christensen, S.W.; et al. Indices of landscape pattern. Landsc. Ecol. 1988, 1, 153–162. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, F.; Yang, D.; Huo, J.; Wang, G.; Chen, H. Spatiotemporal characteristics in ecosystem service value and its interaction with human activities in Xinjiang, China. Ecol. Indic. 2020, 110, 105826. [Google Scholar] [CrossRef]
- Zhao, S.D.; Zhang, Y.M. Concepts, contents and challenges of ecosystem—Introduction to ‘Ecosystems and Human Well-being: A Framework for Assessment’. Adv. Earth Sci. 2004, 19, 650–657. [Google Scholar]
- Xie, G.D.; Lu, C.X.; Len, Y.F.; Zheng, D.; Li, S.C. Ecological assets valuation of the Tibetan Plateau. J. Nat. Resour. 2003, 18, 189–196. [Google Scholar]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert knowledge based valuation method of ecosystem services in China. J. Nat. Resour. 2008, 23, 911–919. [Google Scholar]
- Xie, G.D.; Zhang, C.X.; Zhang, L.M.; Chen, W.H.; Li, S.M. Improvement of the evaluation method for ecosystem service value based on per Unit area. J. Nat. Resour. 2015, 30, 1243–1254. [Google Scholar]
- Liu, Q.; Li, G.; Zhang, C.; Zhao, L.; Zhu, Y.M. Study on dynamic changes in ecosystem service values in Qinglong County based on coefficient correction. Chin. J. Eco-Agric. 2019, 27, 971–980. [Google Scholar]
- Aschonitis, V.G.; Gaglio, M.; Castaldelli, G.; Fano, E.A. Criticism on elasticity-sensitivity coefficient for assessing the robustness and sensitivity of ecosystem services values. Ecosyst. Serv. 2016, 20, 66–68. [Google Scholar] [CrossRef]
- Kreuter, U.P.; Harris, H.G.; Matlock, M.D.; Lacey, R.E. Change in ecosystem services values in the san antonio area, Texas. Ecol. Econ. 2001, 39, 333–346. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment (MEA). Ecosystems and Human Well-Being: Health Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Huang, G.L.; Jiang, Y.Q.; Liu, Z.F.; Nie, M.; Liu, Y.; Li, J.W.; Wu, J. Advances in human well-being research: A sustainability science perspective. Acta Ecol. Sin. 2016, 36, 7519–7527. [Google Scholar]
- Leisher, C.; Samberg, L.H.; Van Buekering, P.; Sanjayan, M. Focal Areas for Measuring the Human Well-Being Impacts of a Conservation Initiative. Sustainability 2013, 5, 997–1010. [Google Scholar] [CrossRef]
- Yang, H. Changes in human well-being and rural livelihoods under natural disasters. Ecol. Econ. 2018, 151, 184–194. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, J.; Gong, J.; Qian, C. Spatial and temporal relations among land-use intensity, ecosystem services, and human well-being in the longzhong loess hilly region:A case study of the anding district, gansu province. Acta Ecol. Sin. 2019, 39, 637–648. [Google Scholar]
- Li, H.M.; Zhang, A.L. Ecological protection and well-being. Acta Ecol. Sin. 2013, 33, 825–833. [Google Scholar]
- Li, A.; Yang, Y.Y.; Shi, R.G.; Hu, S.W.; Mi, C.H. Research progress on human well-being and its relationship with ecosystem services. J. Agric. Resour. Environ. 2022, 39, 948–957. [Google Scholar]
- Wei, H.; Yang, Y.; Han, Q.; Li, L.; Huang, J.; Liu, M.; Chen, W. Evaluation and System Coupling of Beautiful Qinghai–Tibet Plateau Construction Based on Point of Interest Data. Systems 2022, 10, 149. [Google Scholar] [CrossRef]
- Zhao, J.J.; Liu, Y.; Zhu, Y.K.; Qin, S.L.; Wang, Y.H.; Miao, C.H. Spatiotemporal differentiation and influencing factors of the coupling and coordinated development of new urbanization and ecological environment in the Yellow River Basin. Resour. Sci. 2020, 42, 159–171. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.; Zheng, W.S. Evaluation on spatio-temporal development and interaction of intensive urban land use and urbanization: Case studies of the cities in the Bohai Rim Region. Geogr. Res. 2011, 30, 1805–1817. [Google Scholar]
- Bi, G.H.; Yang, Q.Y.; Liu, S. Coupling coordination development between ecological civilization construction and urbanization in China. Econ. Geogr. 2017, 37, 50–58. [Google Scholar]
- Yang, R.; Liu, Y.S.; Long, H.L. The study on non-agricultural transformation co-evolution characteristics of “population-land-industry”: Case study of the Bohai Rim in China. Geogr. Res. 2015, 34, 475–486. [Google Scholar]
- Zhu, W.J.; Sun, H. Research on the coupling relative development of land use benefit system in Jiangsu Province. Chin. J. Soil Sci. 2019, 50, 520–528. [Google Scholar]
- Kuo, Y.; Yang, T.; Huang, G. The use of grey relational analysis in solving multiple attribute decision-making problems. Comput. Ind. Eng. 2008, 55, 80–93. [Google Scholar] [CrossRef]
- Leviston, Z.; Walker, I.; Green, M.; Price, J. Linkages between ecosystem services and human wellbeing: A Nexus Webs approach. Ecol. Indic. 2018, 93, 658–668. [Google Scholar] [CrossRef]
- De Groot, R.; Brander, L.; van der Ploeg, S.; Costanza, R.; Bernard, F.; Braat, L.; Christie, M.; Crossman, N.; Ghermandi, A.; Hein, L.; et al. Global estimates of the value of ecosystems and their services in monetary units. Ecosyst. Serv. 2012, 1, 50–61. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Y.Y.; Hu, Y.M.; Li, C.L.; Sun, F.Y.; Chen, T. A Century of the Evolution of the Urban Area in Shenyang, China. PLoS ONE 2014, 9, e098847. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Pan, L.B.; Qi, Y.; Guan, X.; Li, J.S. Land Use and Land Cover Change in the Yellow River Basin from 1980 to 2015 and Its Impact on the Ecosystem Services. Land 2021, 10, 1080. [Google Scholar] [CrossRef]
- Xu, D.; Ding, X. Assessing the impact of desertification dynamics on regional ecosystem service value in North China from 1981 to 2010. Ecosyst. Serv. 2018, 30, 172–180. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Zhang, J.; Xu, D.; Cao, S. Evaluating the net value of ecosystem services to support ecological engineering: Framework and a case study of the Beijing Plains afforestation project. Ecol. Eng. 2018, 112, 148–152. [Google Scholar] [CrossRef]
- Liu, M.; Wei, H.; Dong, X.; Wang, X.-C.; Zhao, B.; Zhang, Y. Integrating Land Use, Ecosystem Service, and Human Well-Being: A Systematic Review. Sustainability 2022, 14, 6926. [Google Scholar] [CrossRef]
- Niedertscheider, M.; Kuemmerle, T.; Müller, D.; Erb, K.H. Exploring the effects of drastic institutional and socio-economic changes on land system dynamics in Germany between 1883 and 2007. Glob. Environ. Chang. 2014, 28, 98–108. [Google Scholar] [CrossRef]
- Ouyang, Z.Y.; Zhao, T.Q.; Wang, X.K.; Miao, H. Ecosystem services analyses and valuation of China terrestrial surface water system. Acta Ecol. Sin. 2004, 24, 2091–2099. [Google Scholar]
- Raudsepp-Hearne, C.; Peterson, G.D.; Tengö, M.; Bennett, E.M.; Holland, T.; Benessaiah, K.; MacDonald, G.K.; Pfeifer, L. Untangling the Environmentalist’s Paradox: Why Is Human Well-being Increasing as Ecosystem Services Degrade? BioScience 2010, 60, 576–589. [Google Scholar] [CrossRef]
- Wang, F.; Liang, R.L.; Yang, X.L.; Chen, M.J. A study of ecological water requirements in northwest China: Theoretical analysis. J. Nat. Resour. 2002, 17, 1–8. [Google Scholar]
- Jones, S.K.; Boundaogo, M.; DeClerck, F.A.; Estrada-Carmona, N.; Mirumachi, N.; Mulligan, M. Insights into the importance of ecosystem services to human well-being in reservoir landscapes. Ecosyst. Serv. 2019, 39, 100987. [Google Scholar] [CrossRef]
- Xia, P.X.; Yang, X.Y.; Gao, Q.C. Reviews on the Method of Well-being Measurement. J. Stat. Inf. 2011, 26, 3–9. [Google Scholar]
- Wang, S.Y. Driving factors and spatiotemporal differentiation of human well-being change in China. Prog. Geogr. 2016, 35, 632–643. [Google Scholar]
- Tang, F.L.; Lei, P.F. Income Gap, Human happiness and public expenditure policy: Based on empirical research of the survey data of CGSS. Econ. Perspect. 2014, 4, 41–55. [Google Scholar]
- Ouyang, Z.Y.; Wang, R.S.; Zhao, J.Z. Ecosystem services and their economic valuation. Chinese J. Appl. Ecol. 1999, 10, 635–640. [Google Scholar]
- You, H.; Yang, X. Urban expansion in 30 megacities of China: Categorizing the driving force profiles to inform the urbanization policy. Land Use Policy 2017, 68, 531–551. [Google Scholar] [CrossRef]
- Li, B.; Wang, Y.; Wang, T.; He, X.; Kazak, J.K. Scenario Analysis for Resilient Urban Green Infrastructure. Land 2022, 11, 1481. [Google Scholar] [CrossRef]
- Li, W.; Xie, S.; Wang, Y.; Huang, J.; Cheng, X. Effects of urban expansion on ecosystem health in Southwest China from a multi-perspective analysis. J. Clean. Prod. 2021, 294, 126341. [Google Scholar] [CrossRef]
Data Name | Data Format | Data Source | Data Purpose |
---|---|---|---|
National Administrative Boundary | Vector data | Geographic Spatial Data Cloud (https://www.gscloud.cn, accessed on 20 December 2022) | The study area |
Digital Elevation Models (DEM) | Raster data with a spatial resolution of 30 m | Geographic Spatial Data Cloud (https://www.gscloud.cn, accessed on 20 December 2022) | The study area |
Land Use/Cover Change (LUCC) | Raster data with a spatial resolution of 30 m | Resource and Environmental Science and Data Center of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 5 December 2022) | Statistics of land use type area in 6 periods |
Socioeconomic Statistical Data | Statistical data | Xining City Statistical Yearbooks (1995–2020), China Agricultural Product Price Survey Yearbooks, and local records (http://tjj.qinghai.gov.cn/, accessed on 10 December 2022) | Calculate the economic value of ESV and assess the well-being of residents |
Landscape Metric | Connotation | Weight |
---|---|---|
Number of Patches (NP) (C1) | Reflects the distribution status of the landscape; higher NP indicates higher fragmentation. | 0.2208 |
Patch Density (PD) (C2) | Represents the number of patches per unit area; higher PD values indicate greater landscape heterogeneity and fragmentation. | 0.2014 |
Largest Patch Index (LPI) (C3) | Proportion of the largest patch’s area to the total landscape area; larger values indicate lower fragmentation and greater connectedness. | 0.1134 |
Edge Density (ED) (C4) | Length of edges per unit area; a larger ED indicates a more fragmented landscape. | 0.1129 |
Landscape Shape Index (LSI) (C5) | Describes landscape shape features, reflecting the complexity of landscape spatial patterns; higher LSI values indicate more separated patches, more irregular shapes, or greater fragmentation. | 0.1130 |
Shannon Diversity Index (SHDI) (C6) | Represents landscape heterogeneity, reflecting the richness and complexity of landscape types; higher SHDI values indicate more fragmentation. | 0.1264 |
Aggregation Index (AI) (C7) | Indicates the degree of aggregation of different patch types within the landscape; larger AI values suggest that the patch type has lower fragmentation and greater connectedness. | 0.1120 |
Primary Service | Secondary Type | Cropland | Forestland | Grassland | Water | Constructed Land | Unused Land |
---|---|---|---|---|---|---|---|
Provisioning Services | Food Production | 1202 | 294 | 175 | 926 | 14 | 7 |
Raw Material Production | 566 | 668 | 252 | 516 | 0 | 21 | |
Water Resource Supply | 27 | 343 | 141 | 7694 | −10,622 | 14 | |
Regulating Services | Gas Regulation | 948 | 2193 | 899 | 1888 | 0 | 92 |
Climate Regulation | 509 | 6572 | 2369 | 4165 | 0 | 71 | |
Environmental Purification | 141 | 1967 | 780 | 6471 | 3479 | 290 | |
Hydrological Regulation | 383 | 4892 | 1733 | 89,439 | 0 | 170 | |
Supporting Services | Soil Conservation | 1456 | 2673 | 1094 | 2291 | 28 | 106 |
Nutrient Maintenance | 170 | 203 | 88 | 177 | 0 | 7 | |
Biodiversity | 184 | 2438 | 992 | 7369 | 481 | 99 | |
Cultural Services | Aesthetic Landscape | 85 | 1071 | 441 | 4682 | 14 | 42 |
Objective Layer | First-Level Index | Second-Level Index | Third-Level Index | Effect | Weight |
---|---|---|---|---|---|
Resident Welfare | Basic Needs | Basic economic level | Per Capita GDP (in CNY 10,000 per person) (X1) | + | 0.0343 |
Urban Resident Per Capita Disposable Income (in CNY 10,000) (X2) | + | 0.0314 | |||
Rural Resident Per Capita Net Income (in CNY 10,000) (X3) | + | 0.0350 | |||
Total Agricultural Output Value (in CNY 10,000) (X4) | + | 0.0423 | |||
Tertiary Industry Share in GDP (X5) | + | 0.0169 | |||
Total Industrial Output Value (in CNY 10,000) (X6) | + | 0.0374 | |||
Basic material | Per Capita Cultivated Land Area (in hectares per person) (X7) | + | 0.0494 | ||
Per Capita Grassland Area (in hectares per person) (X8) | + | 0.0686 | |||
Livestock Inventory (X9) | + | 0.0132 | |||
Total Grain Output (in 10,000 tons) (X10) | + | 0.0131 | |||
Total Meat Production (in tons) (X11) | + | 0.0184 | |||
Total Agricultural Machinery Power (in 10,000 kilowatts) (X12) | + | 0.0133 | |||
Resource acquisition ability | Fixed Telephone Users (in 10,000 households) (X13) | + | 0.0288 | ||
Highway Cargo Turnover (in 10,000 ton kilometers) (X14) | + | 0.0289 | |||
Number of Motor Vehicles at Year-End (X15) | + | 0.0406 | |||
Cargo Volume (in 10,000 tons) (X16) | + | 0.0225 | |||
Security and Health Needs | Health | Per Capita Medical and Health Institutions (per 10,000 people) (X17) | + | 0.0175 | |
Number of Hospital Beds (X18) | + | 0.0409 | |||
Number of Old-Age Insurance Participants (in 10,000 people) (X19) | + | 0.0622 | |||
Number of Doctors per 10,000 People (X20) | + | 0.0242 | |||
Ecological security | Urban Green Space Coverage Rate (NDVI) (X21) | + | 0.0183 | ||
Per Capita Park Green Space Area (in square meters) (X22) | + | 0.0221 | |||
Personal protection | Basic Medical Insurance Participants (in 10,000 people) (X23) | + | 0.0691 | ||
Insurance Income (in CNY 10,000) (X24) | + | 0.0423 | |||
Occupation security | Urban Registered Unemployment Rate (%) (X25) | - | 0.0275 | ||
Psychological Needs | Social communication | Number of Rural Grassroots Organizations and Committees (X26) | + | 0.0278 | |
Number of Travel Agencies (X27) | + | 0.0489 | |||
Culture and Education | Education Fiscal Expenditure (in CNY 10,000) (X28) | + | 0.0396 | ||
Number of Primary School Students (X29) | + | 0.0131 | |||
Number of Regular High School Students (X30) | + | 0.0137 | |||
Number of Regular College and University Students (X31) | + | 0.0258 | |||
Television Population Coverage Rate (%) (X32) | + | 0.0131 |
Coupling Degree | Coupling Type | Coupling Coordination Degree | Coupling Coordination Type | Coupling Coordination Degree | Coupling Coordination Type |
---|---|---|---|---|---|
0 ≤ C ≤ 0.3 | Low-level Coupling | 0 ≤ D < 0.1 | Extremely Uncoordinated | 0.5 ≤ D < 0.6 | Barely Coordinated |
0.3 < C ≤ 0.5 | Antagonistic Stage | 0.1 ≤ D < 0.2 | Severely Uncoordinated | 0.6 ≤ D < 0.7 | Primary Coordination |
0.5 < C ≤ 0.8 | Running-in Stage | 0.2 ≤ D < 0.3 | Moderately Uncoordinated | 0.7 ≤ D < 0.8 | Intermediate Coordination |
0.8 < C ≤ 1 | High-level Coupling | 0.3 ≤ D < 0.4 | Slightly Uncoordinated | 0.8 ≤ D < 0.9 | Good Coordination |
0.4 ≤ D < 0.5 | On the Verge of Uncoordination | 0.9 ≤ D < 1 | Excellent Coordination |
Relative Development Degree | Coordinated Development Characteristics |
---|---|
(0, 0.8] | B1 lags behind B2 |
(0.8, 1.2] | B1 synchronizes with B2 |
(1.2, ∞] | B1 is ahead of B2 |
Land Use Type | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1995–2020 |
---|---|---|---|---|---|---|---|
Cropland | 1456.63 | 1459.42 | 1419.85 | 1405.64 | 1365.63 | 1370.81 | −85.82 |
19.18% | 19.21% | 18.69% | 18.50% | 17.98% | 18.05% | −1.13% | |
Forestland | 1758.75 | 1655.81 | 1653.48 | 1654.80 | 1654.04 | 1652.66 | −106.09 |
23.15% | 21.80% | 21.77% | 21.78% | 21.77% | 21.76% | −1.39% | |
Grassland | 3712.07 | 3869.27 | 3876.62 | 3886.76 | 3893.12 | 3886.46 | 174.40 |
48.87% | 50.94% | 51.03% | 51.17% | 51.25% | 51.16% | 2.29% | |
Water | 21.99 | 20.91 | 24.41 | 21.83 | 22.84 | 21.55 | −0.44 |
0.29% | 0.28% | 0.32% | 0.29% | 0.30% | 0.28% | −0.01% | |
Constructed land | 251.68 | 248.45 | 279.52 | 301.60 | 344.16 | 339.31 | 87.63 |
3.31% | 3.27% | 3.68% | 3.97% | 4.53% | 4.47% | 1.16% | |
Unused land | 395.37 | 342.60 | 342.60 | 325.89 | 316.69 | 325.69 | −69.67 |
5.20% | 4.51% | 4.51% | 4.29% | 4.17% | 4.29% | −0.91% |
Year | NP | PD | LPI | ED | LSI | SHDI | AI |
---|---|---|---|---|---|---|---|
1995 | 2628 | 0.3459 | 16.2270 | 30.7104 | 68.8328 | 1.2890 | 95.3954 |
2000 | 2675 | 0.3521 | 16.5527 | 30.1886 | 67.6961 | 1.2604 | 95.4730 |
2005 | 2652 | 0.3491 | 16.5367 | 30.1744 | 67.6650 | 1.2684 | 95.4755 |
2010 | 2681 | 0.3529 | 16.5106 | 30.1535 | 67.6186 | 1.2670 | 95.4786 |
2015 | 2660 | 0.3502 | 16.5060 | 30.1459 | 67.6030 | 1.2731 | 95.4799 |
2020 | 2633 | 0.3466 | 16.5243 | 30.1364 | 67.5823 | 1.2742 | 95.4814 |
Land Use Type | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|---|---|
Cropland | 0.8262 | 0.8277 | 0.8053 | 0.7972 | 0.7745 | 0.7775 |
Forestland | 4.1000 | 3.8600 | 3.8546 | 3.8576 | 3.8559 | 3.8527 |
Grassland | 3.3282 | 3.4691 | 3.4757 | 3.4848 | 3.4905 | 3.4845 |
Water area | 0.2761 | 0.2627 | 0.3066 | 0.2742 | 0.2869 | 0.2706 |
Construction land | −0.1662 | −0.1641 | −0.1846 | −0.1992 | −0.2273 | −0.2241 |
Unused land | 0.0363 | 0.0315 | 0.0315 | 0.0300 | 0.0291 | 0.0299 |
Total | 8.4005 | 8.2870 | 8.2890 | 8.2446 | 8.2096 | 8.1911 |
Primary Service | Secondary Type | 1995 | 2000 | 2005 | 2010 | 2015 | 2020 | 1995–2020 |
---|---|---|---|---|---|---|---|---|
Provisioning Services | Food Production | 0.2945 | 0.2945 | 0.2901 | 0.2884 | 0.2839 | 0.2842 | −3.51% |
Raw Material Production | 0.2953 | 0.2923 | 0.2903 | 0.2897 | 0.2875 | 0.2875 | −2.62% | |
Water Resource Supply | −0.1331 | −0.1319 | −0.1623 | −0.1876 | −0.2321 | −0.2280 | −71.32% | |
Regulating Services | Gas Regulation | 0.8652 | 0.8564 | 0.8534 | 0.8527 | 0.8494 | 0.8488 | −1.90% |
Climate Regulation | 2.1215 | 2.0904 | 2.0901 | 2.0914 | 2.0907 | 2.0880 | −1.58% | |
Environmental Purification | 0.7695 | 0.7582 | 0.7708 | 0.7772 | 0.7922 | 0.7892 | 2.56% | |
Hydrological Regulation | 1.7628 | 1.7294 | 1.7592 | 1.7377 | 1.7458 | 1.7328 | −1.70% | |
Supporting Services | Soil Conservation | 1.0984 | 1.0876 | 1.0830 | 1.0816 | 1.0766 | 1.0760 | −2.04% |
Nutrient Maintenance | 0.0936 | 0.0929 | 0.0923 | 0.0921 | 0.0915 | 0.0915 | −2.28% | |
Biodiversity | 0.8562 | 0.8452 | 0.8487 | 0.8488 | 0.8512 | 0.8492 | −0.81% | |
Cultural Services | Aesthetic Landscape | 0.3767 | 0.3719 | 0.3733 | 0.3726 | 0.3729 | 0.3719 | −1.27% |
Land Use Type | ESV (CNY 10,000) | Sensitivity Coefficient | Change in Sensitivity Index | ||
---|---|---|---|---|---|
1995 | 2020 | 1995 | 2020 | ||
Cropland VC + 50% | 11,583.57 | 10,901.09 | 0.1691 | 0.1632 | 0.0059 |
Cropland VC − 50% | 3861.19 | 3633.70 | 0.1875 | 0.1810 | 0.0065 |
Forestland VC + 50% | 64,002.33 | 60,141.50 | 0.8237 | 0.7938 | 0.0299 |
Forestland VC − 50% | 21,334.11 | 20,047.17 | 0.9253 | 0.8917 | 0.0336 |
Grassland VC + 50% | 51,253.22 | 53,661.12 | 0.6703 | 0.7198 | 0.0494 |
Grassland VC − 50% | 17,084.41 | 17,887.04 | 0.7517 | 0.8071 | 0.0554 |
Water area VC + 50% | 3242.03 | 3177.65 | 0.0580 | 0.0583 | 0.0003 |
Water area VC − 50% | 1080.68 | 1059.22 | 0.0632 | 0.0635 | 0.0003 |
Construction land VC + 50% | −2162.84 | −2915.91 | 0.0344 | 0.0476 | 0.0132 |
Construction land VC − 50% | −720.95 | −971.97 | 0.0379 | 0.0523 | 0.0145 |
Unused land VC + 50% | 432.09 | 355.95 | 0.0076 | 0.0064 | 0.0012 |
Year | Coupling Degree | Coupling Coordination Degree | Coupling Stage | Coupling Coordination State |
---|---|---|---|---|
1995 | 0.2770 | 0.2062 | Low-level coupling | Moderate mismatch |
2000 | 0.5401 | 0.2569 | Adaptation phase | Moderate mismatch |
2005 | 0.9584 | 0.3399 | High-level coupling | Mild mismatch |
2010 | 0.8180 | 0.3469 | High-level coupling | Mild mismatch |
2015 | 0.7677 | 0.3310 | Adaptation phase | Mild mismatch |
2020 | 0.1374 | 0.1421 | Low-level coupling | Severe mismatch |
Year | HWLP | LPESV | HWESV | Development Type | Dominant Constraining Factors |
---|---|---|---|---|---|
1995 | 0.4614 | 0.3651 | 0.1685 | Resident welfare lags behind landscape connectedness, and both lag behind ecosystem services | Resident welfare, landscape connectedness |
2000 | 0.2954 | 1.6336 | 0.4826 | Resident welfare is ahead of ecosystem services, and both lag behind landscape connectedness | Resident welfare, ecosystem services |
2005 | 0.6246 | 1.2206 | 0.7624 | Landscape connectedness and resident welfare develop synchronously, and both are ahead of ecosystem services | Ecosystem services |
2010 | 0.6115 | 2.5237 | 1.5433 | Landscape connectedness is ahead of ecosystem services, and both lag behind resident welfare and ecosystem services | Ecosystem services, landscape connectedness |
Landscape Patterns | Relational Degree | Ecosystem Services | Relational Degree | Ecosystem Services | Relational Degree |
---|---|---|---|---|---|
Patch Number (C1) | 0.674 | Food Production (Y1) | 0.670 | Soil Conservation (Y8) | 0.670 |
Patch Density (C2) | 0.674 | Raw Material Production (Y2) | 0.670 | Maintaining Nutrient Cycling (Y9) | 0.670 |
Largest Patch Index (C3) | 0.675 | Water Supply (Y3) | 0.718 | Biodiversity (Y10) | 0.671 |
Edge Density (C4) | 0.669 | Gas Regulation (Y4) | 0.670 | Aesthetic Landscape (Y11) | 0.670 |
Landscape Shape Index (C5) | 0.669 | Climate Regulation (Y5) | 0.670 | ||
Shannon Diversity Index (C6) | 0.668 | Environmental Purification (Y6) | 0.672 | ||
Aggregation Index (C7) | 0.672 | Hydrological Regulation (Y7) | 0.670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Li, L.; Wei, H. Coupling Landscape Connectedness, Ecosystem Service Value, and Resident Welfare in Xining City, Western China. Systems 2023, 11, 512. https://doi.org/10.3390/systems11100512
Yu C, Li L, Wei H. Coupling Landscape Connectedness, Ecosystem Service Value, and Resident Welfare in Xining City, Western China. Systems. 2023; 11(10):512. https://doi.org/10.3390/systems11100512
Chicago/Turabian StyleYu, Chunlin, Ling Li, and Hejie Wei. 2023. "Coupling Landscape Connectedness, Ecosystem Service Value, and Resident Welfare in Xining City, Western China" Systems 11, no. 10: 512. https://doi.org/10.3390/systems11100512
APA StyleYu, C., Li, L., & Wei, H. (2023). Coupling Landscape Connectedness, Ecosystem Service Value, and Resident Welfare in Xining City, Western China. Systems, 11(10), 512. https://doi.org/10.3390/systems11100512