Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri
Abstract
:1. Introduction
2. Material and Methods
2.1. Animals
2.2. Hemocyte Collection
2.3. BsC3a/C5aR Sequence Characterization and Phylogenetic Analysis
2.4. Primer Design, RNA Extraction, cDNA Synthesis, Cloning and Sequencing
2.5. Quantitative Real-Time PCT (qRTPCR)
2.6. In Situ Hybridization (ISH)
2.7. Effects of C3aR Agonist
2.8. Statistical Analysis
3. Results
3.1. An Orthologue of C3aR is Present in the B. schlosseri Transcriptome
3.2. Phylogenetic Analysis
3.3. Sequence Aligments
3.4. The Transcription of bsc3a/c5ar Changes during the Colonial Blastogenetic Cycle
3.5. C3aR Agonist Affects C3 Transcription
3.6. Morula Cells are the only Hemocytes Expressing BsC3aR/C5aR mRNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rowley, A.F. The evolution of inflammatory mediators. Mediat. Inflamm. 1996, 5, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Lambris, J.D.; Reid, K.B.; Volanakis, J.E. The evolution, structure, biology and pathophysiology of complement. Immunol. Today 1999, 20, 207–211. [Google Scholar] [CrossRef]
- Song, W.C.; Sarrias, M.R.; Lambris, J.D. Complement and innate immunity. Immunopharmacology 2000, 49, 187–198. [Google Scholar] [CrossRef]
- Wetsel, R.A. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr. Opin. Immunol. 1995, 7, 48–53. [Google Scholar] [CrossRef]
- Zhou, W. The new face of anaphylatoxins in immune regulation. Immunobiology 2012, 217, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Hawksworth, O.A.; Coulthard, L.G.; Woodruff, T.M. Complement in the fundamental processes of the cell. Mol. Immunol. 2017, 84, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ember, J.A.; Hugli, T.E. Complement factors and their receptors. Immunopharmacology 1997, 38, 3–15. [Google Scholar] [CrossRef]
- Sunyer, J.O.; Boshra, H.; Li, J. Evolution of anaphylatoxins, their diversity and novel roles in innate immunity: Insights from the study of fish complement. Vet. Immunol. Immunopathol. 2005, 108, 77–89. [Google Scholar] [CrossRef]
- Sayegh, E.T.; Bloch, O.; Parsa, A.T. Complement anaphylatoxins as immune regulators in cancer. Cancer Med. 2014, 3, 747–758. [Google Scholar] [CrossRef]
- Chao, T.H.; Ember, J.A.; Wang, M.; Bayon, Y.; Hugli, T.E.; Ye, R.D. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J. Biol. Chem. 1999, 274, 9721–9728. [Google Scholar] [CrossRef] [Green Version]
- Boshra, H.; Wang, T.; Hove-Madsen, L.; Hansen, J.; Li, J.; Matlapudi, A.; Secombes, C.J.; Tort, L.; Sunyer, J.O. Characterization of a C3a receptor in rainbow trout and Xenopus: The first identification of C3a receptors in nonmammalian species. J. Immunol. 2005, 175, 2427–2437. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Li, M.; Wu, J.; Zhang, S. Interplay between invertebrate C3a with vertebrate macrophages: Functional characterization of immune activities of amphioxus C3a. Fish Shellfish Immunol. 2013, 35, 1249–1259. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.R.; Chinnici, C.M.; Kimura, Y.; Melillo, D.; Marino, R.; Spruce, L.A.; De Santis, R.; Parrinello, N.; Lambris, J.D. CiC3-1a-mediated chemotaxis in the deuterostome invertebrate Ciona Intestinalis (Urochordata). J. Immunol. 2003, 171, 5521–5528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melillo, D.; Sfyroera, G.; De Santis, R.; Graziano, R.; Marino, R.; Lambris, J.D.; Pinto, M.R. First identification of a chemotactic receptor in an invertebrate species: Structural and functional characterization of Ciona intestinalis C3a receptor. J. Immunol. 2006, 177, 4132–4140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchi, N.; Ballarin, L. Immunity in protochordates: the tunicate perspective. Front. Immunol. 2017, 8, 674. [Google Scholar] [CrossRef]
- Manni, L.; Zaniolo, G.; Cima, F.; Burighel, P.; Ballarin, L. Botryllus schlosseri: A model ascidian for the study of asexual reproduction. Dev. Dyn. 2007, 236, 335–352. [Google Scholar] [CrossRef]
- Franchi, N.; Ballarin, L. Preliminary characterization of complement in a colonial tunicate: C3, Bf and inhibition of C3 opsonic activity by compstatin. Dev. Comp. Immunol. 2014, 46, 430–438. [Google Scholar] [CrossRef]
- Campagna, D.; Gasparini, F.; Franchi, N.; Vitulo, N.; Ballin, F.; Manni, L.; Valle, G.; Ballarin, L. Transcriptome dynamics in the asexual cycle of the chordate Botryllus schlosseri. BMC Genom. 2016, 17, 275. [Google Scholar] [CrossRef] [Green Version]
- Lauzon, R.J.; Ishizuka, K.J.; Weissman, I.L. A cyclical, developmentally-regulated death phenomenon in a colonial urochordate. Dev. Dyn. 1992, 194, 71–83. [Google Scholar] [CrossRef]
- Gasparini, F.; Longo, F.; Manni, L.; Burighel, P.; Zaniolo, G. Tubular sprouting as a mode of vascular formation in a colonial ascidian (Tunicata). Dev. Dyn. 2007, 236, 719–731. [Google Scholar] [CrossRef]
- Brunetti, R.; Burighel, P. Sviluppo dell’apparato vascolare coloniale in Botryllus schlosseri. Pubbl. Staz. Zool. Napoli 1969, 137–148. [Google Scholar]
- Ballarin, L.; Cima, F. Cytochemical properties of Botryllus schlosseri haemocytes: Indications for morpho-functional characterisation. Eur. J. Histochem. 2005, 49, 255–264. [Google Scholar] [PubMed]
- Cima, F. Cellular aspects of allorecognition in the compound ascidian Botryllus Schlosseri. Dev. Comp. Immunol. 2004, 28, 881–889. [Google Scholar] [CrossRef]
- Ballarin, L.; Franchini, A.; Ottaviani, E.; Sabbadin, A. Morula cells as the major immunomodulatory hemocytes in ascidians: Evidences from the colonial species Botryllus schlosseri. Biol. Bull. 2001, 201, 59–64. [Google Scholar] [CrossRef]
- Kapustin, Y.; Souvorov, A.; Tatusova, T.; Lipman, D. Splign: Algorithms for computing spliced alignments with identification of paralogs. Biol. Direct 2008, 3, 20. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Doerks, T.; Bork, P. SMART 7: Recent updates to the protein domain annotation resource. Nucleic Acids Res. 2012, 40, D302–D305. [Google Scholar] [CrossRef] [PubMed]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A multiple sequence alignment method with reduced time and space complexity. BMC Bioinform. 2004, 5, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felsenstein, J. Evolutionary trees from gene frequencies and quantitative characters: Finding maximum likelihood estimates. Evolution 1981, 35, 1229–1242. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [PubMed]
- Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 1985, 125, 1–15. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Choe, H.; Bota, D.; Wright, P.L.; Gerard, C.; Gerard, N.P. Sulfation of tyrosine 174 in the human C3a receptor is essential for binding of C3a anaphylatoxin. J. Biol. Chem. 2003, 278, 37902–37908. [Google Scholar] [CrossRef] [Green Version]
- Settmacher, B.; Rheinheimer, C.; Hamacher, H.; Ames, R.S.; Wise, A.; Jenkinson, L.; Bock, D.; Schaefer, M.; Kohl, J.; Klos, A. Structure-function studies of the C3a-receptor: C-terminal serine and threonine residues which influence receptor internalization and signaling. Eur. J. Immunol. 2003, 33, 920–927. [Google Scholar] [CrossRef]
- Franchi, N.; Schiavon, F.; Carletto, M.; Gasparini, F.; Bertoloni, G.; Tosatto, S.C.E.; Ballarin, L. Immune roles of a rhamnose-binding lectin in the colonial ascidian Botryllus schlosseri. Immunobiol. 2011, 216, 725–736. [Google Scholar] [CrossRef]
- Peronato, A.; Drago, L.; Rothbaecher, U.; Macor, P.; Ballarin, L.; Franchi, N. Complement system and phagocytosis in a colonial protochordate. Dev. Comp. Immunol. 2020, 103, 103530. [Google Scholar] [CrossRef]
Genomic nt Interval | mRNA nt Interval | Length (nt) | |
---|---|---|---|
Exon 1 | 1340–1434 | 1–95 | 95 |
Exon 2 | 2422–2584 | 96–258 | 163 |
Exon 3 | 2721–2936 | 259–474 | 216 |
Exon 4 | 4384–4586 | 475–677 | 203 |
Exon 5 | 4924–5068 | 678–822 | 145 |
Exon 6 | 5137–5333 | 823–1019 | 197 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peronato, A.; Franchi, N.; Ballarin, L. Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri. Biology 2020, 9, 263. https://doi.org/10.3390/biology9090263
Peronato A, Franchi N, Ballarin L. Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri. Biology. 2020; 9(9):263. https://doi.org/10.3390/biology9090263
Chicago/Turabian StylePeronato, Anna, Nicola Franchi, and Loriano Ballarin. 2020. "Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri" Biology 9, no. 9: 263. https://doi.org/10.3390/biology9090263
APA StylePeronato, A., Franchi, N., & Ballarin, L. (2020). Insights into the Complement System of Tunicates: C3a/C5aR of the Colonial Ascidian Botryllus schlosseri. Biology, 9(9), 263. https://doi.org/10.3390/biology9090263