The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material
Abstract
:1. Introduction
2. Overview of Experimental Populations and Germplasm Collection for Traits Dissection
2.1. Bi-Parental Populations
2.2. Germplasm Populations and Germplasm Collections
2.3. Multi-Parent Populations
3. Advantages and Limitations of MAGIC Populations
3.1. Advantages
3.2. Limitations
4. MAGIC Development Strategies
4.1. Cross-Designs
4.2. Founder Selection
4.3. Population Sizes
5. Analysis Software for Genetic Gap Construction and QTL Mapping
Crop | Design | Founders | Final RILs Population | Target Traits | QTL Analysis Software | Reference |
---|---|---|---|---|---|---|
Model species | ||||||
A. thaliana | 19-way, diallel | Natural accessions | 1026 S6 | Germination date and bolting time | HAPPY | Kover et al. [51] |
8-way, diallel | Natural accessions | 532 F5 | Flowering time and leaf morphology | GenStat | Huang et al. [94] | |
Cereals | ||||||
Wheat | 4-way, diallel | Cultivars | 1579 F6 | Plant height and hectoliter weight | mpMap | Huang et al. [33] |
8-way, diallel | Cultivars | – | Plant height and hectoliter weight | mpMap | Huang et al. [33] | |
8-way, diallel | Cultivars | 1091 F7 | Awning | GAPIT | Mackay et al. [38] | |
4-way, diallel | Commercial cultivars | 1458 F6:7 | Coleoptile length and thickness and shoot length | WGAIM | Rebetzke et al. [92] | |
60-way, NAM-like | Breeding lines | 1000 S4 | Flowering time | In-house software | Thépot et al. [95] | |
4-way, diallel | Cultivars | >338 F8 | Plant height and grain yield | TASSEL | Milner et al. [86] | |
8-way, diallel | Cultivars | 2125 F4 | Plant height | GWAS | Sannemann et al. [83] | |
8-way, funnel | Breeding lines | 516 F6:8 | Powdery mildew resistance | mpMap | Stadlmeier et al. [71] | |
8-way, diallel | Elite lines and cultivars | >3000 S2:5 | Number of recombination events | mpMap | Shah et al. [77] | |
Rice | 8-way indica, diallel | Elite and modern cultivars | 1328 S7 | Biotic/abiotic stress and grain quality | TASSEL | Bandillo et al. [35] |
8-way japonica, diallel | Elite and modern cultivars | 500 S5 | Biotic/abiotic stress and grain quality | TASSEL | Bandillo et al. [35] | |
8-way MAGIC-plus, diallel | Elite and modern cultivars | S4 (in progress) | Biotic/abiotic stress and grain quality | TASSEL | Bandillo et al. [35] | |
16-way MAGIC global, diallel | Elite and modern cultivars | – | Biotic/abiotic stress and grain quality | TASSEL | Bandillo et al. [35] | |
12-way, funnel | Cultivars | 1600 S9 | Plant height and heading date | TASSEL | Li et al. [96] | |
8-way, diallel | Breeding lines | 1688 S5 | Yield, plant height and heading date | TASSEL | Meng et al. [97] | |
8-way, diallel | Cultivars | 981 F6 | Grain shape | GWAS | Ogawa et al. [82] | |
4-way, diallel | Inbred lines | 247 F7 | Heading date | GWAS | Han et al. [23] | |
Maize | 8-way, diallel | Inbred lines | 1636 F6 | Pollen shed, grain yield, and plant and ear height | QTLRel | Dell’Acqua et al. [32] |
4-way, funnel | Inbred lines | 1291 F4:5 | Plant height, ear height, and flowering time | GAPIT | Anderson et al. [89] | |
Barley | 8-way, funnel | Old landraces and a model cultivar | 5000 DH | Flowering time | mpMap | Sannemann et al. [60] |
32-way, funnel | Cultivars | 324 F6 | Climate and site-related agronomic adaptation | – | Bülow et al. [98] | |
Sorghum | 29-way, diallel | Cultivars | ~1000 S7 | Plant height | TASSEL | Ongom and Ejeta [40] |
Oats | 8-way, diallel | – | 600 S6 | – | – | Aberystwyth University (unpublished) |
Legumes | ||||||
Chickpea | 8-way, diallel | Cultivars and breeding lines | ~1200 F6 | Heat tolerance | – | Gaur et al. [99] |
Faba bean | 11-way, open pollination | Inbred lines | >400 S9 | Frost tolerance | – | Sallam and Martsch [54] |
4-way, funnel | Inbred lines | ~1000 F4 | Flower color and stipule spot pigmentation | – | Khazaei et al. [100] | |
Pigeonpea | 8-way, diallel | Landraces and breeding lines | in progress | Resistance genes, maturing, and photoperiod | – | Saxena and Varshney [101] |
Cowpea | 8-way, diallel | Landraces and breeding lines | 305 F8:10 | Flowering, plant growth, seed size, and maturity | mpMap | Huynh et al. [52] |
Soybean | 8-way, funnel | Cultivars and exotic collections | 764 F2:8 | Yield under changing climatic conditions | – | Shivakumar et al. [102] |
Groundnut | 8-way, diallel | Breeding lines | ~3000 F6 | Seed traits | – | Pandey et al. [31] |
8-way, diallel | Breeding lines | in progress | Aspergillus resistance and aflatoxin contamination | – | ICRISAT (unpublished) | |
8-way, diallel | Breeding lines | in progress | Drought tolerance | – | ICRISAT (unpublished) | |
– | Breeding and commercial lines | in progress | – | – | Tifton, Georgia, USA | |
Vegetables and fruits | ||||||
Tomato | 8-way, funnel | Cultivars and wild accessions | 397 S3 | Fruit weight | mpMap | Pascual et al. [37] |
8-way, funnel | Cultivars and wild accessions | 400 F10 | Resistance genes and fruit shape | – | Campanelli et al. [70] | |
8-way, funnel | Cultivars and wild accessions | in progress | Morphoagronomic traits and resistance genes | – | Universitat Politècnica de València (unpublished) | |
Strawberry | 6-way, diallel | Cultivars | 1060 inter-cross | Fruit quality | – | Wada et al. [103] |
Eggplant | 8-way, funnel | Cultivars and wild accessions | in progress | Fruit traits | – | Universitat Politècnica de València (unpublished) |
Pepper | 8-way, funnel | Landraces | in progress | Fruit traits | – | Universitat Politècnica de València (unpublished) |
Industrial and oil crops | ||||||
Cotton | 12-way, funnel | Cultivars | 1500 F7 | Fiber yield and resistance genes | – | Li et al. [67] |
11-way, diallel | Cultivars and a breeding line | >550 S6 | Fiber quality | TASSEL, GAPIT | Islam et al. [85] | |
Rapeseed | 8-way | Elite cultivars | 680 F6 | Disease resistance, yield, plant architecture | – | Zhao et al. [104] |
Chinese mustard | 8-way, diallel | Breeding lines | 408 F6 | Quality traits (glucosinolate) | TASSEL | Yan et al. [87] |
6. An Appraisal of MAGIC Populations Developed and Evaluated
6.1. Model Species
6.2. Cereals
6.3. Legumes
6.4. Fruits and Vegetables
6.5. Industrial and Oil Crops
7. Future Prospects
7.1. Inter-Specific MAGIC Populations
7.2. MAGIC-Like Approximations
7.3. Incorporation of MAGIC Populations in Breeding Pipelines
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pingali, P.L. Green Revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [Green Version]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating targets for sustainable intensification. Bioscience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longman: Harlow, UK, 1996. [Google Scholar]
- Doerge, R.W. Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 2002, 3, 43–52. [Google Scholar] [CrossRef]
- Holland, J.B. Genetic architecture of complex traits in plants. Curr. Opin. Plant. Biol. 2007, 10, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Fan, J.; Long, L.; Yang, J.; Yu, X.; Bao, B.W. Ecological response of rice multi-genotype variety in Dehong, Yunnan Province. Yunnan Nong Ye Da Xue Xue Bao 2016, 1, 1–6. [Google Scholar]
- Geldermann, H. Investigations on inheritance of quantitative characters in animals by gene markers I. Methods. Theor. Appl. Genet. 1975, 46, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, P.; Fischer, G.; Van Velthuizen, H.; Reusser, M.E.; Kropp, J.P. Closing yield gaps: How sustainable can we be? PLoS ONE 2015, 10, e0129487. [Google Scholar] [CrossRef] [Green Version]
- Mei, J.; Shao, C.; Yang, R.; Feng, Y.; Gao, Y.; Ding, Y.; Li, J.; Qian, W. Introgression and pyramiding of genetic loci from wild Brassica oleracea into B. napus for improving Sclerotinia resistance of rapeseed. Theor. Appl. Genet. 2020, 133, 1313–1319. [Google Scholar] [CrossRef] [PubMed]
- Muthu, V.; Abbai, R.; Nallathambi, J.; Rahman, H.; Ramasamy, S.; Kambale, R.; Thulasinathan, T.; Ayyenar, B.; Muthurajan, R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding. PLoS ONE 2020, 15, e0227421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sehgal, D.; Dreisigacker, S. Haplotypes-based genetic analysis: Benefits and challenges. Vavilovskii Zhurnal Genet. Selektsii 2019, 23, 803–808. [Google Scholar] [CrossRef]
- Collard, B.C.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar] [CrossRef]
- Cavanagh, C.R.; Morell, M.; Mackay, I.; Powell, W. From mutations to MAGIC: Resources for gene discovery, validation and delivery in crop plants. Curr. Opin. Plant. Biol. 2008, 11, 215–221. [Google Scholar] [CrossRef]
- Huang, B.E.; Verbyla, K.L.; Verbyla, A.P.; Raghavan, C.; Singh, V.K.; Gaur, P.; Leung, H.; Varshney, R.K.; Cavanagh, C.R. MAGIC populations in crops: Current status and future prospects. Theor. Appl. Genet. 2015, 128, 999–1017. [Google Scholar] [CrossRef]
- Jaganathan, D.; Bohra, A.; Thudi, M.; Varshney, R.K. Fine mapping and gene cloning in the post-NGS era: Advances and prospects. Theor. Appl. Genet. 2020, 133, 1791–1810. [Google Scholar] [CrossRef] [Green Version]
- Kumar, J.; Gupta, D.S.; Gupta, S.; Dubey, S.; Gupta, P.; Kumar, S. Quantitative trait loci from identification to exploitation for crop improvement. Plant. Cell Rep. 2017, 36, 1187–1213. [Google Scholar] [CrossRef]
- Mackay, I.; Powell, W. Methods for linkage disequilibrium mapping in crops. Trends Plant. Sci. 2007, 12, 57–63. [Google Scholar] [CrossRef]
- Rakshit, S.; Rakshit, A.; Patil, J.V. Multiparent intercross populations in analysis of quantitative traits. J. Genet. 2012, 91, 111–117. [Google Scholar] [CrossRef]
- Zaw, H.; Raghavan, C.; Pocsedio, A.; Swamy, B.P.M.; Jubay, M.L.; Singh, R.K.; Bonifacio, J.; Mauleon, R.; Hernandez, J.E.; Mendioro, M.S.; et al. Exploring genetic architecture of grain yield and quality traits in a 16-way indica by japonica rice MAGIC global population. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Hu, G.; Liu, H.; Liang, F.; Yang, L.; Zhao, H.; Zhang, Q.; Li, Z.; Zhang, Q.; Xing, Y. Bin-based genome-wide association analyses improve power and resolution in QTL mapping and identify favorable alleles from multiple parents in a four-way MAGIC rice population. Theor. Appl. Genet. 2019, 133, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.F.; Ladejobi, O.; Amer, S.; Bentley, A.R.; Biernaskie, J.; Boden, S.A.; Clark, M.; Dell’Acqua, M.; Dixon, L.E.; Filippi, C.V.; et al. Multi-parent populations in crops: A toolbox integrating genomics and genetic mapping with breeding. Heredity 2020, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shekhawat, N.; Singh, K.; Sharma, V.; Meghwal, D.R. MAGIC populations: Usefulness to define genetic basis of complex crop traits. Food Sci. Reports 2020, 1, 53–55. [Google Scholar]
- Xu, Y.; Li, P.; Yang, Z.; Yang, Z. Genetic mapping of quantitative trait loci in crops. Crop. J. 2017, 5, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.; Mithen, R.; Brown, J.K.M.; Dean, C. QTL analysis of flowering time in Arabidopsis thaliana. Mol. Genet. Genom. 1995, 248, 278–286. [Google Scholar] [CrossRef]
- Grandillo, S.; Tanksley, S.D. QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor. Appl. Genet. 1996, 92, 935–951. [Google Scholar] [CrossRef]
- Keurentjes, J.J.; Bentsink, L.; Alonso-Blanco, C.; Hanhart, C.J.; Vries, H.B.-D.; Effgen, S.; Vreugdenhil, D.; Koornneef, M. Development of a near-isogenic line population of Arabidopsis thaliana and comparison of mapping power with a recombinant inbred line population. Genetics 2006, 175, 891–905. [Google Scholar] [CrossRef] [Green Version]
- Price, A.H. Believe it or not, QTLs are accurate! Trends Plant. Sci. 2006, 11, 213–216. [Google Scholar] [CrossRef]
- Pandey, M.K.; Roorkiwal, M.; Singh, V.K.; Ramalingam, A.; Kudapa, H.; Thudi, M.; Chitikineni, A.; Rathore, A.; Varshney, R.K. Emerging genomic tools for legume breeding: Current status and future prospects. Front. Plant. Sci. 2016, 7, 455. [Google Scholar] [CrossRef] [Green Version]
- Dell’Acqua, M.; Gatti, D.M.; Pea, G.; Cattonaro, F.; Coppens, F.; Magris, G.; Hlaing, A.L.; Aung, H.H.; Nelissen, H.; Baute, J.; et al. Genetic properties of the MAGIC maize population: A new platform for high definition QTL mapping in Zea mays. Genome Biol. 2015, 16, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.E.; George, A.W.; Forrest, K.; Kilian, A.; Hayden, M.J.; Morell, M.K.; Cavanagh, C.R. A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant. Biotechnol. J. 2012, 10, 826–839. [Google Scholar] [CrossRef] [PubMed]
- Valdar, W.; Flint, J.; Mott, R. Simulating the collaborative cross: Power of quantitative trait loci detection and mapping resolution in large sets of recombinant inbred strains of mice. Genetics 2005, 172, 1783–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Fu, S.; Zhang, P.; Gu, Z.; Liu, J.Z.; Qian, Q.; Ma, B. Proteomic analysis of a disease-resistance-enhanced lesion mimic mutant spotted leaf 5 in rice. Rice 2013, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, D.; Tegström, C.; Ingvarsson, P. Using association mapping to dissect the genetic basis of complex traits in plants. Briefings Funct. Genom. 2010, 9, 157–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascual, L.; Desplat, N.; Huang, B.E.; Desgroux, A.; Bruguier, L.; Bouchet, J.P.; Le, Q.H.; Chauchard, B.; Verschave, P.; Causse, M. Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant. Biotechnol. J. 2014, 13, 565–577. [Google Scholar] [CrossRef]
- Mackay, I.; Bansept-Basler, P.; Barber, T.; Bentley, A.R.; Cockram, J.; Gosman, N.; Greenland, A.J.; Horsnell, R.; Howells, R.M.; O’Sullivan, D.M.; et al. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: Creation, properties, and validation. G3 Genes Genom. Genet. 2014, 4, 1603–1610. [Google Scholar] [CrossRef] [Green Version]
- Gegas, V.; Gay, A.; Camargo, A.; Doonan, J. Challenges of crop phenomics in the post-genomic era. In Phenomics; Hancock, J.M., Ed.; CRC Press: Boca Raton, FL, USA, 2016; pp. 142–171. [Google Scholar]
- Ongom, P.O.; Ejeta, G. Mating design and genetic structure of a multi-parent advanced generation intercross (MAGIC) population of sorghum (Sorghum bicolor (L.) Moench). G3 Genes Genom. Genet. 2017, 8, 331–341. [Google Scholar] [CrossRef] [Green Version]
- Mitchell-Olds, T. Complex-trait analysis in plants. Genome Biol. 2010, 11, 113. [Google Scholar] [CrossRef]
- Korte, A.; Farlow, A. The advantages and limitations of trait analysis with GWAS: A review. Plant. Methods 2013, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.; Shorter, T.; Brookes, A.J. GWAS Central: A comprehensive resource for the discovery and comparison of genotype and phenotype data from genome-wide association studies. Nucleic Acids Res. 2020, 48, D933–D940. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Wang, P.; Tang, B.; Teng, X.; Li, C.; Liu, X.; Zou, D.; Song, S.; Zhang, Z. GWAS Atlas: A curated resource of genome-wide variant-trait associations in plants and animals. Nucleic Acids Res. 2019, 48, D927–D932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visscher, P.M.; Brown, M.A.; McCarthy, M.I.; Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 2012, 90, 7–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kover, P.X.; Mott, R. Mapping the genetic basis of ecologically and evolutionarily relevant traits in Arabidopsis thaliana. Curr. Opin. Plant. Biol. 2012, 15, 212–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harlan, H.V.; Martini, M.L. A composite hybrid mixture. Agron. J. 1907, 21, 487–490. [Google Scholar] [CrossRef] [Green Version]
- Suneson, C.A. An evolutionary plant breeding method. Agron. J. 1907, 48, 188–191. [Google Scholar] [CrossRef]
- Eberhart, S. Techniques and methods for more efficient population improvement in sorghum. In Sorghum in Seventies; Rao, N.G.P., Ed.; Oxford and Ibh Publishing Co.: New Delhi, India, 1972; pp. 197–213. [Google Scholar]
- Reddy, B.V.S.; Stenhouse, J.W. Sorghum improvement for semi-arid tropics region: Past, current and future research thrusts in Asia. PKV Res. J. 1994, 18, 155–169. [Google Scholar]
- Kover, P.X.; Valdar, W.; Trakalo, J.; Scarcelli, N.; Ehrenreich, I.M.; Purugganan, M.D.; Durrant, C.; Mott, R. A multiparent advanced generation inter-cross to fine-map quantitative traits in Arabidopsis thaliana. PLoS Genet. 2009, 5, e1000551. [Google Scholar] [CrossRef] [Green Version]
- Huynh, B.L.; Ehlers, J.D.; Huang, B.E.; Muñoz-Amatriaín, M.; Lonardi, S.; Santos, J.R.P.; Ndeve, A.; Batieno, B.J.; Boukar, O.; Cissé, N.; et al. A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L. Walp.). Plant. J. 2018, 93, 1129–1142. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, E.; Iwata, H.; Tanabata, T.; Mizobuchi, R.; Yonemaru, J.; Yamamoto, T.; Yano, M. Effect of advanced intercrossing on genome structure and on the power to detect linked quantitative trait loci in a multi-parent population: A simulation study in rice. BMC Genet. 2014, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sallam, A.; Martsch, R. Association mapping for frost tolerance using multi-parent advanced generation inter-cross (MAGIC) population in faba bean (Vicia faba L.). Genetica 2015, 143, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Diouf, I.; Derivot, L.; Koussevitzky, S.; Carretero, Y.; Bitton, F.; Moreau, L.; Causse, M. Genetic basis of phenotypic plasticity and genotype × environment interactions in a multi-parental tomato population. J. Exp. Bot. 2020, eraa265. [Google Scholar] [CrossRef] [PubMed]
- Murovec, J.; Bohanec, B. Haploids and doubled haploids in plant breeding. In Plant Breeding; Abdurakhmonov, I., Ed.; InTechOpen: London, UK, 2012; pp. 87–106. [Google Scholar]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurugwi, T.; Kemp, S.; Powell, W.; Hickey, L.T. Speed breeding orphan crops. Theor. Appl. Genet. 2018, 132, 607–616. [Google Scholar] [CrossRef]
- Huang, B.E.; George, A.W. R/mpMap: A computational platform for the genetic analysis of multiparent recombinant inbred lines. Bioinformatics 2011, 27, 727–729. [Google Scholar] [CrossRef] [Green Version]
- Sannemann, W.; Huang, B.E.; Mathew, B.; Léon, J. Multi-parent advanced generation inter-cross in barley: High-resolution quantitative trait locus mapping for flowering time as a proof of concept. Mol. Breed. 2015, 35, 35. [Google Scholar] [CrossRef]
- Broman, K.W.; Gatti, D.M.; Šimeček, P.; Furlotte, N.A.; Prins, P.; Sen, Ś.; Yandell, B.; Churchill, G.A. R/qtl2: Software for mapping quantitative trait loci with high-dimensional data and multi-parent populations. Genetics 2018, 211, 414748. [Google Scholar] [CrossRef]
- Templeton, A.R. Population Genetics and Microevolutionary Theory; Wiley: Hoboken, NJ, USA, 2006; p. 705. [Google Scholar]
- Fisher, R.A. XV—The correlation between relatives on the supposition of mendelian inheritance. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef] [Green Version]
- Fisher, S.R.A.; Moran, P.A.P.; Smith, C.A.B. Commentary on R.A. Fisher’s Paper on the Correlation Between Relatives on the Supposition of Mendelian Inheritance; Galton Laboratory, University College: London, UK, 1966. [Google Scholar]
- Wilson, S.R. A note on assortative mating, linkage and genotypic frequencies. Ann. Hum. Genet. 1978, 42, 129–130. [Google Scholar] [CrossRef]
- Garnier-Géré, P.; Chikhi, L. Population subdivision, Hardy-Weinberg Equilibrium and the Wahlund effect. In eLS; John Wiley and Sons, Ltd.: Chichester, UK, 2013. [Google Scholar]
- Li, D.; Li, Z.; Hu, J.; Lin, Z.; Li, X. Polymorphism analysis of multi-parent advanced generation inter-cross (MAGIC) populations of upland cotton developed in China. Genet. Mol. Res. 2016, 15, 15. [Google Scholar] [CrossRef]
- Broman, K.W. The genomes of recombinant inbred lines. Genetics 2004, 169, 1133–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Guo, X.; Pandey, M.K.; Ji, X.; Varshney, R.K.; Nwosu, V.; Guo, B. History and impact of the international peanut genome initiative: The exciting journey toward peanut whole-genome sequencing. In The Spruce Genome; Varshney, R.K., Pandey, M.K., Puppala, N., Eds.; Springer: Berlin, Germany, 2017; pp. 117–133. ISBN 9783319639352. [Google Scholar]
- Campanelli, G.; Sestili, S.; Acciarri, N.; Montemurro, F.; Palma, D.; Leteo, F.; Beretta, M. Multi-parental advances generation inter-cross population, to develop organic tomato genotypes by participatory plant breeding. Agronomy 2019, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Stadlmeier, M.; Hartl, L.; Mohler, V. Usefulness of a multiparent advanced generation intercross population with a greatly reduced mating design for genetic studies in winter wheat. Front. Plant. Sci. 2018, 9, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monforte, A.J.; Tanksley, S.D. Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome 2000, 43, 803–813. [Google Scholar] [CrossRef]
- Gramazio, P.; Lerma, M.D.; Villanueva, G.; Vilanova, S.; García-Fortea, E.; Mangino, G.; Figàs, M.R.; Arrones, A.; Alonso, D.; Bautista, A.S.; et al. Detection, molecular characterisation and aspects involving the transmission of tomato chlorotic dwarf viroid in eggplant. Ann. Appl. Biol. 2019, 175, 172–183. [Google Scholar] [CrossRef]
- Nesbitt, T.C.; Tanksley, S.D. Comparative sequencing in the genus Lycopersicon. Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 2002, 162, 365–379. [Google Scholar]
- Hill, W.G.; Robertson, A. The effects of inbreeding at loci with heterozygote advantage. Genetics 1968, 60, 615–628. [Google Scholar]
- Ranc, N.; Muños, S.; Xu, J.; Le Paslier, M.C.; Chauveau, A.; Bounon, R.; Rolland, S.; Bouchet, J.P.; Brunel, M.; Causse, M. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of solanum lycopersicum var. cerasiforme. G3 Genes Genom. Genet. 2012, 2, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Huang, B.E.; Whan, A.; Newberry, M.; Verbyla, K.L.; Morell, M.K.; Cavanagh, C.R. The complex genetic architecture of recombination and structural variation in wheat uncovered using a large 8-founder MAGIC population. bioRxiv 2019. [Google Scholar] [CrossRef]
- Zheng, C.; Boer, M.P.; Van Eeuwijk, F.A. Construction of genetic linkage maps in multiparental populations. Genetics 2019, 212, 1031–1044. [Google Scholar] [CrossRef]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Oxford University Press: Oxford, UK, 1998; p. 980. ISBN 978-0878934812. [Google Scholar]
- Mott, R.; Talbot, C.J.; Turri, M.G.; Collins, A.C.; Flint, J. A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 2000, 97, 12649–12654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broman, K.W.; Wu, H.; Sen, S.; Churchill, G.A. R/qtl: QTL mapping in experimental crosses. Bioinformatics 2003, 19, 889–890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, D.; Yamamoto, E.; Ohtani, T.; Kanno, N.; Tsunematsu, H.; Nonoue, Y.; Yano, M.; Yamamoto, T.; Yonemaru, J. Haplotype-based allele mining in the Japan-MAGIC rice population. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sannemann, W.; Lisker, A.; Maurer, A.; Léon, J.; Kazman, E.; Cöster, H.; Holzapfel, J.; Kempf, H.; Korzun, V.; Ebmeyer, E.; et al. Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genom. 2018, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Thyssen, G.N.; Jenkins, J.N.; Zeng, L.; Delhom, C.D.; Mccarty, J.C.; Deng, D.D.; Hinchliffe, D.J.; Jones, D.C.; Fang, D.D. A MAGIC population-based genome-wide association study reveals functional association of GhRBB1_A07 gene with superior fiber quality in cotton. BMC Genom. 2016, 17, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milner, S.G.; Maccaferri, M.; Huang, B.E.; Mantovani, P.; Massi, A.; Frascaroli, E.; Tuberosa, R.; Salvi, S. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant. Biotechnol. J. 2015, 14, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Zhao, H.; Yu, K.; Wang, T.; Khattak, A.N.; Tian, E. Development of a multiparent advanced generation intercross (MAGIC) population for genetic exploitation of complex traits in Brassica juncea: Glucosinolate content as an example. Plant. Breed. 2020, 139, 779–789. [Google Scholar] [CrossRef]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [Green Version]
- Anderson, S.L.; Mahan, A.L.; Murray, S.C.; Klein, P.E. Four parent maize (FPM) Population: Effects of mating designs on linkage disequilibrium and mapping quantitative traits. Plant. Genome 2018, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Verbyla, A.P.; Cullis, B.R.; Thompson, R. The analysis of QTL by simultaneous use of the full linkage map. Theor. Appl. Genet. 2007, 116, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Verbyla, A.P.; Cavanagh, C.R.; Verbyla, K.L. Whole-genome analysis of multienvironment or multitrait QTL in MAGIC. G3 Genes Genom. Genet. 2014, 4, 1569–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rebetzke, G.; Verbyla, A.P.; Verbyla, K.L.; Morell, M.K.; Cavanagh, C.R. Use of a large multiparent wheat mapping population in genomic dissection of coleoptile and seedling growth. Plant. Biotechnol. J. 2013, 12, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Haley, C.S.; Knott, S.A. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992, 69, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Paulo, M.J.; Boer, M.; Effgen, S.; Keizer, P.; Koornneef, M.; Van Eeuwijk, F.A. Analysis of natural allelic variation in Arabidopsis using a multiparent recombinant inbred line population. Proc. Natl. Acad. Sci. USA 2011, 108, 4488–4493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thépot, S.; Restoux, G.; Goldringer, I.; Hospital, F.; Gouache, D.; Mackay, I.; Enjalbert, J. Efficiently tracking selection in a multiparental population: The case of earliness in wheat. Genetics 2014, 199, 609–623. [Google Scholar] [CrossRef]
- Li, Z.; Ye, G.; Yang, M.; Liu, Z.; Lu, D.; Mao, X.; Wu, Q.; Li, X.-F. Genetic characterization of a multiparent recombinant inbred line of rice population. Res. Crop. 2014, 15, 28–37. [Google Scholar] [CrossRef]
- Meng, L.; Guo, L.; Ponce, K.; Zhao, X.; Ye, G. Characterization of three indica rice multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci identification. Plant. Genome 2016, 9, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Bülow, L.; Nachtigall, M.; Frese, L. A MAGIC population as an approach to the conservation and development of genetic diversity of winter barley for breeding purposes by on-farm management. J. Fur Kult. 2019, 71, 286–298. [Google Scholar] [CrossRef]
- Gaur, P.M.; Samineni, S.; Thudi, M.; Tripathi, S.; Sajja, S.B.; Jayalakshmi, V.; Mannur, D.M.; Vijayakumar, A.G.; Ganga Rao, N.V.P.R.; Ojiewo, C.O.; et al. Integrated breeding approaches for improving drought and heat adaptation in chickpea (Cicer arietinum L.). Plant. Breed. 2018, 138, 389–400. [Google Scholar] [CrossRef] [Green Version]
- Khazaei, H.; Stoddard, F.L.; Purves, R.W.; Vandenberg, A. A multi-parent faba bean (Vicia faba L.) population for future genomic studies. Plant. Genet. Resour. 2018, 16, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Saxena, R.K.; Varshney, R.K. Whole-genome sequencing of pigeonpea: Requirement, background history, current status and future prospects for crop improvement. In The Pigeonpea Genome; Varshney, R.K., Saxena, R.K., Jackson, A.A., Eds.; Springer: Berlin, Germany, 2017; ISBN 978-3-319-63795-2. [Google Scholar]
- Shivakumar, M.; Kumawat, G.; Gireesh, C.; Ramesh, S.V.; Husain, S.M. Identification of unique characteristics of deception from facial expression. Curr. Sci. 2018, 114, 901–906. [Google Scholar] [CrossRef]
- Wada, T.; Oku, K.; Nagano, S.; Isobe, S.; Suzuki, H.; Mori, M.; Takata, K.; Hirata, C.; Shimomura, K.; Tsubone, M.; et al. Development and characterization of a strawberry MAGIC population derived from crosses with six strawberry cultivars. Breed. Sci. 2017, 67, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, F.; Zhao, H.; Wang, X.; Li, X. Construction and application potential of MAGIC population on genetic breeding of rapeseed (Brassica napus L.). Chinese J. Oil Crop Sci. 2017, 39, 145. [Google Scholar]
- Varshney, R.K. Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant. Sci. 2016, 242, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Gaur, P.M.; Jukanti, A.K.; Varshney, R.K. Impact of genomic technologies on chickpea breeding strategies. Agronomy 2012, 2, 199–221. [Google Scholar] [CrossRef] [Green Version]
- Janila, P. Develop MAGIC and Biparental Populations Following SSD (2) Phenotyping of Populations for Target Traits. Agricultural Research Knowledge 2017. Available online: https://hdl.handle.net/20.500.11766/6640 (accessed on 2 July 2020).
- Choudhary, D.; Agarwal, G.; Wang, H.; Pandey, M.K.; Culbreath, A.K.; Varshney, R.K.; Guo, B. Molecular markers and genomic resources for disease resistance in peanut—A review. Legum. Res. 2019, 42, 137–144. [Google Scholar]
- Smýkal, P.; Nelson, M.N.; Berger, J.D.; Von Wettberg, E.J.B. The impact of genetic changes during crop domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Purugganan, M.D. Evolutionary insights into the nature of plant domestication. Curr. Biol. 2019, 29, R705–R714. [Google Scholar] [CrossRef] [Green Version]
- Mascher, M.; Schreiber, M.; Scholz, U.; Graner, A.; Reif, J.C.; Stein, N. Genebank genomics bridges the gap between the conservation of crop diversity and plant breeding. Nat. Genet. 2019, 51, 1076–1081. [Google Scholar] [CrossRef]
- Prohens, J.; Gramazio, P.; Plazas, M.; Dempewolf, H.; Kilian, B.; Díez, M.J.; Fita, A.; Herraiz, F.J.; Rodríguez-Burruezo, A.; Soler, S.; et al. Introgressiomics: A new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 2017, 213, 158. [Google Scholar] [CrossRef]
- Yoshimi, M.; Kitamura, Y.; Isshiki, S.; Saito, T.; Yasumoto, K.; Terachi, T.; Yamagishi, H. Variations in the structure and transcription of the mitochondrial atp and cox genes in wild Solanum species that induce male sterility in eggplant (S. melongena). Theor. Appl. Genet. 2013, 126, 1851–1859. [Google Scholar] [CrossRef] [PubMed]
- Allard, A.; Bink, M.C.; Martinez, S.; Kelner, J.-J.; Legave, J.-M.; Di Guardo, M.; Di Pierro, E.A.; Laurens, F.; Van De Weg, E.W.; Costes, E. Detecting QTLs and putative candidate genes involved in budbreak and flowering time in an apple multiparental population. J. Exp. Bot. 2016, 67, 2875–2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allard, R.W. Principles of Plant Breeding, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999; p. 264. [Google Scholar]
- Zhang, L.; Li, H.; Ding, J.; Wu, J.; Wang, J. Quantitative trait locus mapping with background control in genetic populations of clonal F1and double cross. J. Integr. Plant. Boil. 2015, 57, 1046–1062. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Liu, Z.X.; Lu, D.-B.; Liu, Y.Z.; Mao, X.X.; Li, Z.X.; Li, H.J. Development and evaluation of multi-genotype varieties of rice derived from MAGIC lines. Euphytica 2013, 192, 77–86. [Google Scholar] [CrossRef]
- Malijan, A.; Sevilla, M.; Bandillo, N.; Redona, E. Combining ability in a full diallel cross of eight founder lines of a heat tolerance magic population. Philipp. J. Crop Sci. 2011, 36, 213. [Google Scholar]
- Alves, F.C.; Granato, Í.S.C.; Galli, G.; Lyra, D.H.; Fritsche-Neto, R.; de Los Campos, G. Bayesian analysis and prediction of hybrid performance. Plant. Methods 2019, 15, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.M.; Carter, A.H.; Jones, S.S. Evolutionary breeding and climate change. In Genomics and Breeding for Climate-Resilient Crops: Concepts and Strategies; Chittaranjan, K., Ed.; Springer: Berlin, Germany, 2013; pp. 377–389. ISBN 9783642370458. [Google Scholar]
- Raggi, L.; Ciancaleoni, S.; Torricelli, R.; Terzi, V.; Ceccarelli, S.; Negri, V. Evolutionary breeding for sustainable agriculture: Selection and multi-environmental evaluation of barley populations and lines. Field Crop. Res. 2017, 204, 76–88. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S. From participatory to evolutionary plant breeding. In Farmers and Plant Breeding: Current Approaches and Perspectives; Westengem, O.T., Winge, T., Eds.; Routledge: London, UK, 2019; pp. 231–243. ISBN 9780429507335. [Google Scholar]
- Masoni, A.; Calamai, A.; Marini, L.; Benedettelli, S.; Palchetti, E. Constitution of composite cross maize (Zea mays L.) populations selected for the semi-arid environment of South Madagascar. Agronomy 2019, 10, 54. [Google Scholar] [CrossRef] [Green Version]
- Willer, H.; Schlatter, B.; Trávníček, J.; Kemper, L.; Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020; Research Institute of Organic Agriculture (FiBL): Frick, Switzerland, 2020; p. 337. ISBN 9783037361184. [Google Scholar]
- Lusser, M. Workshop on Public-Private Partnerships in Plant Breeding; JRC Publications Repository: Seville, Spain, 2014; p. 68. ISBN 9789279381669. [Google Scholar]
- Moore, G. Strategic pre-breeding for wheat improvement. Nat. Plants 2015, 1, 10–12. [Google Scholar] [CrossRef]
- Khush, G.S. Public-Private Partnership in Agricultural Biotechnology. Insights Global Challenges and Opportunities for the Century Ahead; Reddy, V.D., Rao, K.V., Krishna, K.R., Eds.; BS Publications: Hyderabad, India, 2017; p. 341. ISBN 978-93-5230-186-7. [Google Scholar]
Characteristic | Population Type | ||
---|---|---|---|
Bi-Parental | Germplasm | MAGIC | |
Investment in time to be established | - | + | - - |
Required population size | + | - | - |
Genetic and phenotypic diversity | - | + + | + |
Suitability for coarse mapping | + | - | + |
Suitability for fine mapping | - | + | + |
QTL resolution | - | + | + + |
Required marker density | + | - | - |
Recombination rate | - | + + | + |
Low population sub-structure | + | - | + |
Low LD | + | - | + |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrones, A.; Vilanova, S.; Plazas, M.; Mangino, G.; Pascual, L.; Díez, M.J.; Prohens, J.; Gramazio, P. The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material. Biology 2020, 9, 229. https://doi.org/10.3390/biology9080229
Arrones A, Vilanova S, Plazas M, Mangino G, Pascual L, Díez MJ, Prohens J, Gramazio P. The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material. Biology. 2020; 9(8):229. https://doi.org/10.3390/biology9080229
Chicago/Turabian StyleArrones, Andrea, Santiago Vilanova, Mariola Plazas, Giulio Mangino, Laura Pascual, María José Díez, Jaime Prohens, and Pietro Gramazio. 2020. "The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material" Biology 9, no. 8: 229. https://doi.org/10.3390/biology9080229
APA StyleArrones, A., Vilanova, S., Plazas, M., Mangino, G., Pascual, L., Díez, M. J., Prohens, J., & Gramazio, P. (2020). The Dawn of the Age of Multi-Parent MAGIC Populations in Plant Breeding: Novel Powerful Next-Generation Resources for Genetic Analysis and Selection of Recombinant Elite Material. Biology, 9(8), 229. https://doi.org/10.3390/biology9080229