Leguminous Seeds Powder Diet Reduces the Survival and Development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flour from Leguminous Crop Seeds
2.2. Insecticidal Efficiency of the Flours of the Three Leguminous Seeds
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- OEPP/EPPO. PM 7/13 (2) Trogoderma granarium. Bulletin 2013, 43, 431–448. [Google Scholar]
- OEPP/EPPO. Data sheets on quarantine organisms, Trogoderma granarium. Bulletin 1981, 121, 1–6. [Google Scholar]
- Lowe, S.; Browne, M.; Boudjelas, S.; de Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database; Invasive Species Specialist Group, World Conservation Union (IUCN): New Zealand, 2000. [Google Scholar]
- Athanassiou, G.A.; Thomas, W.P.; Wakas, W. Biology and control of the khapra beetle, Trogoderma granarium, a major pest to global food security. Annu. Rev. Entomol. 2019, 64, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Padin, S.; Dal-Bello, G.; Fabrizio, M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae, and Acanthoscelides obtecus in stored durum wheat and beans treated with Beauveria bassiana. J. Stored Prod. Res. 2002, 38, 69–74. [Google Scholar] [CrossRef]
- Van Damme, E.J.M. Plant lectins as part of the plant defense system against insects. In Induced Plant Resistance to Herbivory; Schaller, A., Ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 285–307. [Google Scholar]
- Vandeborre, G.; Smaggheb, G.; Van Damme, E.J.M. Plant lectins as defense proteins against phytophagous insects. Phytochemistry 2011, 72, 538–1550. [Google Scholar]
- Powell, K.S.; Gatehouse, A.M.R.; Hilder, V.A.; Van Damme, E.J.M.; Peumans, W.J.; Boonjawat, J.; Horsham, K.; Gatehouse, J.A. Different antimetabolic effects of related lectins towards nymphal stages of Nilaparvata lugens. Entomol. Exp. Appl. 1995, 75, 61–65. [Google Scholar] [CrossRef]
- Czapla, T.H.; Lang, B.A. Effect of plant lectins on the larval development of the European corn borer (Lepidoptera: Pyralidae) and the Southern corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 1990, 83, 2480–2485. [Google Scholar] [CrossRef]
- Gatehouse, A.M.R.; Powell, K.S.; Peumans, W.J.; Van Damme, E.J.M.; Gatehouse, J.A. Insecticidal properties of plant lectins: Their potential in plant protection. In Lectins: Biomedical Perspectives; Pusztai, A., Bardocz, S., Eds.; Taylor & Francis Ltd.: London, UK, 1995; pp. 35–57. [Google Scholar]
- Louis, S. Diversité Structurale et D’activité Biologique des Albumines Entomotoxiques de Type 1b des Graines de Légumineuses. Ph.D. Thesis, National Institute of Applied Sciences of Lyon I.N.S.A, Lyon, France, 2004. [Google Scholar]
- Macedo, M.L.R.; Damico, D.C.; Freire, M.; Toyama, M.H.; Marangoni, S.; Novello, J.C. Purification and characterization of an N-acetylglucosamine-binding lectin from Koelreuteria paniculata seeds and its effect on the larval development of Callosobruchus maculatus (Coleoptera: Bruchidae) and Anagasta kuehniella (Lepidoptera: Pyralidae). J. Agric. Food Chem. 2003, 51, 2980–2986. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; Freire, M.G.M.; da Silva, M.B.; Coelho, L.C.B.B. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2007, 146, 486–498. [Google Scholar] [CrossRef]
- Janzen, D.H.; Juster, H.B.; Leiner, I.E. Insecticidal action of the phytohemagglutinin in black beans on bruchid beetle. Science 1976, 192, 795–796. [Google Scholar] [CrossRef]
- Shukle, R.H.; Murdock, L.L. Lipoxygenase, trypsin inhibitor, and lectin from soybeans: Effects on larval growth of Manduca sexta (Lepidoptera: Sphingidae). Environ. Entomol. 1983, 12, 787–791. [Google Scholar] [CrossRef]
- Habibi, J.; Backus, E.A.; Czapla, T.H. Plant lectins affect survival of the potato leafhopper (Homoptera: Cicadellidae). J. Econ. Entomol. 1993, 86, 945–951. [Google Scholar] [CrossRef]
- Gatehouse, A.M.R.; Hilder, V.A.; Gatehouse, J.A. Antimetabolic effects of plant lectins and plant and fungal enzymes on the nymphal stages of two important rice pests, Nilaparvata lugens and Nephotettix cinciteps. Entomol. Exp. Appl. 1993, 66, 119–126. [Google Scholar]
- Law, I.J.; Kfir, R. Effects of mannose-binding lectin from peanut and pea on the stem borer Chilo partellus. Entomol. Exp. Appl. 1997, 82, 261–265. [Google Scholar] [CrossRef]
- Higgins, T.J.V.; Chandler, T.E.; Randall, P.J.; Spencer, D.; Beach, R.L.; Blogrove, R.J.; Kortt, A.A.; Inglis, A.S. Gene structure, protein structure and regulation of the synthesis of sulphur rich protein in pea seeds. J. Biol. Chem. 1986, 261, 11124–11130. [Google Scholar]
- Watanabe, Y.; Barbashov, S.F.; Komatsu, S.; Hemmings, A.M.; Miyagi, M.; Tsunasawa, S.; Hirano, H. A peptide that stimulates phosphorylation of the plant insulin-binding protein. Isolation, primary structure, and cDNA cloning. Eur. J. Bchem. 1994, 224, 167–172. [Google Scholar] [CrossRef]
- Buxton, T.; Eziah, V.Y.; Owusu, E.O. Bioactivities of Powders of four plants against Prostephanus truncatus Horn. (Coleoptera: Bostrichidae) and Tribolium Castaneum Herbst (Coleoptera: Tenebrionidae). West Afr. J. Appl. Ecol. 2014, 22, 95–101. [Google Scholar]
- Udo, I.O. Potential of Zanthoxylum xanthoxyloides (Lam) for the control of stored product insect pests. J. Stored Prod. Postharvest Res. 2011, 2, 40–44. [Google Scholar]
- Epidi, T.T.; Odili, E.O. Biocidal activity of selected plant powders against Tribolium castaneum Herbst in stored groundnut (Arachis hypogaea L.). Afr. J. Environ. Sci. Technol. 2009, 3, 001–005. [Google Scholar]
- Rahbe, Y.; Sauvion, N.; Febvay, G.; Peumans, W.J.; Gatehouse, A.M.R. Toxicity of lectins and processing of ingested proteins in the pea aphid, Acrythosiphon pisum. Entomol. Exp. Appl. 1995, 76, 143–155. [Google Scholar] [CrossRef]
- Powell, K.S.; Spence, J.; Brarathi, M.; Gatehouse, J.A.; Gatehouse, A.M.R. Immunohistochemical and developmental studies to elucidate the mechanism of action of the snowdrop lectin on the rice brown planthopper, Nilaparvata lugens (Stal). J. Insect Physiol. 1998, 44, 529–539. [Google Scholar] [CrossRef]
- Fitches, E.; Gatehouse, A.M.R.; Gatehouse, J.A. Effects of snowdrop lectins (GNA) delivered via artificial diet and in transgenic plants on the development of tomato moth (Lacanobia oleracea) larvae in laboratory and glasshouse trials. J. Insect Physiol. 1997, 43, 727–739. [Google Scholar] [CrossRef]
- Sharma, H.C.; Sharma, K.K.; Crouch, J.H. Genetic transformation of crop plants for insect resistance: Potential and limitations. CRC Crit. Rev. Plant Sci. 2004, 23, 47–72. [Google Scholar] [CrossRef]
- Elden, T.C. Influence of a cysteine proteinase inhibitor on alfafa weevil (Coleoptera: Curculionidae) growth and development over successive generations. J. Entomol. Sci. 2000, 35, 70–76. [Google Scholar] [CrossRef]
- Wang, W.; Hause, B.; Peumans, W.J.; Smagghe, G.; Mackie, A.; Fraser, R.; Van Damme, E.J.M. The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiol. 2003, 132, 1322–1334. [Google Scholar] [CrossRef] [Green Version]
- Melander, M.; Ahman, I.; Kamnert, I.; Strömdahl, A.C. Pea lectin expressed transgenically in oilseed rape reduces growth rate of pollen beetle larvae. Transgenic Res. 2003, 12, 555–567. [Google Scholar] [CrossRef]
- Sprawka, I.; Golawska, S. Effect of the lectin PHA on the feeding behavior of the grain aphid. J. Pest Sci. 2010, 83, 149–155. [Google Scholar] [CrossRef]
- Zapata, N.; Van Damme, E.J.M.; Vargas, M.; Devotto, L.; Smagghe, G. Insecticidal activity of a protein extracted from bulbs of Phycella australis Ravenna against the aphids Acyrthosiphon pisum Harris and Myzus persicae Sulzer. Chil. J. Agric. Res. 2016, 76, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Lagarda-Diaz, I.; Guzman, A.; Vazquez-Moreno, L. Legume Lectins: Proteins with Diverse Applications. Int. J. Mol. Sci. 2017, 18, 1242. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Montaño, E.A.; Vega-Castro, N.A. Plant Lectins with Insecticidal and Insectistatic Activities. IntechOpen 2018. [Google Scholar] [CrossRef] [Green Version]
- Sharon, N.; Lis, H. Legume lectins a large family of homologous proteins. FASEB J. 1990, 4, 3198–3208. [Google Scholar] [CrossRef] [PubMed]
- Van Damme, E.J.M.; Peuman, W.J.; Pusztai, A.; Bardocz, S. Handbook of Plant Lectins: Properties and Boiomedical Applications; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Nasi, A.; Picariello, G.; Ferranti, P. Proteomic approaches to study structure, functions, and toxicity of legume seeds lectins. Perspectives for the assessment of food quality and safety. J. Proteom. 2009, 72, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows; IBM Corp.: Armonk, NY, USA, 2015; Available online: http://www-01.ibm.com/support/docview.wss?uid=swg21476197 (accessed on 8 March 2019).
- Cox, D.R. Regression Models and Life-Tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–202. [Google Scholar] [CrossRef]
- Macedo, M.L.R.; Oliveira, C.F.R.; Oliveira, C.T. Insecticidal activity of plant lectins and potential application in crop protection. Molecules 2015, 20, 2014–2033. [Google Scholar] [CrossRef] [Green Version]
- Casas, Z.Y.; Reyes-Montaño, E.A.; Vega, N.A. Lectinas con dominio de Leguminosa: Características estructurales y utilidad como agentes insectistáticos e insecticidas. Chil. J. Agric. Anim. Sci. 2016, 32, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Michiels, K.; Van Damme, E.J.M.; Smagghe, G. Plant–insect interactions: What can we learn from plant lectins? Arch. Insect Biochem. Physiol. 2010, 73, 193–212. [Google Scholar] [CrossRef]
- Lagarda-Diaz, I.; Guzman-Partida, A.M.; Urbano-Hernandez, G.; Ortega-Neblas, M.M.; Robles-Burgueno, M.R.; Winzerling, J.; Vazquez-Moreno, L. Insecticidal action of PF2 lectin from Olneya tesota (palo fierro) against Zabrotes subfasciatus larvae and midgut glycoconjugate binding. J. Agric. Food Chem. 2009, 57, 689–694. [Google Scholar] [CrossRef]
- Fatimé, A.A. Amélioration de la Conservation de la Farine de Sorgho par L’incorporation des Huiles Essentielles et de la Farine de deux Légumineuses Alimentaires. Master’s Thesis, ENSAI, Université de Ngaoundéré, Yaounde, Cameroon, 2007. [Google Scholar]
- Tamgno, B.R. Activité Insecticide d’une Formulation Poudreuse à base de la Farine de Phaseolus vulgaris (L.) sur Sitophilus oryzae (L.) (Coleoptera: Curculionidae). Master’s Thesis, Département B.P.A. Université de Yaoundé I, Yaoundé, Cameroon, 2009. [Google Scholar]
- Singh, K.; Kaur, M.; Rup, P.J.; Singh, J. Exploration for anti-insect properties of lectin from seeds of soybean (Glycine max) using Bactrocera cucurbitae as a model. Phytoparasitica 2006, 34, 463–473. [Google Scholar] [CrossRef]
- Karbache, F.; Mouhouche, F.; Fleurat-Lessard, F. Deterrant and insecticidal properties of bean seed (Phaseolus vulgaris L.) whole meal or protein extract incorporated into the diet of Callosobrushus maculatus (F.) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2011, 47, 197–203. [Google Scholar] [CrossRef]
- Southon, W.; Bisby, F.A.; Buckingham, J.; Harborne, J.B. Phytochemical Dictionary of Leguminoseae; Chapman and Hall: London, UK, 2000; p. 854. [Google Scholar]
- Sprawka, I.; Goławska, S.; Goławski, A.; Chrzanowski, G.; Czerniewicz, P.; Sytykiewicz, H. Entomotoxic action of jackbean lectin (Con A) in bird cherry-oat aphid through the effect on insect enzymes. J. Plant Interact. 2014, 9, 425–433. [Google Scholar] [CrossRef]
Treatment | Pupation (% ± sd) | Adult Emergence (% ± sd) | Median Lethal Time (days ± sd) (Chi-square = 24.999, df = 1, p < 0.001 Breslow (Generalized Wilcoxon)) |
---|---|---|---|
PV 25 | 69.2 ± 0.9 b | 32.8 ± 3.8 c | 12.7 ± 0.3 b |
PV 50 | 53.8 ± 1.8 d | 18.7 ± 3.7 d | 11.4 ± 0.2 c |
PV 75 | 3.5 ± 1.7 g | 0 ± 0 e | 10.4 ± 0.5 d |
PV 100 | 2.3 ± 2.4 g | 0 ± 0 e | 9.03 ± 0.2 e |
VF 25 | 61.6 ± 2.9 c | 48.6 ± 2.7 b | 12.2 ± 0.4 b |
VF 50 | 32.7 ± 1.8 | 26.6 ± 3.7 c | 10.8 ± 0.3 d |
VF 75 | 2.9 ± 0.8 g | 0 ± 0 e | 9.25 ± 0.4 e |
VF 100 | 0.8 ± 0.7 g | 0 ± 0 e | 8.87 ± 0.1 e |
GM 25 | 63.2 ± 4.8 b | 31.4 ± 2.7 c | 13.1 ± 0.1 b |
GM 50 | 39.7 ± 4.6 e | 18.3 ± 1.3 d | 10.3 ± 0.3 d |
GM 75 | 3.8 ± 1.7 g | 0 ± 0 e | 9.89 ± 0.2 e |
GM 100 | 0.8 ± 0.2 g | 0 ± 0 e | 9.13 ± 0.3 e |
Control | 92.7 ± 1.5 a | 87.7 ± 4.9 a | 15.6 ± 0.2 α |
Treatment | B † | Std | Sig | Exp(B) †† | 95.0% CI for Exp(B) | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
PV 25 | −1.377 | 0.375 | 0.530 | 0.252 | 0.121 | 0.526 |
PV 50 | −1.028 | 0.375 | 0.379 | 0.358 | 0.172 | 0.745 |
PV 75 | 0.176 | 0.280 | 0.006 | 1.192 | 0.688 | 2.065 |
PV 100 | 0.252 | 0.287 | 0.000 | 1.287 | 0.733 | 2.258 |
VF 25 | −0.635 | 0.310 | 0.040 | 0.457 | 0.289 | 0.973 |
VF 50 | −0.783 | 0.327 | 0.017 | 0.530 | 0.241 | 0.868 |
VF 75 | 0.084 | 0.327 | 0.002 | 0.909 | 0.645 | 1.575 |
VF 100 | 0.096 | 0.290 | 0.002 | 0.957 | 0.741 | 1.867 |
GM 25 | −1.480 | 0.390 | 0.892 | 0.228 | 0.106 | 0.488 |
GM 50 | −1.088 | 0.352 | 0.792 | 0.337 | 0.169 | 0.672 |
GM 75 | 0.038 | 0.283 | 0.002 | 0.927 | 0.526 | 1.633 |
GM 100 | 0.076 | 0.289 | 0.002 | 0.962 | 0.556 | 1.676 |
Control | −13.971 | 157.535 | 0.929 | 0.000 | 0.000 | 1.063E+128 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantzoukas, S.; Korbou, G.; Magita, A.; A. Eliopoulos, P.; Poulas, K. Leguminous Seeds Powder Diet Reduces the Survival and Development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Biology 2020, 9, 204. https://doi.org/10.3390/biology9080204
Mantzoukas S, Korbou G, Magita A, A. Eliopoulos P, Poulas K. Leguminous Seeds Powder Diet Reduces the Survival and Development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Biology. 2020; 9(8):204. https://doi.org/10.3390/biology9080204
Chicago/Turabian StyleMantzoukas, Spiridon, Georgia Korbou, Alexandra Magita, Panagiotis A. Eliopoulos, and Konstantinos Poulas. 2020. "Leguminous Seeds Powder Diet Reduces the Survival and Development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae)" Biology 9, no. 8: 204. https://doi.org/10.3390/biology9080204
APA StyleMantzoukas, S., Korbou, G., Magita, A., A. Eliopoulos, P., & Poulas, K. (2020). Leguminous Seeds Powder Diet Reduces the Survival and Development of the Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae). Biology, 9(8), 204. https://doi.org/10.3390/biology9080204