Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Hand-Grip Strength
2.3. Spirometry
2.4. Measurement of Plasma Biomarkers
2.5. Statistical Analysis
3. Results
3.1. Characteristics of the Participants
3.2. Correlation of Biomarkers with FEV1%
3.3. Relationship of Plasma Biomarkers with Hand-Grip Strength and ASMI
3.4. Relationship of Plasma Biomarkers with Walking Speed and Daily Step Count
3.5. Relationship of Hand-Grip Strength with ASMI
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jaitovich, A.; Barreiro, E. Skeletal Muscle Dysfunction in Chronic Obstructive Pulmonary Disease. What We Know and Can Do for Our Patients. Am. J. Respir. Crit. Care Med. 2018, 198, 175–186. [Google Scholar] [CrossRef]
- Barreiro, E. Skeletal Muscle Dysfunction in COPD: Novelties in The Last Decade. Arch. Bronconeumol. 2017, 53, 43–44. [Google Scholar] [CrossRef] [Green Version]
- Karpman, C.; Benzo, R. Gait speed as a measure of functional status in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis. 2014, 9, 1315–1320. [Google Scholar] [CrossRef] [Green Version]
- Leong, D.P.; Teo, K.K.; Rangarajan, S.; Lopez-Jaramillo, P.; Avezum, A., Jr.; Orlandini, A.; Seron, P.; Ahmed, S.H.; Rosengren, A.; Kelishadi, R.; et al. Prognostic value of grip strength: Findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 2015, 386, 266–273. [Google Scholar] [CrossRef]
- Jeong, M.; Kang, H.K.; Song, P.; Park, H.K.; Jung, H.; Lee, S.S.; Koo, H.K. Hand grip strength in patients with chronic obstructive pulmonary disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2385–2390. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kim, S.J.; Han, Y.; Ryu, Y.J.; Lee, J.H.; Chang, J.H. Hand grip strength and chronic obstructive pulmonary disease in Korea: An analysis in KNHANES VI. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 2313–2321. [Google Scholar] [CrossRef] [Green Version]
- Qaisar, R.; Karim, A.; Muhammad, T. Circulating Biomarkers of Handgrip Strength and Lung Function in Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2020, 15, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Nedergaard, A.; Karsdal, M.A.; Sun, S.; Henriksen, K. Serological muscle loss biomarkers: An overview of current concepts and future possibilities. J. Cachexia Sarcopenia Muscle 2013, 4, 1–17. [Google Scholar] [CrossRef]
- Fujimoto, K.; Inage, K.; Eguchi, Y.; Orita, S.; Suzuki, M.; Kubota, G.; Sainoh, T.; Sato, J.; Shiga, Y.; Abe, K.; et al. Use of Bioelectrical Impedance Analysis for the Measurement of Appendicular Skeletal Muscle Mass/Whole Fat Mass and Its Relevance in Assessing Osteoporosis among Patients with Low Back Pain: A Comparative Analysis Using Dual X-ray Absorptiometry. Asian Spine J. 2018, 12, 839–845. [Google Scholar] [CrossRef] [Green Version]
- Drey, M.; Sieber, C.C.; Bauer, J.M.; Uter, W.; Dahinden, P.; Fariello, R.G.; Vrijbloed, J.W. C-terminal Agrin Fragment as a potential marker for sarcopenia caused by degeneration of the neuromuscular junction. Exp. Gerontol. 2013, 48, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Lorenzi, M.; Martone, A.M.; Tosato, M.; Drey, M.; D’Angelo, E.; Capoluongo, E.; Russo, A.; Bernabei, R.; et al. Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older multimorbid community-dwellers: Results from the ilSIRENTE study. Exp. Gerontol. 2016, 79, 31–36. [Google Scholar] [CrossRef]
- Steinbeck, L.; Ebner, N.; Valentova, M.; Bekfani, T.; Elsner, S.; Dahinden, P.; Hettwer, S.; Scherbakov, N.; Schefold, J.C.; Sandek, A.; et al. Detection of muscle wasting in patients with chronic heart failure using C-terminal agrin fragment: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF). Eur. J. Heart Fail. 2015, 17, 1283–1293. [Google Scholar] [CrossRef]
- Scherbakov, N.; Knops, M.; Ebner, N.; Valentova, M.; Sandek, A.; Grittner, U.; Dahinden, P.; Hettwer, S.; Schefold, J.C.; von Haehling, S.; et al. Evaluation of C-terminal Agrin Fragment as a marker of muscle wasting in patients after acute stroke during early rehabilitation. J. Cachexia Sarcopenia Muscle 2016, 7, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzetti, E.; Calvani, R.; Lorenzi, M.; Marini, F.; D’Angelo, E.; Martone, A.M.; Celi, M.; Tosato, M.; Bernabei, R.; Landi, F. Serum levels of C-terminal agrin fragment (CAF) are associated with sarcopenia in older hip fractured patients. Exp. Gerontol. 2014, 60, 79–82. [Google Scholar] [CrossRef]
- Xiao, Z.; Shu, J.; Zhou, F.; Han, Y. JQ1 is a potential therapeutic option for COPD patients with agrin overexpression. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, L690–L694. [Google Scholar] [CrossRef]
- Asea, A. Stress proteins and initiation of immune response: Chaperokine activity of hsp72. Exerc. Immunol. Rev. 2005, 11, 34–45. [Google Scholar]
- Ogawa, K.; Kim, H.K.; Shimizu, T.; Abe, S.; Shiga, Y.; Calderwood, S.K. Plasma heat shock protein 72 as a biomarker of sarcopenia in elderly people. Cell Stress Chaperones 2012, 17, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Mirza, S.; Clay, R.D.; Koslow, M.A.; Scanlon, P.D. COPD Guidelines: A Review of the 2018 GOLD Report. Mayo Clin. Proc. 2018, 93, 1488–1502. [Google Scholar] [CrossRef] [Green Version]
- National Collaborating Centre for Chronic Conditions. Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax 2004, 59 (Suppl. 1), 1–232. [Google Scholar]
- Daryadel, A.; Haubitz, M.; Figueiredo, M.; Steubl, D.; Roos, M.; Mader, A.; Hettwer, S.; Wagner, C.A. The C-Terminal Fragment of Agrin (CAF), a Novel Marker of Renal Function, Is Filtered by the Kidney and Reabsorbed by the Proximal Tubule. PLoS ONE 2016, 11, e0157905. [Google Scholar] [CrossRef]
- Hou, Y.; Xie, Z.; Zhao, X.; Yuan, Y.; Dou, P.; Wang, Z. Appendicular skeletal muscle mass: A more sensitive biomarker of disease severity than BMI in adults with mitochondrial diseases. PLoS ONE 2019, 14, e0219628. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Culver, B.H.; Graham, B.L.; Coates, A.L.; Wanger, J.; Berry, C.E.; Clarke, P.K.; Hallstrand, T.S.; Hankinson, J.L.; Kaminsky, D.A.; MacIntyre, N.R.; et al. Recommendations for a Standardized Pulmonary Function Report. An Official American Thoracic Society Technical Statement. Am. J. Respir. Crit. Care Med. 2017, 196, 1463–1472. [Google Scholar] [CrossRef]
- Zaigham, S.; Johnson, L.; Wollmer, P.; Engstrom, G. Measures of low lung function and the prediction of incident COPD events and acute coronary events. Respir. Med. 2018, 144, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Safka, K.A.; Wald, J.; Wang, H.; McIvor, L.; McIvor, A. GOLD Stage and Treatment in COPD: A 500 Patient Point Prevalence Study. Chronic Obstr. Pulm. Dis. 2016, 4, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A. Body composition and hand grip strength in male brick-field workers. Malays J. Med. Sci. 2008, 15, 31–36. [Google Scholar]
- Balazs Odler, V.S. Gabor Horvath, Veronika Müller. Correlation between extracellular heat shock protein 72 and clinical parameters including exhaled oxygen level in COPD. Eur. Respir. J. 2015, 46. [Google Scholar] [CrossRef]
- Arellano-Orden, E.; Calero-Acuna, C.; Cordero, J.A.; Abad-Arranz, M.; Sanchez-Lopez, V.; Marquez-Martin, E.; Ortega-Ruiz, F.; Lopez-Campos, J.L. Specific networks of plasma acute phase reactants are associated with the severity of chronic obstructive pulmonary disease: A case-control study. Int. J. Med. Sci. 2017, 14, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Lee, P.L.; Lee, K.Y.; Cheng, T.M.; Chuang, H.C.; Wu, S.M.; Feng, P.H.; Liu, W.T.; Chen, K.Y.; Ho, S.C. Relationships of Haptoglobin Phenotypes with Systemic Inflammation and the Severity of Chronic Obstructive Pulmonary Disease. Sci. Rep. 2019, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Passey, S.L.; Hansen, M.J.; Bozinovski, S.; McDonald, C.F.; Holland, A.E.; Vlahos, R. Emerging therapies for the treatment of skeletal muscle wasting in chronic obstructive pulmonary disease. Pharmacol. Ther. 2016, 166, 56–70. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, R.; Deschenes, M.R.; Sandri, M. Neuromuscular junction degeneration in muscle wasting. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 177–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stephan, A.; Mateos, J.M.; Kozlov, S.V.; Cinelli, P.; Kistler, A.D.; Hettwer, S.; Rulicke, T.; Streit, P.; Kunz, B.; Sonderegger, P. Neurotrypsin cleaves agrin locally at the synapse. FASEB J. 2008, 22, 1861–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sataranatarajan, K.; Qaisar, R.; Davis, C.; Sakellariou, G.K.; Vasilaki, A.; Zhang, Y.; Liu, Y.; Bhaskaran, S.; McArdle, A.; Jackson, M.; et al. Neuron specific reduction in CuZnSOD is not sufficient to initiate a full sarcopenia phenotype. Redox Biol. 2015, 5, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaisar, R.; Bhaskaran, S.; Premkumar, P.; Ranjit, R.; Natarajan, K.S.; Ahn, B.; Riddle, K.; Claflin, D.R.; Richardson, A.; Brooks, S.V.; et al. Oxidative stress-induced dysregulation of excitation-contraction coupling contributes to muscle weakness. J. Cachexia Sarcopenia Muscle 2018, 9, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Kapchinsky, S.; Vuda, M.; Miguez, K.; Elkrief, D.; de Souza, A.R.; Baglole, C.J.; Aare, S.; MacMillan, N.J.; Baril, J.; Rozakis, P.; et al. Smoke-induced neuromuscular junction degeneration precedes the fibre type shift and atrophy in chronic obstructive pulmonary disease. J. Physiol. 2018, 596, 2865–2881. [Google Scholar] [CrossRef]
- Lee, L.; Patel, T.; Costa, A.; Bryce, E.; Hillier, L.M.; Slonim, K.; Hunter, S.W.; Heckman, G.; Molnar, F. Screening for frailty in primary care: Accuracy of gait speed and hand-grip strength. Can. Fam. Physician 2017, 63, e51–e57. [Google Scholar]
- Perreault, K.; Courchesne-Loyer, A.; Fortier, M.; Maltais, M.; Barsalani, R.; Riesco, E.; Dionne, I.J. Sixteen weeks of resistance training decrease plasma heat shock protein 72 (eHSP72) and increase muscle mass without affecting high sensitivity inflammatory markers’ levels in sarcopenic men. Aging Clin. Exp. Res. 2016, 28, 207–214. [Google Scholar] [CrossRef]
- Bautmans, I.; Njemini, R.; Predom, H.; Lemper, J.C.; Mets, T. Muscle endurance in elderly nursing home residents is related to fatigue perception, mobility, and circulating tumor necrosis factor-alpha, interleukin-6, and heat shock protein 70. J. Am. Geriatr. Soc. 2008, 56, 389–396. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, H.; Li, W.; Liang, Z.; Zhang, D.; Liu, L.; Tong, W.; Cai, S.X.; Zou, F. Increased heat shock protein 70 levels in induced sputum and plasma correlate with severity of asthma patients. Cell Stress Chaperones 2011, 16, 663–671. [Google Scholar] [CrossRef]
- Harris-Love, M.O.; Benson, K.; Leasure, E.; Adams, B.; McIntosh, V. The Influence of Upper and Lower Extremity Strength on Performance-Based Sarcopenia Assessment Tests. J. Funct. Morphol. Kinesiol. 2018, 3, 53. [Google Scholar] [CrossRef] [Green Version]
Non-COPD | COPD GOLD 1 and 2 | COPD GOLD 3 and 4 | |
---|---|---|---|
Age at Baseline (Years) | 66.4 ± 4.7 | 67.3 ± 5.2 | 69.1 ± 4.8 |
Body Composition | |||
BMI (Kg/m2) | (0) 26.2 ± 5.3 | (0) 25.4 ± 4.5 | (0) 24.6 ± 4.3 |
(12) 26.1 ± 5.1 | (12) 25.1 ± 4.9 | (12) 25 ± 5.2 | |
(24) 26 ± 4.3 | (24) 24.4 ± 4.7 | (24) 24.8 ± 4.4 | |
ASM (Kg) | (0) 23.5 ± 4.3 | (0) 22.6 ± 3.7 | (0) 22.4 ± 4 |
(12) 22.8 ± 5.1 | (12) 22 ± 4.8 | (12) 22.5 ± 4.1 | |
(24) 22.1 ± 4.3 | (24) 22.1 ± 5.1 | (24) 21 ± 3.7 | |
ASMI (Kg/m2) | (0) 8 ± 1.5 | (0) 7.9 ± 1.3 | (0) 7.8 ± 1.2 |
(12) 7.9 ± 1.6 | (12) 7.7 ± 1.4 | (12) 7.8 ± 1.1 | |
(24) 8.1 ± 1.4 | (24) 7.6 ± 0.9 * | (24) 7.5 ± 0.8 * | |
Percent Fat | (0) 41 ± 6.2 | (0) 40.6 ± 5.4 | (0) 41.3 ± 6.4 |
(12) 42.8 ± 6.4 | (12) 42.4 ± 6.1 | (12) 43.6 ± 5.6 | |
(24) 43.8 ± 5.8 | (24) 44.1 ± 4.3 | (24) 45.2 ± 6.4 | |
Physical Parameters | |||
HGS (kg) | (0) 41.5 ± 5.4 | (0) 36.4 ± 4.3 * | (0) 29.6 ± 5.2 * # |
(12) 38.4.8 ± 6.4 | (12) 33.1 ± 6.3 * | (12) 25.5 ± 4.5 * # | |
(24) 37.4 ± 4.3 α | (24) 29.4 ± 5.1 * α | (24) 22.1 ± 4.1 * # α | |
HGS/ASM | (0) 1.76 ± 0.3 | (0) 1.61 ± 0.14 * | (0) 1.34 ± 0.23 * # |
(12) 1.68 ± 0.16 | (12) 1.5 ± 0.15 * | (12) 1.13 ± 0.18 * # α | |
(24) 1.55 ± 0.21 α β | (24) 1.33 ± 0.13 * α | (24) 1.05 ± 0.11 * # α | |
10 min Walking Speed (m/s) | (0) 1.18 ± 0.28 | (0) 1.09 ± 0.2 | (0) 1.01 ± 0.28 * |
(12) 1.15 ± 0.26 | (12) 1.02 ± 0.19 * | (12) 0.95 ± 0.26 * | |
(24) 1.1 ± 0.22 | (24) 1.01 ± 0.17 | (24) 0.91 ± 0.22 * # α | |
Daily Steps Count | (0) 7787 ± 1037 | (0) 6373 ± 1098 | (0) 4252 ± 636 * # |
(12) 7598 ± 985 | (12) 5943 ± 949 * | (12) 3673 ± 512 * # | |
(24) 7614 ± 1014 | (24) 5611 ± 869 * α | (24) 3361 ± 496 * # α | |
Spirometry | |||
FEV1% | (0) 96.41 ± 5.7 | (0) 64.73 ± 6.3 * | (0) 43.7 ± 5.2 * # |
(12) 95.12 ± 6.4 | (12) 59 ± 5.7 * | (12) 41.8 ± 4.1 * # | |
(24) 96.54 ± 4.3 | (24) 56.34 ± 4.4 * α | (24) 39.3 ± 4.2 * # | |
PEFR% | (0) 90.91 ± 5.5 | (0) 74.83 ± 6.3 * | (0) 53.48 ± 6.4 * # |
(12) 88.82 ± 6.4 | (12) 71.31 ± 7.3 * | (12) 51.33 ± 4.1 * # | |
(24) 89.37 ± 5.4 | (24) 67.43 ± 5.5 * α | (24) 48.43 ± 3.6 * # | |
Plasma Biomarkers | |||
eHSP72 (ng/mL) | (0) 2.11 ± 0.7 | (0) 2.19 ± 0.8 | (0) 2.31 ± 0.5 * |
(12) 2.22 ± 0.8 | (12) 2.34 ± 0.6 | (12) 2.41 ± 0.5 * | |
(24) 2.29 ± 0.6 α | (24) 2.38 ± 0.7 α | (24) 2.55 ± 0.6 * | |
CAF22 (pM) | (0) 88.2 ± 15.4 | (0) 229.3 ± 44.3 * | (0) 334 ± 69.1 * # |
(12) 104.3 ± 33 | (12) 256.3 ± 65 * | (12) 368.3 ± 83 * # | |
(24) 122.8 ± 31 | (24) 273.4 ± 44 * α | (24) 389.5 ± 42 * α # β |
Non-COPD | COPD GOLD 1 and 2 | COPD GOLD 3 and 4 | All Participants | ||
---|---|---|---|---|---|
Baseline | eHSP72 | 0.015 (0.144) | 0.081 (0.061) | 0.093 (0.034) | 0.155 (0.023) |
CAF22 | 0.053 (0.064) | 0.094 (0.054) | 0.126 (0.006) | 0.273 (<0.001) | |
12-Month | eHSP72 | 0.024 (0.117) | 0.145 (0.071) | 0.139 (0.053) | 0.094 (0.005) |
CAF22 | 0.035 (0.061) | 0.106 (0.051) | 0.149 (0.036) | 0.389 (<0.001) | |
24-Month | eHSP72 | 0.031 (0.196) | 0.122 (0.041) | 0.081 (0.043) | 0.076 (0.066) |
CAF22 | 0.089 (0.063) | 0.137 (0.049) | 0.143 (0.035) | 0.283 (0.005) |
Non-COPD | COPD GOLD 1 and 2 | COPD GOLD 3 and 4 | All Participants | |||
---|---|---|---|---|---|---|
Baseline | eHSP72 CAF22 | Walking speed | 0.034 (0.074) | 0.027 (0.128) | 0.026 (0.094) | 0.052 (0.042) |
Step count | 0.013 (0.127) | 0.024 (0.134) | 0.041 (0.106) | 0.062 (0.055) | ||
Walking speed | 0.223 (0.034) | 0.151 (0.053) | 0.252 (0.024) | 0.305 (<0.001) | ||
Step count | 0.149 (0.067) | 0.212 (0.004) | 0.241 (0.003) | 0.364 (<0.001) | ||
12-month | eHSP72 CAF22 | Walking speed | 0.038 (0.077) | 0.047 (0.113) | 0.011 (0.123) | 0.082 (0.048) |
Step count | 0.035 (0.171) | 0.106 (0.091) | 0.063 (0.137) | 0.089 (0.077) | ||
Walking speed | 0.161 (0.004) | 0.246 (0.014) | 0.202 (0.013) | 0.395 (<0.001) | ||
Step count | 0.217 (0.007) | 0.143 (0.003) | 0.159 (0.002) | 0.263 (<0.001) | ||
24-month | eHSP72 CAF22 | Walking speed | 0.006 (0.186) | 0.019 (0.106) | 0.055 (0.087) | 0.076 (0.076) |
Step count | 0.024 (0.133) | 0.037 (0.119) | 0.083 (0.085) | 0.183 (0.033) | ||
Walking speed | 0.147 (0.003) | 0.164 (0.021) | 0.123 (0.005) | 0.329 (<0.001) | ||
Step count | 0.084 (0.041) | 0.135 (0.017) | 0.117 (0.022) | 0.236 (<0.001) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaisar, R.; Karim, A.; Muhammad, T. Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease. Biology 2020, 9, 166. https://doi.org/10.3390/biology9070166
Qaisar R, Karim A, Muhammad T. Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease. Biology. 2020; 9(7):166. https://doi.org/10.3390/biology9070166
Chicago/Turabian StyleQaisar, Rizwan, Asima Karim, and Tahir Muhammad. 2020. "Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease" Biology 9, no. 7: 166. https://doi.org/10.3390/biology9070166
APA StyleQaisar, R., Karim, A., & Muhammad, T. (2020). Plasma CAF22 Levels as a Useful Predictor of Muscle Health in Patients with Chronic Obstructive Pulmonary Disease. Biology, 9(7), 166. https://doi.org/10.3390/biology9070166