Development of the Biomechanical Technologies for the Modeling of Major Segments of the Human Body: Linking the Past with the Present
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Development of Body Measurement Techniques and Methods for Biomechanical Purposes
Early Studies
3.2. Eighteenth and Nineteenth Centuries
3.3. Post World War II
3.4. Modern and Contemporary Times
3.4.1. Head Segment
3.4.2. Trunk Segment
3.4.3. Localization of the Whole Body Center of Mass
4. Conclusions
Final Considerations
Funding
Conflicts of Interest
References
- Da Vinci, L. The Vitruvian Man. Available online: https://leonardodavinci.stanford.edu (accessed on 20 September 2020).
- Livio, M. The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number (First Trade Paperback ed.); Broadway Books: New York, NY, USA, 2003. [Google Scholar]
- Borrelli, A. De Motu Animalium; Editio Princeps: Rome, Italy, 1680. [Google Scholar]
- Harless, E. The Static Moments of the Component Masses of the Human Body. Wrigth-Patterson Air Force Base. Foreign Technology Division. 1962. Available online: https://apps.dtic.mil/dtic/tr/fulltext/u2/279649.pdf (accessed on 29 September 2020).
- Zeising, A. Neue Lehre von den Proportionen des Menschlichen Körpers (1854); Vero Verlag: Nordersted, Germany, 2014. [Google Scholar]
- Neufert, E. Architects’ Data; Blackwell Science: Hoboken, NJ, USA, 2010. [Google Scholar]
- Abu-Taieh, E.; Al-Bdour, H.S. A Human Body Mathematical Model Biometric Using Golden Ratio: A New Algorithm. In Machine Learning and Biometrics; Jucheng, Y., Dong Sun, P., Sook, Y., Yarui, C., Chuanlei, Z., Eds.; IntechOpen: London, UK, 2018; Available online: https://www.intechopen.com/books/machine-learning-and-biometrics/a-human-body-mathematical-model-biometric-using-golden-ratio-a-new-algorithm (accessed on 29 September 2020).
- Braune, W.; Fischer, O. The Center of Gravity of the Human Body as Related to the Equipment of the German Infantryman; Treatises of the Math-Physical Class of the Royal Academy of Sciences of Saxony: Leipzig, Germany, 1889. (In German) [Google Scholar]
- Bernstein, N.A.; Salzgeber, O.A.; Pavlenko, P.P.; Gurvich, N.A. Determination of Location of the Centers of Gravity and Mass of the Links of the Living Human Body; All-Union Institute of Experimental Medicine: Moscow, Russia, 1931. (In Russian) [Google Scholar]
- Dempster, W.T. Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body, with Special Reference to the Limbs; WADC Technical Report, Carpenter Litho & Printing: Springfield, OH, USA, 1955. [Google Scholar]
- Contini, R.; Drillis, R.J.; Bluestein, M. Determination of Body Segment Parameters. Hum. Factors 1963, 5, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Inman, V.T.; Ralston, H.J.; Todd, F. Human Walking; William and Wilkins: Baltimore, MD, USA, 1981. [Google Scholar]
- Hanavan, E.P., Jr. A mathematical model of the human body. In AMRLTR, Ames Research Laboratory Technical Report 1964; Ames Research Laboratory: Mountain View, CA, USA, 1964; Volume 5, pp. 1–149. [Google Scholar]
- Chandler, R.F.; Clauser, C.E.; McConville, J.T.; Reynolds, H.M.; Young, J.W. Investigation of Inertial Properties of the Human Body; Technical Report DOT HS-801 430; Aerospace Medical Research Laboratory: Wright-Patterson Air Force Base, OH, USA, 1975. [Google Scholar]
- Hinrich, R.N. Regression equations to predict segmental moments of inertia from anthropometric measurements: An extension of the data of Chandler et al. (1975). J. Biomech. 1985, 18, 621–624. [Google Scholar] [CrossRef]
- Hatze, H.A. Mathematical model for the computational determination of parameter values of anthropomorphic segments. J. Biomech. 1980, 13, 833–843. [Google Scholar] [CrossRef]
- Zatsiorsky, V.; Seluyanov, V.N. The mass and inertia characteristics of the main segment of human body. In Biomechanics VIII, Proceedings of the Eighth International Congress of Biomechanics, Nagoya, Japan, 20–24 July 1981; Human Kinetics Publishers: Champaign, IL, USA, 1982; pp. 1152–1159. [Google Scholar]
- Shan, G.; Bohn, C. Anthropometrical data and coefficients of regression related to gender and race. Appl. Ergon. 2003, 34, 327–337. [Google Scholar] [CrossRef]
- Young, J.W.; Chandler, R.F.; Snow, C.C.; Robinette, K.M.; Zehner, G.F.; Lofberg, M.S. Anthropometric and Mass Distribution Characteristics of the Adult Female; FAA-AM-83-16; FAA Civil Aeromedical Institute: Oklahoma City, OK, USA, 1983. [Google Scholar]
- Ho, W.H.; Shiang, T.Y.; Lee, C.C.; Cheng, S.Y. Body segment parameters of young Chinese men determined with magnetic resonance imaging. Med. Sci. Sports Exerc. 2013, 45, 1759–1766. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Kim, C.B.; Park, S.C. Anthropometric and biomechanical characteristics on body segments of Koreans. Appl. Hum. Sci. 1999, 18, 91–99. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Zheng, Z.; Shangy, H.; Du, G. Determination of the density of human tissues: One of the discussions on the parameters of inertia of the Chinese human body. J. Norman Bethune Univ. Med. Sci. 1990, 16, 543–546. [Google Scholar]
- Nikolova, G.S.; Toshev, Y.E. Estimation of male and female body segment parameters of the Bulgarian population using a 16-segmental mathematical model. J. Biomech. 2007, 40, 3700–3707. [Google Scholar] [CrossRef]
- Hartono, M. Indonesian Anthropometry Update Through Drillis & Contini Revisited and Structural Eq uation Modeling Incorporating Children, Adult and Elderly Populations. In Proceedings of the 2016 IEEE International Conference on Industrial Engineering and Engineering Management, Bali, Indonesia, 4–7 December 2016; pp. 1–5. [Google Scholar]
- Durkin, J.L.; Dowling, J.J.; Andrews, D.M. The measurement of body segment inertial parameters using dual energy X-ray absorptiometry. J. Biomech. 2002, 35, 1575–1580. [Google Scholar] [CrossRef]
- Pearsall, D.J.; Reid, J.G.; Livingston, L.A. Segmental inertial parameters of the human trunk as determined from computed tomography. Ann. Biomed. Eng. 1996, 24, 198–210. [Google Scholar] [CrossRef]
- Smith, S.H.L.; Bull, A.M.J. Rapid calculation of bespoke body segment parametersusing 3D infra-red scanning. Med. Eng. Phys. 2018, 62, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Dumas, R.; Aissaouia, R.; Mitton, D.; Skallib, W.; Guisea, J.A. Determination of personalized inertial parameters of lower limb by biplanar low-dose radiography. IEEE Trans. Biomed. Eng. 2005, 52, 1756–1763. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.M.; Wang, M.J. Automated anthropometric data collection using 3D whole body scanners. Expert Syst. Appl. 2008, 35, 407–414. [Google Scholar] [CrossRef]
- Durkin, J.L.; Dowling, J.J. Analysis of body segment parameter differences between four human populations and the estimation errors of four popular mathematical models. J. Biomech. Eng. 2003, 125, 515–522. [Google Scholar] [CrossRef]
- Furlong, L.M.; Voukelatos, D.; Kong, P.W.; Pain, M.T.G. Changes in inertial parameters ofthe lower limb during the impact phase of dynamic tasks. J. Biomech. 2020, 99, 109488. [Google Scholar] [CrossRef]
- Culmone, C.; Henselmans, P.W.J.; Van Starkenburg, R.I.B.; Breedveld, P. Exploring non-assembly 3D printing for novel compliant surgical devices. PLoS ONE 2020, 5, e0232952. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0232952 (accessed on 29 September 2020). [CrossRef]
- Rao, G.; Amarantini, D.; Berton, E.; Favier, D. Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 2006, 39, 1531–1536. [Google Scholar] [CrossRef] [Green Version]
- Challis, J.H.; Winter, S.L.; Kuperavagea, A.J. Comparison of male and female lower limb segment inertial properties. J. Biomech. 2012, 45, 2690–2692. [Google Scholar] [CrossRef]
- Yoganandan, N.; Pintar, F.A.; Zhang, J.; Baisden, J.L. Physical properties of the human head: Mass, center of gravity and moment of inertia. J. Biomech. 2009, 42, 1177–1192. [Google Scholar] [CrossRef]
- Roush, G.C. Finding Cadaveric Human Head Masses and Center of Gravity: A Comparison of Direct Measurement to 3D ing; Master of Science in Engineering, Wright State University: Dayton, OH, USA, 2010. [Google Scholar]
- Anderson, P.; Fels, S.; Harandi, N.M.; Ho, A.; Moisik, S.; Sanchez, C.A.; Stavness, I.; Frank, T.K. A hybrid 3D biomechanical model of the head and neck. In Biomechanics of Living Organs; Payan, Y., Ohayon, J., Eds.; Academic Press (Elsevier): London, UK, 2017; pp. 413–433. [Google Scholar]
- Visible Human Project, University of Michigan. Available online: http://vhp.med.umich.edu/movies2.html (accessed on 29 September 2020).
- Sunaga, Y.; Kanemura, N.; Anan, M.; Takahashi, M.; Shinkoda, K. Estimation of inertial parameters of the lower trunk in pregnant Japanese women: A longitudinal comparative study and application to motion analysis. Appl. Ergon. 2016, 55, 173–182. [Google Scholar] [CrossRef]
- Schneider, K.; Zernicke, R.F. Mass, center of mass, and moment of inertia estimates for infant limb segments. J. Biomech. 1992, 25, 145–148. [Google Scholar] [CrossRef]
- Pearsall, D.J.; Reid, J.G.; Ross, R. Inertial properties of the human trunk of males determined from magnetic resonance imaging. Ann. Biomed. Eng. 1994, 22, 692–706. [Google Scholar] [CrossRef] [PubMed]
- Wicke, J.; Dumas, G.A.; Costigan, P.A. A comparison between a new model and current models for estimating trunk segment inertial parameters. J. Biomech. 2008, 42, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Erdmann, S.; Kowalczyk, R. Basic inertial quantities including multi-segment trunk of fit, young males obtained based on personalized data. J. Biomech. 2020, 106, 1–6. [Google Scholar] [CrossRef] [PubMed]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Dapena, J.; Flicklin, T.K. USATF Scientific Service Project Report n. 32; High Jump. USA Track & Field: Bloomington, IN, USA, 2007. [Google Scholar]
- Assis, A.K.T. Archimedes, the Center of Gravity, and the First Law of Mechanics: The law of the Lever, 2nd ed.; Apeiron: Montreal, QC, Canada, 2010; p. 28. [Google Scholar]
- Attwells, R.L.; Birrell, S.A.; Hooper, R.H.; Mansfield, N.J. Influence of carrying heavy loads on soldiers’ posture, movements and gait. Ergonomics 2006, 49, 1527–1537. [Google Scholar] [CrossRef] [Green Version]
- Hamil, K.M.; Knutzen, T.L. Biomechanical Basis of Human Movement; Williams & Wilkins: Baltimore, MD, USA, 1995; p. 408. [Google Scholar]
- Hochmuth, G. Biomechanics of Human Movement; Central Books Ltd.: Dagenham, UK, 1984; p. 41. [Google Scholar]
- Lephart, S.A. Measuring the inertial properties of cadaver segments. J. Biomech. 1984, 17, 537–543. [Google Scholar] [CrossRef]
- Park, S.B.; Kim, S.Y.; Hyeong, J.H.; Chung, K.R. A study on the development of image analysis instrument and estimation of mass, volume and center of gravity using CT image in Korean. J. Mech. Sci. Technol. 2014, 28, 971–977. [Google Scholar] [CrossRef]
- Peyer, K.E.; Morris, M.; Sellers, W.I. Subject-specific body segment parameter estimation using 3D photogrammetry with multiple cameras. PeerJ 2015, 3, e831. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4359122/ (accessed on 30 September 2020). [CrossRef] [Green Version]
- Jensen, R. Estimation of the biomechanical properties of three body types using a photogrammetric method. J. Biomech. 1978, 11, 349–358. [Google Scholar] [CrossRef]
- Macaulay, S.; Hutchinson, J.R.; Bates, K.T. A quantitative evaluation of physical and digital approaches to center of mass estimation. J. Anat. 2017, 231, 758–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheets, A.L.; Corazza, S.; Andriacchi, T.P. An automated image-based method of 3D subject-specific body segment parameter estimation for kinetic analyses of rapid movements. J. Biomech. Eng. 2010, 132, 011004. [Google Scholar] [CrossRef] [PubMed]
- Yeadon, M. The simulation of aerial movement—II. A mathematical inertia model of the human body. J. Biomech. 1990, 23, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gahramanova, A. Locating Centers of Mass with Image Processing. Underg. J. Math. Modeling 2019, 10, 1. Available online: https://scholarcommons.usf.edu/ujmm/vol10/iss1/1 (accessed on 30 September 2020). [CrossRef] [Green Version]
- Siddiqua, A. Machine Learning Approaches to Center of Mass Estimation from Noisy Human Motion Data. Master’s Thesis, Science in Computer Science & Engineering, Graduate College of Oklahoma State University, Stillwater, OK, USA, 2011. [Google Scholar]
- Fasel, B.; Spörri, J.; Gilgien, M.; Boffi, G.; Chardonnens, J.; Müller, E.; Aminian, K. Three-Dimensional Body and Centre of Mass Kinematics in Alpine Ski Racing Using Differential GNSS and Inertial Sensors. Remote Sens. 2016, 8, 671. Available online: https://www.google.it/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi3942MzZDsAhXO66QKHRs0DxsQFjAAegQIBBAB&url=https%3A%2F%2Fwww.mdpi.com%2F2072-4292%2F8%2F8%2F671%2Fpdf&usg=AOvVaw0uYiJh2wvfDhI5whi7roDK (accessed on 30 September 2020). [CrossRef] [Green Version]
- Aujeszky, T.; Korres, G.; Eid, M.; Khorrami, F. Estimating Weight of Unknown Objects Using Active Thermography. Robotics 2019, 8, 92. Available online: https://www.mdpi.com/2218-6581/8/4/92/htm (accessed on 30 September 2020). [CrossRef] [Green Version]
Author | Years | Number of Subjects | Wight (kg) Mean and SD |
---|---|---|---|
Harless | 1857 | 2 | 4.15 ± 0.57 |
Braune and Fischer | 1889 | 3 | 4.40 ± 0.80 |
Fischer | 1906 | 1 | 3.88 |
Mertz | 1967 | 3 | 3.49 ± 0.90 |
Clauser et al. | 1969 | 13 | 4.73 ± 0.32 |
Hodgson et al. | 1970 | 13 | 3.98 ± 0.53 |
Hodgson and Thomas | 1971 | 37 | 4.72 ± 0.78 |
Walker et al. | 1973 | 19 | 4.38 ± 0.59 |
Becker | 1972 | 6 | 3.88 ± 0.47 |
Chandler et al. | 1975 | 6 | 3.99 ± 0.53 |
Beier et al. | 1980 | 19 | 4.32 ± 0.40 |
Albery | 2002 | 1 | 3.17 |
Plaga et al. | 2005 | 8 | 3.66 ± 0.58 |
Rousch | 2010 | 4 | 4.07 ± 0.077 |
Dempester (head and neck) | 1955 | 9 | 4.60 ± 0.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cicchella, A. Development of the Biomechanical Technologies for the Modeling of Major Segments of the Human Body: Linking the Past with the Present. Biology 2020, 9, 399. https://doi.org/10.3390/biology9110399
Cicchella A. Development of the Biomechanical Technologies for the Modeling of Major Segments of the Human Body: Linking the Past with the Present. Biology. 2020; 9(11):399. https://doi.org/10.3390/biology9110399
Chicago/Turabian StyleCicchella, Antonio. 2020. "Development of the Biomechanical Technologies for the Modeling of Major Segments of the Human Body: Linking the Past with the Present" Biology 9, no. 11: 399. https://doi.org/10.3390/biology9110399
APA StyleCicchella, A. (2020). Development of the Biomechanical Technologies for the Modeling of Major Segments of the Human Body: Linking the Past with the Present. Biology, 9(11), 399. https://doi.org/10.3390/biology9110399