Does Plant Size Influence Leaf Elements in an Arborescent Cycad?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations
2.2. Field Methods
2.3. Laboratory Methods
2.4. Derived Variables and Statistics
3. Results
4. Discussion
4.1. Cycads
4.2. The Elements
4.3. Resorption
4.4. The Habitats
4.5. Complications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salt, E.D.; Baxter, I.; Lahner, B. Ionomics and the study of the plant ionome. Annu. Rev. Plant Biol. 2008, 59, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.J.; Yavitt, J.B.; Wurzburger, N.; Turner, B.L.; Tanner, E.V.J.; Sayer, E.J.; Santiago, L.S.; Kaspari, M.; Hedin, L.O.; Harms, K.E.; et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest. Ecology 2011, 92, 1616–1625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Clare, S.; Mack, M.C.; Brooks, M. A direct test of nitrogen and phosphorus limitation to net primary productivity in a lowland tropical wet forest. Ecology 2013, 94, 1540–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Tian, D.; Yang, H.; Niu, S. Size-dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Funct. Ecol. 2018, 32, 95–105. [Google Scholar] [CrossRef]
- Watanabe, T.; Broadley, M.R.; Jansen, S.; White, P.J.; Takada, J.; Satake, K.; Takamatsu, T.; Tuah, S.J.; Osaki, M. Evolutionary control of leaf element composition in plants. New Phytol. 2007, 174, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Marler, T.E.; Ferreras, U.F. Disruption of leaf nutrient remobilization in coastal Cycas trees by tropical cyclone damage. J. Geogr. Nat. Disasters 2015, 5, 142. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, K.; Sack, L.; Li, N.; Wei, X.; Goldstein, G. Extending the generality of leaf economic design principles in the cycads, an ancient lineage. New Phytol. 2015, 206, 817–829. [Google Scholar] [CrossRef] [Green Version]
- Krieg, C.; Watkins, J.E.; Chambers, S.; Husby, C.E. Sex-specific differences in functional traits and resource acquisition in five cycad species. AoB Plants 2017, 9, plx013. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Sack, L.; Cao, K.-F.; Wei, X.-W.; Li, N. Speed versus endurance tradeoff in plants: Leaves with higher photosynthetic rates show stronger seasonal declines. Sci. Rep. 2017, 7, 42085. [Google Scholar] [CrossRef] [Green Version]
- Grove, T.S.; O’Connell, A.M.; Malajczuk, N. Effects of fire on the growth, nutrient content and rate of nitrogen fixation of the cycad Macrozamia riedlei. Aust. J. Bot. 1980, 28, 271–281. [Google Scholar] [CrossRef]
- Marler, T.E.; Ferreras, U.F. Current status, threats and conservation needs of the endemic Cycas wadei Merrill. J. Biodivers. Endanger. Species 2017, 5, 193. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Cueva, A.; Dovčiak, M.; Teece, M.; Yepez, E.A. Ontogenetic resource-use strategies in a rare long-lived cycad along environmental gradients. Conserv. Physiol. 2014, 2, cou034. [Google Scholar] [CrossRef] [PubMed]
- Norstog, K.J.; Nicholls, T.J. The Biology of the Cycads; Cornell University Press: Ithica, NY, USA, 1997; ISBN 978-0-8014-3033-6. [Google Scholar]
- Young, R.J. Soil Survey of the Islands of Aguijan, Rota, Saipan, and Tinian, Commonwealth of the Northern Mariana Islands; USDA Soil Conservation Service: Washington, DC, USA, 1989.
- Smith, C.W. Soil Survey of Islands of Yap, Federated States of Micronesia; USDA Soil Conservation Service: Washington, DC, USA, 1983.
- Killingbeck, K.T. Nutrients in senesced leaves: Keys to the search for potential resorption and resorption proficiency. Ecology 1996, 77, 1716–1727. [Google Scholar] [CrossRef]
- Killingbeck, K.T. Nutrient resorption. In Plant Cell Death Processes; Noodén, L.D., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 215–226. [Google Scholar]
- Marler, T.E.; Krishnapillai, M.V. Cycas micronesica trees alter local soil traits. Forests 2018, 9, 565. [Google Scholar] [CrossRef]
- Dumas, J.B.A. Procedes de L’analyse Organique. Ann. Chim. Phys. 1831, 47, 198–205. [Google Scholar]
- Hou, X.; Jones, B.T. Inductively coupled plasma/optical emission spectrometry. In Encyclopedia of Analytical Chemistry; Meyers, R.A., Ed.; John Wiley & Sons: Chichester, UK, 2000; pp. 9468–9485. [Google Scholar]
- Marba, N.; Duarte, C.M.; Agusti, S. Allometric scaling of plant life history. Proc. Natl. Acad. Sci. USA 2007, 104, 15777–15780. [Google Scholar] [CrossRef] [Green Version]
- Epstein, E. Mineral metabolism. In Plant Biochemistry; Bonner, J., Varner, J.E., Eds.; Academic Press: London, UK, 1965; pp. 438–466. ISBN 9781483232430. [Google Scholar]
- Coste, S.; Roggy, J.C.; Garraud, L.; Heuret, P.; Nicolini, E.; Dreyer, E. Does ontogeny modulate irradiance-elicited plasticity of leaf traits in saplings of rain-forest tree species? A test with Dicorynia guianensis and Tachigali melinonii (Fabaceae, Caesalpinioideae). Ann. For. Sci. 2009, 66, 709–712. [Google Scholar] [CrossRef]
- Mediavilla, S.; García-Iglesias, J.; González-Zurdo, P.; Escudero, A. Nitrogen resorption efficiency in mature trees and seedlings of four tree species co-occurring in a Mediterranean environment. Plant Soil 2014, 385, 205–215. [Google Scholar] [CrossRef]
- Donaldson, J.R.; Stevens, M.T.; Barnhill, H.R.; Lindroth, R.L. Age-related shifts in leaf chemistry of clonal aspen (Populus tremuloides). J. Chem. Ecol. 2006, 32, 1415–1429. [Google Scholar] [CrossRef]
- Bouvet, A.; Nguyen-The, N.; Melun, F. Nutrient concentration and allometric models of hybrid eucalyptus planted in France. Ann. For. Sci. 2013, 70, 251–260. [Google Scholar] [CrossRef]
- Aerts, R. Nutrient resorption from senescing leaves of perennials: Are there general patterns? J. Ecol. 1996, 84, 597–608. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global trends in senesced-leaf nitrogen and phosphorus. Glob. Ecol. Biogeogr. 2009, 18, 532–542. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob. Ecol. Biogeogr. 2009, 18, 11–18. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Yasumura, Y.; Onoda, Y.; Hikosaka, K.; Hirose, T. Nitrogen resorption from leaves under different growth irradiance in three deciduous woody species. Plant Ecol. 2005, 178, 29–37. [Google Scholar] [CrossRef]
- Deng, M.; Liu, L.; Sun, Z.; Piao, S.; Ma, Y.; Chen, Y.; Wang, J.; Qiao, C.; Wang, X.; Li, P. Increased phosphate uptake but not resorption alleviates phosphorus deficiency induced by nitrogen deposition in temperate Larix principis-rupprechtii plantations. New Phytol. 2016, 212, 1019–1029. [Google Scholar] [CrossRef]
- LeBauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef]
- Meunier, C.L.; Gundale, M.J.; Sanchez, I.S.; Liess, A. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments. Glob. Chang. Biol. 2016, 22, 164–179. [Google Scholar] [CrossRef]
- Marler, T.E.; Lindström, A.; Fisher, J.B. Stem tissue dimensions correlate with ease of horticultural management for six Cycas species. HortScience 2010, 45, 1293–1296. [Google Scholar]
- Yuan, Z.Y.; Li, L.H.; Han, X.G.; Huang, J.H.; Jiang, G.M.; Wan, S.Q.; Zhang, W.H.; Chen, Q.S. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J. Arid Environ. 2005, 63, 191–202. [Google Scholar] [CrossRef]
- Norris, M.D.; Reich, P.B. Modest enhancement of nitrogen conservation via retranslocation in response to gradients in N supply and leaf N status. Plant Soil 2009, 316, 193–204. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Nutrient concentration, resorption and lifespan: Leaf trait of Australian sclerophyll species. Funct. Ecol. 2003, 17, 10–19. [Google Scholar] [CrossRef]
- Neugebauer, K.; Broadley, M.R.; El-Serehy, H.A.; George, T.S.; McNicol, J.W.; Moraes, M.F.; White, P.J. Variation in the angiosperm ionome. Physiol. Plant. 2018, 163, 306–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cóté, B.; Fyles, J.W.; Djalilvand, H. Increasing N and P resorption efficiency and proficiency in northern deciduous hardwoods with decreasing foliar N and P concentrations. Ann. For. Sci. 2002, 59, 275–281. [Google Scholar] [CrossRef] [Green Version]
- Brant, A.N.; Chen, H.Y.H. Patterns and mechanisms of nutrient resorption in plants. Crit. Rev. Plant Sci. 2015, 34, 471–486. [Google Scholar] [CrossRef]
- Hu, X.; Chen, F.; Nagle, G.; Fang, Y.; Yu, M. Soil phosphorus fractions and tree phosphorus resorption in pine forests along an urban-to-rural gradient in Nanchang, China. Plant Soil 2011, 346, 97–106. [Google Scholar] [CrossRef]
- Agüero, M.L.; Puntieri, J.; Mazzarino, M.J.; Grosfeld, J.; Barroetaveña, C. Seedling response of Nothofagus species to N and P: Linking plant architecture to N/P ratio and resorption proficiency. Trees 2014, 28, 1185–1195. [Google Scholar] [CrossRef]
- Sistla, S.A.; Appling, A.P.; Lewandowska, A.M.; Taylor, B.N.; Wolf, A.A. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 2015, 124, 949–959. [Google Scholar] [CrossRef]
- Marler, T.E. Tropical cyclones and perennial species in the Mariana Islands. HortScience 2001, 36, 264–268. [Google Scholar]
- Kull, O.; Niinemets, Ü. Variation in leaf morphometry and nitrogen concentration in Betula pendula Roth., Corylus avellane L. and Lonicera xylosteum L. Tree Physiol. 1993, 12, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Abrams, M.D.; Mostoller, S.A. Gas exchange, leaf structure and nitrogen in contrasting successional tree species growing in open and understory sites during a drought. Tree Physiol. 1995, 15, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Distribution of foliar carbon and nitrogen across the canopy of Fagus sylvatica: Adaptation to a vertical light gradient. Oecologia 1995, 16, 525–541. [Google Scholar]
- Niinemets, Ü. Acclimation to low irradiance in Picea abies: Influences of past and present light climate on foliage structure and function. Tree Physiol. 1997, 17, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Niinemets, Ü. Distribution patterns of foliar carbon and nitrogen as affected by tree dimensions and relative light conditions in the canopy of Picea abies. Trees 1997, 11, 144–154. [Google Scholar]
- Niinemets, Ü. Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Funct. Ecol. 1997, 11, 518–531. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.R.; Poorter, H. Photosynthetic acclimation of plants to growth irradiance: The relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell Environ. 2001, 24, 755–767. [Google Scholar] [CrossRef]
- Millner, J.P.; Kemp, P.D. Foliar nutrients in Eucaluptus species in New Zealand. New For. 2012, 43, 255–266. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Changes in nitrogen resorption of trembling aspen (Populus tremuloides) with stand development. Plant Soil 2010, 327, 121–129. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, J.; Yang, H.; Zhang, X.; Luo, C.; Zhao, Y. Resorption of nitrogen, phosphorus and potassium from leaves of Lucerne stands of different ages. Plant Soil 2014, 383, 301–312. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, L.; Peng, S.; Peñuelas, J.; Zeng, H.; Piao, S. Age-related modulation of the nitrogen resorption efficiency response to growth requirements and soil nitrogen availability in a temperate pine plantation. Ecosystems 2016, 19, 698–709. [Google Scholar] [CrossRef]
- Li, H.; Crabbe, M.J.C.; Xu, F.; Wang, W.; Niu, R.; Gao, X.; Zhang, P.; Chen, H. Seasonal variations in carbon, nitrogen and phosphorus concentrations and C:N:P stoichiometry in the leaves of differently aged Larix principis-rupprechtii Mayr. plantations. Forests 2017, 8, 373. [Google Scholar] [CrossRef]
Soil Trait | Rota | Yap |
---|---|---|
pH | 7.61 ± 0.05 | 5.95 ± 0.18 |
Nitrogen (mg·g−1) | 14.47 ± 0.78 | 5.22 ± 0.79 |
Phosphorus (µg·g−1) | 88.11 ± 22.14 | 12.53 ± 1.09 |
Potassium (µg·g−1) | 240.24 ± 72.78 | 99.50 ± 11.85 |
Calcium (mg·g−1) | 13.84 ± 0.49 | 2.03 ± 0.36 |
Magnesium (mg·g−1) | 1.04 ± 0.12 | 1.40 ± 0.17 |
Manganese (µg·g−1) | 71.28 ± 11.17 | 14.15 ± 2.22 |
Iron (µg·g−1) | 37.33 ± 8.59 | 328.67 ± 59.47 |
Copper (µg·g−1) | 1.81 ± 0.48 | 3.87 ± 0.44 |
Zinc (µg·g−1) | 10.08 ± 2.72 | 7.80 ± 1.49 |
Response Variable | a | b | Regression Coefficient | p |
---|---|---|---|---|
Carbon (mg·g−1) | 524.65 | −0.06 | 0.58 | 0.0041 |
Nitrogen (mg·g−1) | 21.04 | 0.002 | 0.46 | 0.0150 |
Iron (µg·g−1) | 198.07 | −0.45 | 0.48 | 0.0124 |
Copper (µg·g−1) | 4.83 | −0.01 | 0.67 | 0.0011 |
Nitrogen resorption efficiency (%) | 28.10 | −0.03 | 0.88 | <0.0001 |
Response Variable | Mean | Minimum | Maximum |
---|---|---|---|
Rota | |||
Phosphorus (mg·g−1) | 1.46 | 1.19 | 1.68 |
Potassium (mg·g−1) | 11.95 | 6.91 | 18.42 |
Magnesium (mg·g−1) | 6.39 | 4.48 | 8.17 |
Copper (µg·g−1) | 12.36 | 6.45 | 17.93 |
Zinc (µg·g−1) | 46.43 | 24.38 | 70.22 |
Yap | |||
Phosphorus (mg·g−1) | 2.27 | 1.73 | 2.67 |
Potassium (mg·g−1) | 19.06 | 15.20 | 23.05 |
Magnesium (mg·g−1) | 2.44 | 1.79 | 2.90 |
Copper (µg·g−1) | 4.19 | 2.39 | 7.42 |
Zinc (µg·g−1) | 20.8 | 15.21 | 37.11 |
Response Variable | Mean | Minimum | Maximum |
---|---|---|---|
Phosphorus (mg·g−1) | 0.74 | 0.46 | 0.89 |
Potassium (mg·g−1) | 1.38 | 0.99 | 1.91 |
Calcium (mg·g−1) | 9.41 | 4.17 | 15.12 |
Magnesium (mg·g−1) | 4.76 | 3.39 | 6.52 |
Manganese (µg·g−1) | 51.91 | 24.46 | 86.12 |
Zinc (µg·g−1) | 15.34 | 4.48 | 31.21 |
Phosphorus resorption efficiency (%) | 66.38 | 55.04 | 82.46 |
Potassium resorption efficiency (%) | 92.67 | 89.91 | 95.67 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marler, T.E.; Krishnapillai, M.V. Does Plant Size Influence Leaf Elements in an Arborescent Cycad? Biology 2018, 7, 51. https://doi.org/10.3390/biology7040051
Marler TE, Krishnapillai MV. Does Plant Size Influence Leaf Elements in an Arborescent Cycad? Biology. 2018; 7(4):51. https://doi.org/10.3390/biology7040051
Chicago/Turabian StyleMarler, Thomas E., and Murukesan V. Krishnapillai. 2018. "Does Plant Size Influence Leaf Elements in an Arborescent Cycad?" Biology 7, no. 4: 51. https://doi.org/10.3390/biology7040051
APA StyleMarler, T. E., & Krishnapillai, M. V. (2018). Does Plant Size Influence Leaf Elements in an Arborescent Cycad? Biology, 7(4), 51. https://doi.org/10.3390/biology7040051