Energy-Dense High-Fat/High-Sucrose Diet to Induce Type 2 Diabetes Mellitus in BALB/c Mice Without Genetic Modifications and Chemical Agents
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Model and Experimental Design
2.2. Diet Formulation
| Ingredients of the Diet | HCD to BALB/c | HCD to C57BL/6 | SD |
|---|---|---|---|
| Croquettes | 1 kg | 1 kg | * Lab diet 5001 |
| Wheat flour | 300 g | 260 g | - |
| Eggs | 6 unit | 8 unit | - |
| Lard | 600 g | 400 g | - |
| Sucrose in water | 30% | 20% | 0% |
| Amount ingested | Ad libitum | Ad libitum | Ad libitum |
| Components | HCD to BALB/c | HCD to C57BL/6 | Standard Diet (SD) |
|---|---|---|---|
| Protein | 11.31 ± 0.42 | 12.63 ± 0.08 | 23 |
| Carbohydrate | 27.02 | 29.67 | 25 |
| Lipid | 37.3 ± 0.42 | 29.16 ± 0.19 | 4.5 |
| Ash | 3.76 ± 0.12 | 4.24 ± 0.11 | 8 |
| Fiber | 6.11 ± 0.08 | 5.72 ± 0.27 | 6 |
| Moisture | 14.50 ± 0.24 | 18.58 ± 0.02 | 12 |
| Metabolic Energy | |||
| Calories (Kcal) | 489.02 | 431.64 | 335 |
| Joules (KJ) | 2049.00 | 1808.57 | 1401.60 |
2.3. Fasting Blood Glucose and Post-Challenge Glycemia Measurement
2.4. Insulin in Serum Measurement
2.5. HOMA-IR Index Determination
2.6. Serum Measurement of Triglycerides and Cholesterol
2.7. Adipose and Pancreatic Index Determination
2.8. Histological Analysis, Hematoxylin and Eosin Staining
2.9. Statistical Analysis
3. Results
3.1. HCD Induces Hyperglycemia with Higher Insulin and Triglyceride Levels in BALB/c Mice
3.2. Intake of Food and Sucrose-Supplemented Water
3.3. The New HCD Induced Adipose and Pancreatic Tissue Alterations
3.4. Histopathological Findings in the Pancreas and Liver of HCD-Fed Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BMI | Body mass index |
| ENCB-IPN | Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional |
| GK | Goto-Kakizaki rats |
| H&E | Hematoxylin and eosin |
| HCDs | High-calorie diets |
| HFD | High-fat diet |
| NOD | Non-obese diabetic mice |
| SD | Standard diet |
| T2DM | Type 2 diabetes mellitus |
| WT | Wild-type |
| ZDF | Zuker diabetic fatty |
References
- Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global Prevalence of Diabetes. Diabetes Care 2004, 27, 1047–1053. [Google Scholar] [CrossRef]
- Al-Awar, A.; Kupai, K.; Veszelka, M.; Szucs, G.; Attieh, Z.; Murlasits, Z.; Torok, S.; Posa, A.; Varga, C. Experimental Diabetes Mellitus in Different Animal Models. J. Diabetes Res. 2016, 2016, 9051426. [Google Scholar] [CrossRef]
- Prins, J.B.; Herberg, L.; Den Bieman, M.; van Zutphen, L.F. Genetic variation within and between lines of diabetes-prone and non-diabetes-prone BB rats; allele distribution of 8 protein markers. Lab. Anim. 1991, 25, 207–211. [Google Scholar] [CrossRef]
- Martín-Loro, F.; Cano-Cano, F.; Ortega, M.J.; Cuevas, B.; Gómez-Jaramillo, L.; González-Montelongo, M.d.C.; Freisenhausen, J.C.; Lara-Barea, A.; Campos-Caro, A.; Zubía, E.; et al. Arylphthalide Delays Diabetic Retinopathy via Immunomodulating the Early Inflammatory Response in an Animal Model of Type 1 Diabetes Mellitus. Int. J. Mol. Sci. 2024, 25, 8440. [Google Scholar] [CrossRef]
- Weiss, H.; Bleich, A.; Hedrich, H.J.; Kolsch, B.; Elsner, M.; Jorns, A.; Lenzen, S.; Tiedge, M.; Wedekind, D. Genetic analysis of the LEW.1AR1-iddm rat: An animal model for spontaneous diabetes mellitus. Mamm. Genome 2005, 16, 432–441. [Google Scholar] [CrossRef]
- Hanafusa, T.; Miyagawa, J.; Nakajima, H.; Tomita, K.; Kuwajima, M.; Matsuzawa, Y.; Tarui, S. The NOD mouse. Diabetes Res. Clin. Pract. 1994, 24, S307–S311. [Google Scholar] [CrossRef]
- Mathews, C.E.; Langley, S.H.; Leiter, E.H. New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 2002, 73, 1333–1336. [Google Scholar] [CrossRef]
- Phillips, M.S.; Liu, Q.; Hammond, H.A.; Dugan, V.; Hey, P.J.; Caskey, C.T.; Hess, J.F. Leptin receptor missense mutation in the fatty Zucker rat. Nat. Genet. 1996, 13, 18–19. [Google Scholar] [CrossRef]
- Portha, B.; Giroix, M.H.; Serradas, P.; Gangnerau, M.N.; Movassat, J.; Rajas, F.; Bailbe, D.; Plachot, C.; Mithieux, G.; Marie, J.C. beta-cell function and viability in the spontaneously diabetic GK rat: Information from the GK/Par colony. Diabetes 2001, 50, S89. [Google Scholar] [CrossRef]
- Östenson, C.G.; Efendic, S. Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes. Metab. 2007, 9, 180–186. [Google Scholar] [CrossRef]
- Lenzen, S. The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia 2007, 51, 216–226. [Google Scholar] [CrossRef]
- Levin, B.E.; Dunn-Meynell, A.A.; Balkan, B.; Keesey, R.E. Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 1997, 273, R725–R730. [Google Scholar] [CrossRef]
- Atamni, H.J.A.-T.; Mott, R.; Soller, M.; Iraqi, F.A. High-fat-diet induced development of increased fasting glucose levels and impaired response to intraperitoneal glucose challenge in the collaborative cross mouse genetic reference population. BMC Genet. 2016, 17, 10. [Google Scholar] [CrossRef]
- Singh, R.; Gholipourmalekabadi, M.; Shafikhani, S.H. Animal models for type 1 and type 2 diabetes: Advantages and limitations. Front. Endocrinol. 2024, 15, 1359685. [Google Scholar] [CrossRef] [PubMed]
- Ardisson Korat, A.V.; Willett, W.C.; Hu, F.B. Diet, Lifestyle, and Genetic Risk Factors for Type 2 Diabetes: A Review from the Nurses’ Health Study, Nurses’ Health Study 2, and Health Professionals’ Follow-Up Study. Curr. Nutr. Rep. 2014, 3, 345–354. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Magno, C.P.; Lane, K.T.; Hinojosa, M.W.; Lane, J.S. Association of Hypertension, Diabetes, Dyslipidemia, and Metabolic Syndrome with Obesity: Findings from the National Health and Nutrition Examination Survey, 1999 to 2004. J. Am. Coll. Surg. 2008, 207, 928–934. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, Y.; Zhao, W.; Ge, M.; Sun, X.; Zhang, G.; Dong, B. Individual and combined associations of body mass index and waist circumference with components of metabolic syndrome among multiethnic middle-aged and older adults: A cross-sectional study. Front. Endocrinol. 2023, 14, 1078331. [Google Scholar] [CrossRef]
- Katsagoni, C.N.; Kokkinos, P.; Sidossis, L.S. Obesity and Metabolic Syndrome. In Prevention and Management of Cardiovascular and Metabolic Disease; John Wiley & Sons: Hoboken, NJ, USA, 2023; pp. 275–297. [Google Scholar]
- Appiakannan, H.S.; Rasimowicz, M.L.; Harrison, C.B.; Weber, E.T. Differential effects of high-fat diet on glucose tolerance, food intake, and glucocorticoid regulation in male C57BL/6J and BALB/cJ mice. Physiol. Behav. 2020, 215, 112773. [Google Scholar] [CrossRef] [PubMed]
- Quesada, I.; Nadal, A.; Gomis, R.; Soriano, S.; Vieira, E.; Caballero-Garrido, E.; Alonso-Magdalena, P.; Ñeco, P.; Marroquí, L.; Merino, B.; et al. Insulin Hypersecretion in Islets From Diet-Induced Hyperinsulinemic Obese Female Mice Is Associated With Several Functional Adaptations in Individual β-Cells. Endocrinology 2013, 154, 3515–3524. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wu, T.; Wu, J.; Zhao, L.; Li, Q.; Varghese, Z.; Moorhead, J.F.; Powis, S.H.; Chen, Y.; Ruan, X.Z. Chronic inflammation exacerbates glucose metabolism disorders in C57BL/6J mice fed with high-fat diet. J. Endocrinol. 2013, 219, 195–204. [Google Scholar] [CrossRef]
- Valdez, I.A.; Palavicini, J.P.; Bakewell, T.M.; Fourcaudot, M.; Ayala, I.; Xu, Z.; Khattab, A.; Han, X.; Shannon, C.E.; Norton, L. Persistent Inflammatory Lipotoxicity Impedes Pancreatic β-cell Function in Diet-Induced Obese Mice Despite Correction of Glucotoxicity. bioRxiv 2022. [Google Scholar] [CrossRef]
- Kellard, J.; Briant, L.; Knudsen, J.G.; Rorsman, P. 1975-P: Increased Pancreatic a Cell Ca2+ Oscillations Explain Hyperglucagonemia in High-Fat Diet-Fed Mice. Diabetes 2019, 68, 1975-P. [Google Scholar] [CrossRef]
- Tersey, S.A.; Levasseur, E.M.; Syed, F.; Farb, T.B.; Orr, K.S.; Nelson, J.B.; Shaw, J.L.; Bokvist, K.; Mather, K.J.; Mirmira, R.G. Episodic β-cell death and dedifferentiation during diet-induced obesity and dysglycemia in male mice. FASEB J. 2018, 32, 6150–6158. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, H.; Nagata-Goto, S.; Takaishi, K.; Kumagae, Y. A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism 2009, 58, 296–303. [Google Scholar] [CrossRef] [PubMed]
- Karasawa, H.; Takaishi, K.; Kumagae, Y. Obesity-Induced Diabetes in Mouse Strains Treated With Gold Thioglucose: A Novel Animal Model for Studying β-Cell Dysfunction. Obesity 2012, 19, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, H.; Liu, Y.; Yang, L. High fat diet induced obesity model using four strains of mice: Kunming, C57BL/6, BALB/c and ICR. Exp. Anim. 2020, 69, 326–335. [Google Scholar] [CrossRef]
- Lone, I.M.; Nun, N.B.; Ghnaim, A.; Schaefer, A.S.; Houri-Haddad, Y.; Iraqi, F.A. High-fat diet and oral infection induced type 2 diabetes and obesity development under different genetic backgrounds. Anim. Models Exp. Med. 2023, 6, 131–145. [Google Scholar] [CrossRef]
- Sprenger, H.; Rasinger, J.D.; Hammer, H.; Naboulsi, W.; Zabinsky, E.; Planatscher, H.; Schwarz, M.; Poetz, O.; Braeuning, A. Proteomic analysis of hepatic effects of phenobarbital in mice with humanized liver. Arch. Toxicol. 2022, 96, 2739–2754. [Google Scholar] [CrossRef]
- Vandanmagsar, B.; Youm, Y.-H.; Ravussin, A.; Galgani, J.E.; Stadler, K.; Mynatt, R.L.; Ravussin, E.; Stephens, J.M.; Dixit, V.D. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 2011, 17, 179–188. [Google Scholar] [CrossRef]
- Rodriguez-Nunez, I.; Caluag, T.; Kirby, K.; Rudick, C.N.; Dziarski, R.; Gupta, D. Nod2 and Nod2-regulated microbiota protect BALB/c mice from diet-induced obesity and metabolic dysfunction. Sci. Rep. 2017, 7, 548. [Google Scholar] [CrossRef]
- En Li Cho, E.; Ang, C.Z.; Quek, J.; Fu, C.E.; Lim, L.K.E.; Heng, Z.E.Q.; Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Zeng, R.; et al. Global prevalence of non-alcoholic fatty liver disease in type 2 diabetes mellitus: An updated systematic review and meta-analysis. Gut 2023, 72, 2138–2148. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-R.; Zhao, L.-Y.; Zhu, F.-R.; Liu, Y.; Xiao, J.-Y.; Chen, Z.-C.; Lv, X.-C.; Huang, Y.; Liu, B. Anti-Diabetic Effects of Ethanol Extract from Sanghuangporous vaninii in High-Fat/Sucrose Diet and Streptozotocin-Induced Diabetic Mice by Modulating Gut Microbiota. Foods 2022, 11, 974. [Google Scholar] [CrossRef]
- Elshareif, N.; Gornick, E.; Gavini, C.K.; Aubert, G.; Mansuy-Aubert, V. Comparison of western diet-induced obesity and streptozotocin mouse models: Insights into energy balance, somatosensory dysfunction, and cardiac autonomic neuropathy. Front. Physiol. 2023, 14, 1238120. [Google Scholar] [CrossRef]
- Yu, T.; Sungelo, M.J.; Goldberg, I.J.; Wang, H.; Eckel, R.H. Streptozotocin-Treated High Fat Fed Mice: A New Type 2 Diabetes Model Used to Study Canagliflozin-Induced Alterations in Lipids and Lipoproteins. Horm. Metab. Res. 2017, 49, 400–406. [Google Scholar] [CrossRef]
- Huang, G.; Li, M.; Tian, X.; Jin, Q.; Mao, Y.; Li, Y. The Emerging Roles of IL-36, IL-37, and IL-38 in Diabetes Mellitus and its Complications. Endocr. Metab. Immune Disord.-Drug Targets 2022, 22, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, S.; Zhao, T.; Li, M. Serum IL-36 cytokines levels in type 2 diabetes mellitus patients and their association with obesity, insulin resistance, and inflammation. J. Clin. Lab. Anal. 2020, 35, e23611. [Google Scholar] [CrossRef]
- Dong, B.; Zhou, Y.; Wang, W.; Scott, J.; Kim, K.; Sun, Z.; Guo, Q.; Lu, Y.; Gonzales, N.M.; Wu, H.; et al. Vitamin D Receptor Activation in Liver Macrophages Ameliorates Hepatic Inflammation, Steatosis, and Insulin Resistance in Mice. Hepatology 2020, 71, 1559–1574. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, S.; Tian, C.; Wang, Q.; Yang, Z.; Che, W.; Li, Y.; Luo, Y. Association of systemic immune biomarkers with metabolic dysfunction-associated steatotic liver disease: A cross-sectional study of NHANES 2007–2018. Front. Nutr. 2024, 11, 1415484. [Google Scholar] [CrossRef] [PubMed]
- Falkevall, A.; Mehlem, A.; Folestad, E.; Ning, F.C.; Osorio-Conles, Ó.; Radmann, R.; de Hollanda, A.; Wright, S.D.; Scotney, P.; Nash, A.; et al. Inhibition of VEGF-B signaling prevents non-alcoholic fatty liver disease development by targeting lipolysis in the white adipose tissue. J. Hepatol. 2023, 78, 901–913. [Google Scholar] [CrossRef]
- Montgomery, M.K.; Brown, S.H.J.; Mitchell, T.W.; Coster, A.C.F.; Cooney, G.J.; Turner, N. Association of muscle lipidomic profile with high-fat diet-induced insulin resistance across five mouse strains. Sci. Rep. 2017, 7, 13914. [Google Scholar] [CrossRef]



| BALB/c | C57BL/6 | |||||||
|---|---|---|---|---|---|---|---|---|
| Diet | SD | HCD | SD | HCD | ||||
| Intake | KCal | Intake | KCal | Intake | KCal | Intake | KCal | |
| Food (g/box/week) | 75.14 ± 2.42 | 251.72 ± 8.13 | 41.89 ± 4.49 | 204.5 ± 20.8 | 108.3 ± 2.41 | 362.44 ± 8.3 | 71.45 ± 11.11 | 308.79 ± 47.19 |
| Water (mL/box/week) | 77.64 ± 3.38 | 0 | 71.57 ± 11.85 (sucrose 30%) | 92.19 ± 22.34 | 131.2 ± 5.9 | 0 | 217.2 ± 20.9 (sucrose 20%) | 173.76 ± 16.72 |
| Total KCal | 251.72 ± 8.13 * | 297.04 ± 20.92 * | 362.43 ± 8.3 † | 482.54 ± 51.14 † | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Diaz-Herreros, A.N.; Valdez-Guerrero, A.S.; Cancino-Díaz, J.C.; Sánchez-Torres, L.E.; Gómez-Chávez, F.; Arellano-Mendoza, M.G.; Tamay-Cach, F.; Cancino-Diaz, M.E. Energy-Dense High-Fat/High-Sucrose Diet to Induce Type 2 Diabetes Mellitus in BALB/c Mice Without Genetic Modifications and Chemical Agents. Biology 2026, 15, 109. https://doi.org/10.3390/biology15020109
Diaz-Herreros AN, Valdez-Guerrero AS, Cancino-Díaz JC, Sánchez-Torres LE, Gómez-Chávez F, Arellano-Mendoza MG, Tamay-Cach F, Cancino-Diaz ME. Energy-Dense High-Fat/High-Sucrose Diet to Induce Type 2 Diabetes Mellitus in BALB/c Mice Without Genetic Modifications and Chemical Agents. Biology. 2026; 15(2):109. https://doi.org/10.3390/biology15020109
Chicago/Turabian StyleDiaz-Herreros, Alma Nelly, Amaranta Sarai Valdez-Guerrero, Juan Carlos Cancino-Díaz, Luvia Enid Sánchez-Torres, Fernando Gómez-Chávez, Mónica Gricelda Arellano-Mendoza, Feliciano Tamay-Cach, and Mario Eugenio Cancino-Diaz. 2026. "Energy-Dense High-Fat/High-Sucrose Diet to Induce Type 2 Diabetes Mellitus in BALB/c Mice Without Genetic Modifications and Chemical Agents" Biology 15, no. 2: 109. https://doi.org/10.3390/biology15020109
APA StyleDiaz-Herreros, A. N., Valdez-Guerrero, A. S., Cancino-Díaz, J. C., Sánchez-Torres, L. E., Gómez-Chávez, F., Arellano-Mendoza, M. G., Tamay-Cach, F., & Cancino-Diaz, M. E. (2026). Energy-Dense High-Fat/High-Sucrose Diet to Induce Type 2 Diabetes Mellitus in BALB/c Mice Without Genetic Modifications and Chemical Agents. Biology, 15(2), 109. https://doi.org/10.3390/biology15020109

