Synergistic Role of Selenium and Boron in Enhancing Salinity Tolerance and Secondary Metabolite Accumulation in Oregano
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design and Treatments
2.3. Determination of Morphology and Yield Values
2.4. Essential Oil Content
2.5. Crude Protein Content Analysis
2.6. Determination of Mineral Matter
2.7. Data Analysis
3. Results
3.1. Plant Growth Parameters
3.2. Fresh and Dry Herb Weights
3.3. Essential Oil Content (%v/w)
3.4. Crude Protein Content (%)
3.5. Mineral Matter Content
3.6. Relationship Between Properties
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
BN | Branch number |
CPC | Crude protein content |
CV | Coefficient variation |
DW | Dry herb weight |
EOC | Essential oil content |
FW | Fresh herb weight |
HCI | Hydrochloric acid |
ICP OES | Inductively coupled plasma-optical emission spectrometry |
LSD | Least significant difference |
MDA | Malondialdehyde |
Mevn | Milliequivalent weight of nitrogen |
mL | Milliliter |
mM | Millimolar |
ns | Not significant |
NaCI | Sodium chlorite |
PCA | Principal component analysis |
PH | Plant height |
ppm | Parts per million |
ROS | Reactive oxygen species |
RWC | Relative water content |
TN | Total nitrogen |
References
- Nowman, R.; Waterland, N.; Moon, Y.; Tou, J. Selenium biofortification of agricultural crops and effects on plant nutrients and bioactive compounds important for human health and disease prevention—A review. Plant Foods Hum. Nutr. 2019, 74, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.A.; Darwesh, O.M.; Mekki, B.B. Environmentally friendly nano-selenium to improve antioxidant system and growth of groundnut cultivars under sandy soil conditions. Biocatal. Agric. Biotechnol. 2019, 18, 101080. [Google Scholar] [CrossRef]
- Ragalyi, P.; Takacs, T.; Soos, A.; Kovacs, B.; Dernovics, M.; Loncaric, Z.; Dobosy, P.; Zaray, G.; Rekasi, M. Quantitative analysis of selenium species in the edible parts of cabbage, carrot, tomato and green pea treated with selenate-enriched irrigation water. Plant Soil 2023, 496, 341–360. [Google Scholar] [CrossRef]
- Yolci, M.S.; Tunçtürk, R.; Eryiğit, T.; Tunçtürk, M. Boron toxicity and PGPR phytoremediation effects on physiological and biochemical parameters of medical sage (Salvia officinalis L.). J. Elem. 2022, 27, 1021–1036. [Google Scholar]
- Yolci, M.S.; Tunçtürk, R.; Tunçtürk, M. The effects of boron toxicity and bacteria (PGPR) treatments on growth development and physiological properties in medicinal sage (Salvia officinalis L.). J. Inst. Sci. Techn. 2022, 12, 1102–1113. [Google Scholar]
- Arunkumar, B.R.; Thippeshappa, G.N.; Anjali, M.C.; Prashanth, K.M. Boron: A critical micronutrient for crop growth and productivity. J. Pharmacogn. Phytochem. 2018, 7, 2738–2741. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2000; pp. 241–252. [Google Scholar]
- Turakainen, M. Selenium and its Effects on Growth, Yield and Tuber Quality in Potato; Julkaisuja/Helsingin yliopisto, Soveltavan Biologian Laitos: Helsinki, Finland, 2007. [Google Scholar]
- Hrmova, M.; Gilliham, M.; Tyerman, S.D. Plant transporters involved in combating boron toxicity: Beyond 3D structures. Biochem. Soc. Trans. 2020, 48, 1683–1696. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, M.A.; Eichert, T. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant Sci. 2013, 203–204, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Chu, J.; Wang, G. Effects of selenium on wheat seedlings under drought stress. Biol. Trace Elem. Res. 2009, 130, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.W.; Ha, J.; Liang, S.X.; Kang, W.J. Protective role of selenium on garlic growth under cadmium stress. Commun. Soil Sci. Plan. 2010, 41, 1195–1204. [Google Scholar] [CrossRef]
- Hawrylak-Nowak, B. Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biol. Trace Elem. Res. 2009, 132, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Yao, X.; Zhang, Z. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol. Trace Elem. Res. 2010, 136, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Vera-Maldonado, P.; Aquea, F.; Reyes-Diaz, M.; Carcamo-Fincheira, P.; Soto-Cerda, B.; Nunes-Nesi, A.; Inostroza-Blancheteau, C. Role of boron and its interaction with other elements in plants. Front. Plant Sci. 2024, 15, 1332459. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, K.M.; Gallardo-Williams, M.T.; Benson, R.F.; Martin, D.F. Effects of selenium supplementation on four agricultural crops. J. Agric. Food Chem. 2003, 51, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Djanaguiraman, M.; Devi, D.D.; Shanker, A.K.; Sheeba, J.A.; Bangarusamy, U. Selenium-An antioxidative protectant in soybean during senescence. Plant Soil 2005, 272, 77–86. [Google Scholar] [CrossRef]
- Pennanen, A.; Xue, T.; Hartikainen, H. Protective role of selenium in plant subjected to severe UV irradiation stress. J. Appl. Bot. Food Qual. 2002, 76, 66–76. [Google Scholar]
- Hartikainen, H.; Xue, T.; Piironen, V. Selenium as an anti-oxidant and pro-oxidant in ryegrass. Plant Soil 2000, 225, 193–200. [Google Scholar] [CrossRef]
- Hu, Q.; Xu, J.; Pang, G. Effect of selenium on the yield and quality of green tea leaves harvested in early spring. J. Agric. Food Chem. 2003, 51, 3379–3381. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Hartikainen, H.; Piironen, V. Antioxidative and growth-promoting effect of selenium on senescing lettuce. Plant Soil 2001, 237, 55–61. [Google Scholar] [CrossRef]
- Turakainen, M.; Hartikainen, H.; Seppänen, M.M. Effects of selenium treatments on potato (Solanum tuberosum L.) growth and concentrations of soluble sugars and starch. J. Agric. Food Chem. 2004, 52, 5378–5382. [Google Scholar] [CrossRef] [PubMed]
- Lidon, F.C.; Oliveira, K.; Galhano, C.; Guerra, M.; Ribeiro, M.M.; Pelica, J.; Pataco, I.; Ramalho, J.C.; Leitão, A.E.; Almeida, A.S.; et al. Selenium biofortification of rice through foliar treatmentwith selenite and selenate. Exp. Agric. 2019, 55, 528–542. [Google Scholar] [CrossRef]
- Pereira, G.L.; Siqueira, J.A.; Batista-Silva, W.; Cardoso, F.B.; Nunes-Nesi, A.; Araujo, W.L. Boron: More than an essential element for land plants? Front. Plant Sci. 2021, 11, 610307. [Google Scholar] [CrossRef] [PubMed]
- Shireen, F.; Nawaz, M.; Chen, C.; Zhang, Q.; Zheng, Z.; Sohail, H.; Sun, J.; Cao, H.; Huang, Y.; Bie, Z. Boron: Functions and approaches to enhance its availability in plants for sustainable agriculture. Int. J. Mol. Sci. 2018, 19, 1856. [Google Scholar] [CrossRef] [PubMed]
- Funakawa, H.; Miwa, K. Synthesis of borate cross-linked rhamnogalacturonan II. Front. Plant Sci. 2015, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Nejad, S.; Etesami, H. The importance of boron in plant nutrition. In Metalloids in Plants: Advances and Future Prospects, 1st ed.; Deshmukh, R., Tripathi, D.K., Guerriero, G., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 433–449. [Google Scholar]
- Mahmoud, M.; Shaaban, A.; Fouad, E.; Abou, E.; El-Zanaty, A.; Mottaleb, A.; El-Nour, A. Boron/nitrogen interaction effect on growth and yield of faba bean plants grown under sandy soil conditions. Int. J. Agric. Res. 2006, 1, 322–330. [Google Scholar] [CrossRef]
- Rahman, M.; Rahman, K.; Satki, K.S.; Alam, M.M.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Supplemental Selenium and Boron Mitigate Salt-Induced Oxidative Damages in Glycine max L. Plants 2021, 10, 2224. Plants 2021, 10, 2224. [Google Scholar] [CrossRef] [PubMed]
- Baser, K.H.C. Biological and pharmacological activities of carvacrol and carvacrol bearing essential oils. Curr. Pharm. Des. 2008, 14, 3106–3119. [Google Scholar] [CrossRef] [PubMed]
- Yaldiz, G.; Sekeroglu, N.; Özgüven, M.; Kirpik, M. Seasonal and diurnal variability of essential oil and its components in Origanum onites L. grown in the ecological conditions of Çukurova. Grasas Aceites 2005, 56, 254–258. [Google Scholar] [CrossRef]
- Dundar, E.; Olgun, E.G.; Isiksoy, S.; Kurkcuoglu, M.; Baser, K.H.C.; Bal, C. The effects of intra-rectal and intra-peritoneal treatment of Origanum onites L. essential oil on 2,4,6-trinitrobenzenesulfonic acid-induced colitis in the rat. Exp. Toxicol. Pathol. 2008, 59, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Demirci, F.; Paper, D.H.; Franz, G.; Baser, K.H.C. Investigation of the Origanum onites L. essential oil using the chorioallantoic membrane (CAM) assay. J. Agric. Food Chem. 2004, 52, 251–254. [Google Scholar] [CrossRef] [PubMed]
- TUIK. Crop Production Statistics (Spice Plants). Available online: https://data.tuik.gov.tr/Kategori/GetKategori?p=tarim-111&dil=1 (accessed on 16 December 2024).
- Camlica, M.; Yaldiz, G. Comparison of twenty selected fenugreek genotypes grown under irrigated and dryland conditions: Morphology, yield, quality properties and antioxidant activities. Agronomy 2024, 14, 713. [Google Scholar] [CrossRef]
- Yaldiz, G.; Camlica, M. Selenium and salt interactions in sage (Salvia officinalis L.): Growth and yield, chemical content, ion uptake. Ind. Crops Prod. 2021, 171, 113855. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Blinov, A.V.; Serov, A.V.; Gvozdenko, A.A.; Kravtsov, A.A.; Nagdalian, A.A.; Raffa, V.V.; Maglakelidze, D.G.; Blinova, A.A.; Kobina, A.V.; et al. Effect of selenium nanoparticles on germination of Hordeum vulgare barley seeds. Coatings 2021, 11, 862. [Google Scholar] [CrossRef]
- Huang, C.; Qin, N.; Sun, L.; Yu, M.; Hu, W.; Qi, Z. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. Int. J. Mol. Sci. 2018, 19, 1913. [Google Scholar] [CrossRef] [PubMed]
- Sheikhalipour, M.; Esmaielpour, B.; Behnamian, M.; Gohari, G.; Giglou, M.T.; Vachova, P.; Rastogi, A.; Brestic, M.; Skalicky, M. Chitosan-Selenium nanoparticle (Cs-Se NP) foliar spray alleviates salt stress in bitter melon. Nanomaterials 2021, 11, 684. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Yang, C.; Pan, Z.; Liu, Y.; Peng, S. Boron deficiency in woody plants: Various responses and tolerance mechanisms. Front. Plant Sci. 2015, 6, 916. [Google Scholar] [CrossRef] [PubMed]
- Hancioglu, N.E.; Kurunc, A.; Tontul, I.; Topuz, A. Irrigation water salinity effects on oregano (Origanum onites L.) water use, yield and quality parameters. Sci. Hortic. 2019, 247, 327–334. [Google Scholar] [CrossRef]
- Dadkhah, A. Effect of salt stress on growth and essential oil of Matricaria chamomila. Res. J. Biol. Sci. 2010, 5, 643–646. [Google Scholar]
- Amato, G.; Cardone, L.; Cicco, N.; Denora, M.; Perniola, M.; Casiello, D.; De Martino, L.; De Feo, V.; Candido, V. Morphological traits, yield, antioxidant activity and essential oil composition of oregano as affected by biostimulant foliar treatments. Ind. Crops Prod. 2024, 222, 119702. [Google Scholar] [CrossRef]
- Shahverdi, M.A.; Omidi, H.; Damalas, C.A. Foliar fertilization with micronutrients improves Stevia rebaudiana tolerance to salinity stress by improving root characteristics. Braz. J. Bot. 2020, 43, 55–65. [Google Scholar] [CrossRef]
- Yu, X.; Liang, C.; Chen, J.; Qi, X.; Liu, Y.; Li, W. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Sci. Hortic. 2015, 197, 579–583. [Google Scholar] [CrossRef]
- Çatav, Ş.S.; Köşkeroğlu, S.; Tuna, A.L. Selenium supplementation mitigates boron toxicity induced growth inhibition and oxidative damage in pepper plants. S. Afr. J. Bot. 2022, 146, 375–382. [Google Scholar] [CrossRef]
- Çamlıca, M.; Yaldız, G.; Özen, F.; Başol, A.; Aşkın, H. Effects of selenium treatments on salt stress in sage and mountain tea. Turk. J. Agric.-Food Sci. Technol. 2019, 7, 29–35. [Google Scholar]
- Lu, Y.B.; Yang, L.T.; Li, Y.; Xu, J.; Liao, T.T.; Chen, Y.B.; Chen, L.S. Effects of boron deficiency on major metabolites, key enzymes and gas exchange in leaves and roots of Citrus sinensis seedlings. Tree Physiol. 2014, 34, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Dong, X.; Liu, L.; Wu, L.; Peng, S.; Jiang, C. Metabolic profiling reveals altered pattern of central metabolism in navel orange plants as a result of boron deficiency. Physiol. Plant 2015, 153, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, A.; Khoshkhui, M.; Javidnia, K.; Firuzi, O.; Tafazoli, E.; Khalighi, A. Effect of fertilizer on yield, essential oil composition, total phenolic content, and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plant Res. 2010, 4, 33–40. [Google Scholar]
- Azimzadeh, Z.; Hassani, A.; Mandoulakani, B.A.; Sepehr, E.; Morshedloo, M.R. Intraspecific divergence in essential oil content, composition and genes expression patterns of monoterpene synthesis in Origanum vulgare subsp. vulgare and subsp. gracile under salinity stress. BMC Plant Biol. 2023, 23, 380. [Google Scholar] [CrossRef] [PubMed]
- Ayala-Astorga, G.I.; Alcaraz-Meléndez, L. Salinity effects on protein content, lipid peroxidation, pigments, and proline in Paulownia imperialis (Siebold & Zuccarini) and Paulownia fortunei (Seemann & Hemsley) grown in vitro. Electron. J. Biotechnol. 2010, 13, 13–14. [Google Scholar] [CrossRef]
- Chen, Z.; Cuin, T.A.; Zhou, M.; Twomey, A.; Naidu, B.P.; Shabala, S. Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. J. Exp. Bot. 2007, 58, 4245–4255. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh Rostam Kalaei, M.; Abdossi, V.; Danaee, E. Evaluation of foliar treatment of selenium and flowering stages on selected properties of Iranian Borage as a medicinal plant. Sci. Rep. 2022, 12, 12568. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zu, C.; Lu, D.; Zheng, Q.; Shen, J.; Wang, H.; Li, D. Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea may L.) under salinity stress. Sci. Rep. 2017, 7, 42039. [Google Scholar] [CrossRef] [PubMed]
- Subramanyam, K.; Du Laing, G.; Van Damme, E.J.M. Sodium selenate treatment using a combination of seed priming and foliar spray alleviates salinity stress in rice. Front. Plant Sci. 2019, 10, 116. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Mahmud, J.A.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Hansch, R.; Mendel, R.R. Physiological functions of mineral macronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr. Opin. Plant Biol. 2009, 12, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Kamran, M.; Fang, Y.; Yang, G.; Rizwan, M.; Ali, S.; Zhou, Y.; Wang, Q.; Deng, L.; Wang, Y.; et al. Boron supply alleviates cadmium toxicity in rice (Oryza sativa L.) by enhancing cadmium adsorption on cell wall and triggering antioxidant defense system in roots. Chemosphere 2021, 266, 128938. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Sun, L.; Guo, J.; Liu, L.; Han, G.; Wang, B. Exogenous boron alleviates growth inhibition by NaCl stress by reducing Cl− uptake in sugar beet (Beta vulgaris). Plant Soil 2021, 464, 423–439. [Google Scholar] [CrossRef]
- Wu, X.; Song, H.; Guan, C.; Zhang, Z. Boron mitigates cadmium toxicity to rapeseed (Brassica napus) shoots by relieving oxidative stress and enhancing cadmium chelation onto cell walls. Environ. Pollut. 2020, 263, 114546. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.; Mott, C.J.B. Effect of boron on the behavior of nutrients in soil plant systems- a review. Asian J. Plant Sci. 2007, 6, 195–202. [Google Scholar] [CrossRef]
- Long, Y.; Peng, J. Interaction between boron and other elements in plants. Genes 2023, 14, 130. [Google Scholar] [CrossRef] [PubMed]
- Petridis, A.; Gasparatos, D.; Haidouti, C.; Paschalidis, C.; Zamanidis, P. Effects of nitrogen and boron fertilization on lettuce mineral nutrition in a calcareous soil. Commun. Soil Sci. Plant Anal. 2013, 44, 733–740. [Google Scholar] [CrossRef]
- Razmjoo, K.; Heydarizadeh, P.; Sabzalian, M.R. Effect of salinity and drought stresses on growth parameters and essential oil content of Matricaria chamomila. Int. J. Agric. Biol. 2008, 10, 451–454. [Google Scholar]
- Yaldız, G.; Özen, F.; Çamlıca, M.; Sönmez, F. Alleviation of salt stress by increasing potassium sulphate doses in four medicinal and aromatic plants. Acta Agric. Scand. Sect. B–Soil Plant Sci 2018, 68, 437–447. [Google Scholar] [CrossRef]
- Asri, F.Ö. The effects of organic and conventional fertilization on oregano (Origanum onites L.) yield and quality factors. Folia Hortic. 2023, 35, 209–219. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Env. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Alfthan, G.; Eurola, M.; Ekholm, P.; Venäläinen, E.R.; Root, T.; Korkalainen, K. Effects of nationwide addition of selenium to fertilizers on foods, and animal and human health in Finland: From deficiency to optimal selenium status of the population. J. Trace Elem. Med. Biol. 2015, 31, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Harrison, M.T.; Ibrahim, A.; Manik, S.N.; Johnson, P.; Tian, X.; Meinke, H.; Zhou, M. Genetic factors increasing barley grain yields under soil waterlogging. Food. Energy Secur. 2020, 9, e238. [Google Scholar] [CrossRef]
- Liu, K.; Harrison, M.T.; Shabala, S.; Meinke, H.; Ahmed, I.; Zhang, Y.; Tian, X.; Zhou, M. The state of the art in modeling waterlogging impacts on plants: What do we know and what do we need to know. Earths Future 2020, 8, e2020EF001801. [Google Scholar] [CrossRef]
- Sarrou, E.; Martinidou, E.; Palmieri, L.; Poulopoulou, I.; Trikka, F.; Masuero, D.; Matthias, G.; Ganopoulos, I.; Chatzopoulou, P.; Martens, S. High throughput pre-breeding evaluation of Greek oregano (Origanum vulgare L. subsp. hirtum) reveals multi-purpose genotypes for different industrial uses. J. Appl. Res. Med. Aromat. Plants 2023, 37, 100516. [Google Scholar] [CrossRef]
Treatments | PH-1. Harvest | PH-2. Harvest | PH-3. Harvest | PH-Average | BN-1. Harvest | BN-2. Harvest | BN-3. Harvest | BN-Average |
---|---|---|---|---|---|---|---|---|
A1 | 38.75 ns | 22.20 ab | 15.30 ab | 25.42 ns | 7.50 ab | 10.70 cd | 13.70 ab | 10.63 b |
A2 | 38.87 | 17.70 b | 14.10 b | 23.56 | 9.00 a | 12.40 abc | 16.30 a | 12.57 ab |
A3 | 37.64 | 22.53 ab | 17.27 a | 25.81 | 7.62 ab | 11.80 bcd | 12.73 b | 10.72 b |
A4 | 33.23 | 19.73 ab | 14.80 ab | 22.59 | 8.95 a | 13.00 ab | 16.73 a | 12.89 a |
A5 | 40.36 | 19.67 ab | 14.80 ab | 24.94 | 8.83 a | 14.33 a | 17.13 a | 13.43 a |
A6 | 41.53 | 18.13 b | 14.60 b | 24.76 | 6.17 b | 10.13 d | 16.20 ab | 10.83 b |
A7 | 40.10 | 24.40 a | 14.93 ab | 26.48 | 7.98 ab | 13.47 ab | 15.73 ab | 12.39 ab |
Average | 38.64 | 20.62 | 15.11 | 24.79 | 8.01 | 12.26 | 15.50 | 11.92 |
LSD (5%) | 14.79 | 5.55 | 2.65 | 5.05 | 2.41 | 2.15 | 3.55 | 1.96 |
CV (%) | 21.52 | 15.13 | 9.86 | 11.46 | 16.93 | 9.86 | 12.88 | 9.24 |
Treatments | FW-1. Harvest | FW-2. Harvest | FW-3. Harvest | FW-Total | DW-1. Harvest | DW-2. Harvest | DW-3. Harvest | DW-Total |
---|---|---|---|---|---|---|---|---|
A1 | 5.19 ns | 1.60 b | 2.83 ns | 9.63 ns | 2.42 a | 0.54 d | 1.08 ns | 4.03 ab |
A2 | 4.14 | 2.02 b | 2.90 | 9.06 | 1.51 b | 0.69 cd | 1.05 | 3.24 b |
A3 | 4.80 | 2.36 b | 2.93 | 10.08 | 1.94 ab | 1.10 ab | 1.16 | 4.20 ab |
A4 | 5.51 | 2.39 b | 2.91 | 10.26 | 2.29 ab | 0.96 bc | 1.08 | 4.34 ab |
A5 | 5.11 | 2.24 b | 2.90 | 10.80 | 1.97 ab | 0.88 bcd | 1.09 | 3.94 ab |
A6 | 6.00 | 2.48 ab | 3.01 | 11.49 | 2.29 ab | 1.12 ab | 1.10 | 4.52 a |
A7 | 5.58 | 3.36 a | 3.10 | 12.05 | 2.42 a | 1.37 a | 1.25 | 5.04 a |
Average | 5.19 | 2.35 | 2.94 | 10.48 | 2.12 | 0.95 | 1.12 | 4.19 |
LSD (5%) | 2.23 | 0.91 | 0.77 | 3.23 | 0.82 | 0.37 | 0.33 | 1.14 |
CV (%) | 24.18 | 21.77 | 14.63 | 17.34 | 21.70 | 21.66 | 16.46 | 15.26 |
Treatments | K | Mg | Na | Ca | Zn | Mn | Fe | B | Cu | Se |
---|---|---|---|---|---|---|---|---|---|---|
A1 | 14,848.15 d | 463.67 f | 480.64 c | 1198.15 d | 18.01 e | 19.23 f | 71.71 e | 37.67 f | 5.73 d | 128.14 f |
A2 | 16,612.65 c | 540.34 b | 540.75 a | 1385.57 a | 23.97 b | 61.59 b | 196.91 b | 45.29 d | 7.82 b | 141.38 e |
A3 | 13,339.26 f | 632.79 a | 374.22 g | 1305.27 c | 21.95 c | 74.51 a | 885.06 a | 114.28 a | 9.32 a | 157.76 d |
A4 | 18,739.77 a | 533.58 c | 398.12 e | 1072.14 e | 24.52 b | 28.81 c | 61.43 g | 68.24 c | 5.36 e | 201.17 a |
A5 | 12,443.51 g | 519.09 d | 502.69 b | 1313.73 b | 20.20 d | 22.61 e | 142.97 c | 45.30 d | 6.13 c | 147.28 e |
A6 | 17,656.67 b | 468.20 e | 378.69 f | 931.51 g | 29.27 a | 23.84 d | 65.66 f | 74.84 b | 5.02 f | 165.16 c |
A7 | 13,989.97 e | 406.85 g | 457.18 d | 1040.99 f | 21.49 c | 15.91 g | 76.65 d | 41.31 e | 5.36 e | 180.64 b |
Average | 15,375.71 | 509.22 | 447.47 | 1178.19 | 22.77 | 35.21 | 214.34 | 60.99 | 6.39 | 160.22 |
LSD (5%) | 0.67 | 2.60 | 0.00 | 0.00 | 0.87 | 0.00 | 0.87 | 0.87 | 0.03 | 6.57 |
CV (%) | 0.00 | 0.29 | 0.00 | 0.00 | 2.14 | 0.00 | 0.23 | 0.81 | 0.26 | 2.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camlica, M. Synergistic Role of Selenium and Boron in Enhancing Salinity Tolerance and Secondary Metabolite Accumulation in Oregano. Biology 2025, 14, 906. https://doi.org/10.3390/biology14080906
Camlica M. Synergistic Role of Selenium and Boron in Enhancing Salinity Tolerance and Secondary Metabolite Accumulation in Oregano. Biology. 2025; 14(8):906. https://doi.org/10.3390/biology14080906
Chicago/Turabian StyleCamlica, Mahmut. 2025. "Synergistic Role of Selenium and Boron in Enhancing Salinity Tolerance and Secondary Metabolite Accumulation in Oregano" Biology 14, no. 8: 906. https://doi.org/10.3390/biology14080906
APA StyleCamlica, M. (2025). Synergistic Role of Selenium and Boron in Enhancing Salinity Tolerance and Secondary Metabolite Accumulation in Oregano. Biology, 14(8), 906. https://doi.org/10.3390/biology14080906