The Developing Human Sphenoid Bone: Linking Embryological Development to Adult Morphology
Simple Summary
Abstract
1. Introduction
2. Embryological Development of the Human Sphenoid Bone
- Presphenoid: Contributes to the anterior body of the SB and forms the floor of the anterior cranial fossa.
- Basisphenoid: Forms the posterior body of the SB, including the sella turcica and clivus region.
- Orbitosphenoid: Gives rise to the LWs, forming part of the anterior cranial fossa and the roof of the orbit.
- Alisphenoid: Forms the GWs, contributing to the middle cranial fossa, the lateral orbital wall, and the infratemporal fossa.
- Ala temporalis and alar process: Transient cartilaginous structures that serve as key intermediates in the development of the GWs and PPs.
2.1. Refinement of Ossification Patterns and Presphenoid Complexity
- Main center—the earliest to appear (as early as ~17 cm craniocaudal length- CRL, ~8–9 weeks gestation).
- Anterior accessory centers—emerge around 24–25 cm CRL (~10–11 weeks), and by late fetal stages are consistently observed.
- Posterior accessory centers—rarely appear before 31 cm CRL and often remain incompletely ossified during gestation.
- Middle accessory center—appears in later stages (after ~34 cm CRL), suggesting a late and possibly incomplete ossification process.
- Corporal middle centers—deep-layered ossific centers that become evident only after ~34 cm CRL and show increasing presence into the 9th and 10th months of gestation
- The presphenoid exhibits a layered ossification model, with five distinct centers appearing sequentially.
- These centers contribute to the formation of the sella turcica, clinoid processes, and bony foramina, explaining common adult anatomical variants such as the CCF.
2.2. Initial Developmental Stages (6–8 Weeks of Development)
- The orbitosphenoid, alisphenoid, presphenoid, and postsphenoid develop as independent cartilaginous elements.
- Transient synchondroses (e.g., intersphenoidal) and structures like the alar process stabilize early sphenoid morphogenesis.
2.3. Ossification Dynamics and Morphological Growth (8–30 Weeks of Gestation)
- Endochondral ossification occurs in cartilage preformed regions such as the basisphenoid, presphenoid, orbitosphenoid, and alisphenoid, where cartilage is gradually replaced by bone.
- Intramembranous ossification is seen in areas derived from ectomesenchyme (neural crest-derived mesenchyme), particularly in the lateral regions of the GWs, PPs, and nearby facial bones, where bone forms directly within mesenchymal condensations without a cartilage intermediary.
- Periosteal appositional growth contributes to bone thickening and remodeling, especially at the junctions of ossification centers and during later fetal stages, refining the external contour and internal architecture of the SB.
2.4. Structural Integration and Maturation (15–34 Weeks and Beyond)
- Variations in basisphenoid and orbitosphenoid ossification influence final cranial base configuration.
- The spheno-occipital synchondrosis begins forming and will later act as a critical growth site into adolescence.
2.5. Formation of Associated Structures and Ligamentous Attachments
- Foramina form around nerves and vessels; sphenoid spine develops as a key anchor for ligaments.
- Meckel’s cartilage contributes to SML formation, with neural and vascular elements guiding its trajectory.
2.6. Developmental Relationship with Neurovascular Structures
- The ICA path is shaped by surrounding sphenoid and petrosal ossification.
- Perichondral ossification around cranial nerves (e.g., maxillary nerve) facilitates canal and foramen formation, establishing adult neurovascular corridors.
3. Traditional Anatomy of the Human Adult Sphenoid Bone
3.1. The Sphenoidal Body
3.2. Lesser Wings
3.3. Greater Wings
- FR: transmits the maxillary nerve (V2).
- FO: transmits the mandibular nerve (V3) along with accessory meningeal vessels.
- FS: transmits the middle meningeal artery and vein, and the meningeal branch of the MN (V3).
3.4. Pterygoid Processes
4. Anatomical Variations of the Human Adult Sphenoid Bone
4.1. Sella Anatomy—Clinoid Process Variations and Sellar Bridges
- Incomplete (69% of all middle clinoid processes): bony projections that do not reach the anterior clinoid process.
- Contact (4%): middle clinoid processes that contact the anterior clinoid process without forming a true ring.
- Caroticoclinoid Ring (27%): complete ossification forming a bony ring around the internal carotid artery.
- Type I (caroticoclinoid bridge): Connects the anterior and middle clinoid processes, formatting the CCF, also known as the anterior interclinoid canal. This foramen transmits the ICA.
- Type II (interclinoid bridge between anterior, middle, and posterior clinoid processes): forms a CCF anteriorly and a posterior interclinoid foramen posteriorly.
- Type III (Interclinoid bridge between anterior and posterior clinoid processes): encircles a common interclinoid foramen (canal of Gruber), transmitting both the ICA and venous structures.
- Type IV (Bridge between middle and posterior clinoid processes): rarely observed and typically not classified separately in most anatomical studies.
4.2. Variations of the Typical Sphenoid Foramina
- Type I (lateral)—FO located medial to the posterior border of the lateral pterygoid plate (29%).
- Type II (medial)—FO located lateral to the posterior border (15%).
- Type III (direct)—FO aligned directly with the posterior border (35%).
- Type IV (removed)—FO disconnected from the lateral pterygoid plate, making surgical access more difficult (21%).
- The lateral sector transmits the trochlear, frontal, and lacrimal nerves along with the superior ophthalmic vein—all outside the annular tendon.
- The central sector (oculomotor foramen) contains the superior and inferior divisions of the oculomotor nerve, abducens nerve, nasociliary nerve, and sympathetic roots, all passing through the annular tendon.
- The inferior sector transmits the inferior ophthalmic vein beneath the annular tendon and is filled with posterior orbital fat.
4.3. Presence of Emissary Foramina
4.4. Variations of the Ligaments
5. Clinical and Surgical Associations of the Human Adult Sphenoid Bone
5.1. Neurosurgical Considerations: Sellar and Parasellar Region
5.2. Cranial Nerves’ Compression from Sphenoid Bone and Its Variations
5.3. Endoscopic Skull Base Surgery and Orbital Approaches
5.4. Oral and Maxillofacial Surgery
5.5. Radiological and Diagnostic Implications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACP | Anterior Clinoid Process. |
AOC | Accessory Optic Canal. |
CCF | Caroticoclinoid Foramen. |
CCB | Caroticoclinoid Bar. |
CN | Cranial Nerve. |
CRL | Crown–Rump Length. |
CT | Computed Tomography. |
EV | Emissary Vein. |
FO | Foramen Ovale. |
FR | Foramen Rotundum. |
FS | Foramen Spinosum. |
GWs | Greater Wings (of the sphenoid). |
ICA | Internal Carotid Artery. |
ICB | Interclinoid Bridge. |
LPP | Lateral Pterygoid Plate. |
LWs | Lesser Wings (of the sphenoid). |
MCP | Middle Clinoid Process. |
MN | Mandibular Nerve. |
MPP | Medial Pterygoid Plate. |
OA | Ophthalmic Artery. |
OC | Optic Canal. |
ON | Optic Nerve. |
PPs | Pterygoid Processes. |
PCP | Posterior Clinoid Process. |
PTSB | Pterygospinous Bar. |
PTSL | Pterygospinous Ligament. |
PTAL | Pterygoalar Ligament. |
SB | Sphenoid Bone. |
SEF | Sphenoidal Emissary Foramen. |
SML | Sphenomandibular Ligament. |
SOF | Superior Orbital Fissure. |
SPC | Sphenopterygoid Canal. |
VC | Vidian Canal (Pterygoid Canal). |
V2 | Maxillary Division of Trigeminal Nerve. |
V3 | Mandibular Division of Trigeminal Nerve. |
References
- Cho, K.H.; Kim, J.H.; Honkura, Y.; Yamamoto, M.; Murakami, G.; Rodríguez-Vázquez, J.F.; Katori, Y. Cochlear Aqueduct Revisited: A Histological Study Using Human Fetuses. Ann. Anat. Anat. Anz. 2024, 253, 152236. [Google Scholar] [CrossRef]
- Cho, K.H.; Honkura, Y.; Kim, J.H.; Hayashi, S.; Kitamura, K.; Murakami, G.; Rodríguez-Vázquez, J.F. Topohistology of the Cranial Nerves IX–XII at the Cranial Base and Upper Parapharyngeal Space: A Histological Study Using Human Fetuses. Anat. Rec. 2025, 308, 1824–1837. [Google Scholar] [CrossRef]
- Hirouchi, H.; Takeuchi, Y.; Yang, T.; Yamamoto, M.; Hayashi, S.; Murakami, G.; Rodríguez-Vázquez, J.F.; Abe, S. Transient Contribution of the Sphenoid Ala Major to the Socket of the Temporomandibular Joint in Near-term Fetuses. Anat. Rec. 2024, 307, 3574–3581. [Google Scholar] [CrossRef]
- Rodríguez-Vázquez, J.F.; Verdugo-López, S.; Kim, J.H.; Hirano-Kawamoto, A.; Murakami, G.; Yamamoto, M. Origin, Communication and Course of the Vagus Nerve Auricular Branch with Special References to the Mastoid Canaliculus for the Nerve: A Study Using Human Fetus Histological Sections. Ann. Anat. Anat. Anz. 2025, 259, 152389. [Google Scholar] [CrossRef] [PubMed]
- Standring, S.; Anand, N.; Birch, R.; Collins, P.; Crossman, A.; Gleeson, M.; Jawaheer, G.; Smith, A.; Spratt, J.; Stringer, M.; et al. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed.; Elsevier: London, UK, 2016. [Google Scholar]
- Yamamoto, M.; Abe, H.; Hirouchi, H.; Sato, M.; Murakami, G.; Rodríguez-Vázquez, J.F.; Abe, S. Development of the Cartilaginous Connecting Apparatuses in the Fetal Sphenoid, with a Focus on the Alar Process. PLoS ONE 2021, 16, e0251068. [Google Scholar] [CrossRef] [PubMed]
- Sutton, J.B. On the Development and Morphology of the Human Sphenoid Bone. Proc. Zool. Soc. Lond. 1885, 308, 577. [Google Scholar] [CrossRef]
- Yamamoto, M.; Ho Cho, K.; Murakami, G.; Abe, S.; Rodríguez-Vázquez, J.F. Early Fetal Development of the Otic and Pterygopalatine Ganglia with Special Reference to the Topographical Relationship with the Developing Sphenoid Bone. Anat. Rec. 2018, 301, 1442–1453. [Google Scholar] [CrossRef]
- Cho, K.H.; Yamamoto, M.; Murakami, G.; Rodríguez-Vázquez, J.F. Letter to the Editor: “Pterygospinous and Pterygoalar Bars in Children”. Surg. Radiol. Anat. 2022, 44, 809–811. [Google Scholar] [CrossRef]
- Li, Z.; Jin, Z.-W.; Li, C.-A.; Yamamoto, M.; Murakami, G.; Rodríguez-Vázquez, J.F.; Hayashi, S. Orbital Roof Cartilage and Bone in Human Fetuses with Special Reference to Changing Territories among the Ala Minor of the Sphenoid, Frontal Bone, and Ethmoid. Anat. Cell Biol. 2025, in press. [Google Scholar] [CrossRef]
- Chun, I.K.H.; Ojumah, N.; Loukas, M.; Oskouian, R.J.; Tubbs, R.S. Martin Heinrich Rathke (1793–1860) and His Pouch and Cyst. Child’s Nerv. Syst. 2018, 34, 377–379. [Google Scholar] [CrossRef]
- Yamamoto, M.; Jin, Z.; Hayashi, S.; Rodríguez-Vázquez, J.F.; Murakami, G.; Abe, S. Association between the Developing Sphenoid and Adult Morphology: A Study Using Sagittal Sections of the Skull Base from Human Embryos and Fetuses. J. Anat. 2021, 239, 1300–1317. [Google Scholar] [CrossRef]
- Grzonkowska, M.; Baumgart, M.; Szpinda, M. Quantitative Study of the Ossification Centers of the Body of Sphenoid Bone in the Human Fetus. Sci. Rep. 2024, 14, 13522. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Udagawa, J.; Otani, H. Morphological and Morphometric Study on Sphenoid and Basioccipital Ossification in Normal Human Fetuses. Congenit. Anom. 2011, 51, 138–148. [Google Scholar] [CrossRef]
- Kodama, G. Developmental Studies on the Presphenoid in the Human Sphenoid Bone. Okajimas Folia Anat. Jpn. 1965, 41, 159–177. [Google Scholar] [CrossRef]
- Zdilla, M.J. The Caroticoclinoid Foramen in Fetal and Infantile Orbitosphenoid, Presphenoid, and Sphenoid Bones: Developmental and Neurosurgical Considerations. J. Neurosurg. Pediatr. 2019, 23, 390–396. [Google Scholar] [CrossRef]
- Kuta, A.J.; Fred, J. Laine Imaging the Sphenoid Bone and Basiocciput: Anatomic Considerations. Semin. Ultrasound CT MRI 1993, 14, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Li, C.-A.; Kim, J.H.; Jin, Z.-W.; Murakami, G.; Rodríguez-Vázquez, J.F.; Hayashi, S. Ossification of Bony Nerve Canals in the Human Head: A Comparison between the Endochondral and Membranous Bones. Anat. Cell Biol. 2025, 58, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Braga, J.; Crubézy, E.; Elyaqtine, M. The Posterior Border of the Sphenoid Greater Wing and Its Phylogenetic Usefulness in Human Evolution. Am. J. Phys. Anthropol. 1998, 107, 387–399. [Google Scholar] [CrossRef]
- Vazquez, J.F.R.; Velasco, J.R.M.; Collado, J.J. Development of the Human Sphenomandibular Ligament. Anat. Rec. 1992, 233, 453–460. [Google Scholar] [CrossRef]
- Jin, Z.; Honkura, Y.; Yamamoto, M.; Hayashi, S.; Murakami, G.; Abe, H.; Rodríguez-Vázquez, J.F. Sphenomandibular Ligament and Degenerating Meckel’s Cartilage Revisited: Sequential Variations with Temporal Bone Deformity for Ligament Attachment in Near-Term Human Fetuses. J. Anat. 2024, 244, 514–526. [Google Scholar] [CrossRef]
- Honkura, Y.; Yamamoto, M.; Rodríguez-Vázquez, J.F.; Murakam, G.; Abe, H.; Abe, S.; Katori, Y. Fetal Development of the Carotid Canal with Special Reference to a Contribution of the Sphenoid Bone and Pharyngotympanic Tube. Anat. Cell Biol. 2021, 54, 259–269. [Google Scholar] [CrossRef]
- Chmielewski, P.P. Clinical Anatomy of the Sphenoid Bone and Its Terminology. Med. J. Cell Biol. 2023, 11, 65–71. [Google Scholar] [CrossRef]
- Piagkou, M.; Fiska, A.; Tsakotos, G.; Triantafyllou, G.; Politis, C.; Koutserimpas, C.; Skrzat, J.; Olewnik, L.; Zielinska, N.; Tousia, A.; et al. A Morphological Study on the Sphenoid Bone Ligaments’ Ossification Pattern. Surg. Radiol. Anat. 2023, 45, 1405–1417. [Google Scholar] [CrossRef]
- Iskra, T.; Stachera, B.; Możdżeń, K.; Murawska, A.; Ostrowski, P.; Bonczar, M.; Gregorczyk-Maga, I.; Walocha, J.; Koziej, M.; Wysiadecki, G.; et al. Morphology of the Sella Turcica: A Meta-Analysis Based on the Results of 18,364 Patients. Brain Sci. 2023, 13, 1208. [Google Scholar] [CrossRef]
- Natsis, K.; Piagkou, M.; Lazaridis, N.; Totlis, T.; Anastasopoulos, N.; Constantinidis, J. Incidence and Morphometry of Sellar Bridges and Related Foramina in Dry Skulls: Their Significance in Middle Cranial Fossa Surgery. J. Cranio-Maxillofac. Surg. 2018, 46, 635–644. [Google Scholar] [CrossRef]
- Nikolova, S.; Toneva, D.; Zlatareva, D.; Fileva, N. Osseous Bridges of the Sphenoid Bone: Frequency, Bilateral and Sex Distribution. Biology 2023, 12, 492. [Google Scholar] [CrossRef]
- Roomaney, I.A.; Chetty, M. Sella Turcica Morphology in Patients with Genetic Syndromes: A Systematic Review. Orthod. Craniofacial Res. 2021, 24, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Kjær, I. Sella Turcica Morphology and the Pituitary Gland—A New Contribution to Craniofacial Diagnostics Based on Histology and Neuroradiology. Eur. J. Orthod. 2015, 37, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Mikami, T.; Minamida, Y.; Koyanagi, I.; Baba, T.; Houkin, K. Anatomical Variations in Pneumatization of the Anterior Clinoid Process. J. Neurosurg. 2007, 106, 170–174. [Google Scholar] [CrossRef]
- Rennert, R.C.; Brandel, M.G.; Steinberg, J.A.; Martin, J.R.; Gonda, D.D.; Fukushima, T.; Day, J.D.; Khalessi, A.A.; Levy, M.L. Surgical Relevance of Pediatric Anterior Clinoid Process Maturation for Anterior Skull Base Approaches. Oper. Neurosurg. 2021, 20, E200–E207. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Rieth, G.E.; Tanenbaum, J.E.; Williams, J.S.; Ota, N.; Chakravarthi, S.; Manjila, S.; Kassam, A.; Yapicilar, B. A Morphometric Survey of the Parasellar Region in More than 2700 Skulls: Emphasis on the Middle Clinoid Process Variants and Implications in Endoscopic and Microsurgical Approaches. J. Neurosurg. 2018, 129, 60–70. [Google Scholar] [CrossRef]
- Salma, A.; Baidya, N.; Wendt, B.; Aguila, F.; Sammet, S.; Ammirati, M. Qualitative and Quantitative Radio-Anatomical Variation of the Posterior Clinoid Process. Skull Base 2011, 21, 373–378. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Paschopoulos, I.; Luzzi, S.; Tsakotos, G.; Papadopoulos-Manolarakis, P.; Galzio, R.; Piagkou, M. Prevalence and Morphology of Ossified Caroticoclinoid Ligament: An Updated Systematic Review with Meta-Analysis. Diagnostics 2025, 15, 440. [Google Scholar] [CrossRef]
- Paschopoulos, I.; Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Luzzi, S.; Karangeli, N.; Tsakotos, G.; Galzio, R.; Piagkou, M. The Morphological Stenosis Pattern of the Caroticoclinoid Foramen. Diagnostics 2024, 15, 76. [Google Scholar] [CrossRef]
- Serioli, S.; Plou, P.; Donato, G.; Graepel, S.; Ajler, P.; De Bonis, A.; Pinheiro-Neto, C.D.; Leonel, L.C.P.C.; Peris-Celda, M. The Coexistence of Carotico-Clinoid Foramen and Interclinoidal Osseous Bridge: An Anatomo-Radiological Study with Surgical Implications. Oper. Neurosurg. 2025, 28, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Zdilla, M.J.; Hatfield, S.A.; McLean, K.A.; Cyrus, L.M.; Laslo, J.M.; Lambert, H.W. Circularity, Solidity, Axes of a Best Fit Ellipse, Aspect Ratio, and Roundness of the Foramen Ovale. J. Craniofacial Surg. 2016, 27, 222–228. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Luzzi, S.; Olewnik, Ł.; Tsakotos, G.; Zielinska, N.; Galzio, R.; Tudose, R.C.; Rusu, M.C.; Piagkou, M. Foramen Ovale Morphology and Relationship with the Lateral Pterygoid Process Plate: Proposal for a New Classification System. Anat. Sci. Int. 2025, 100, 354–365. [Google Scholar] [CrossRef]
- Iwanaga, J.; Patra, A.; Ravi, K.S.; Dumont, A.S.; Tubbs, R.S. Anatomical Relationship between the Foramen Ovale and the Lateral Plate of the Pterygoid Process: Application to Percutaneous Treatments of Trigeminal Neuralgia. Neurosurg. Rev. 2022, 45, 2193–2199. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, R.; Panthi, S.; Yadav, G.K.; Bhandari, S.; Acharya, R.; Sharma, A.; Shah, P.K.; Koirala, S.; Bhattarai, M.; Gupta, M.K.; et al. Morphometric Analysis of Foramen Ovale, Foramen Spinosum, and Foramen Rotundum of Human Skull Using Computed Tomography Scan: A Cross-Sectional Study. Ann. Med. Surg. 2023, 85, 1731–1736. [Google Scholar] [CrossRef] [PubMed]
- Sugano, G.T.; Pauris, C.C.; Silva, Y.B.E.; Pandini, F.E.; Palermo, R.B.S.; Buchaim, D.V.; Buchaim, R.L.; Chacon, E.L.; Aparecida de Castro, C.; Pagani, B.T.; et al. Topographic and Morphometric Study of the Foramen Spinosum of the Skull and Its Clinical Correlation. Medicina 2022, 58, 1740. [Google Scholar] [CrossRef]
- Rusu, M.C. Doubled Foramen Rotundum and Maxillary Nerve Fenestration. Surg. Radiol. Anat. 2011, 33, 723–726. [Google Scholar] [CrossRef]
- Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Tsakotos, G.; Piagkou, M. Concomitant Sphenopterygoid Canal and Duplicated Foramen Rotundum Detected on Computed Tomography Scan. J. Craniofacial Surg. 2025, 36, 1381–1382. [Google Scholar] [CrossRef]
- Syed, A.; Olewnik, Ł.; Georgiev, G.P.; Iwanaga, J.; Loukas, M.; Tubbs, R.S. Duplication of the Foramen Rotundum: A Rare Case Report. Morphologie 2023, 107, 138–141. [Google Scholar] [CrossRef]
- Inal, M.; Muluk, N.B.; Arikan, O.K.; Şahin, S. Is There a Relationship Between Optic Canal, Foramen Rotundum, and Vidian Canal? J. Craniofacial Surg. 2015, 26, 1382–1388. [Google Scholar] [CrossRef]
- Yegin, Y.; Celik, M.; Altintas, A.; Masallah Simsek, B.; Olgun, B.; Kayhan, F.T. Vidian Canal Types and Dehiscence of the Bony Roof of the Canal: An Anatomical Study. Turk Otolarengoloji Ars./Turk. Arch. Otolaryngol. 2017, 55, 22–26. [Google Scholar] [CrossRef]
- Zdilla, M.J.; Cusick, A.M.; Cowher, A.E.; Choi, J.S.; Lambert, H.W. Optic Canal Size Is an Indicator for the Accessory Optic Canal: Applications for Anterior Clinoidectomy. World Neurosurg. 2024, 181, e826–e832. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, G.; Piagkou, M.; Tsakotos, G.; Duparc, F. A Rare Morphological Variant: Bilateral Accessory Optic Canal. Morphologie 2025, 109, 100952. [Google Scholar] [CrossRef] [PubMed]
- Ugradar, S.; Goldberg, R.; Rootman, D. Anatomic Variation of the Entrance of the Optic Canal into the Orbit. Orbit 2019, 38, 305–307. [Google Scholar] [CrossRef]
- Natori, Y.; Rhoton, A.L. Microsurgical Anatomy of the Superior Orbital Fissure. Neurosurgery 1995, 36, 762–775. [Google Scholar] [CrossRef] [PubMed]
- Pirinc, B.; Fazliogullari, Z.; Koplay, M.; Karabulut, A.K.; Unver Dogan, N. Morphometric Evaluation and Classification of the Superior Orbital Fissure on 3D MDCT Images. Anat. Sci. Int. 2023, 98, 196–203. [Google Scholar] [CrossRef]
- Govsa, F.; Kayalioglu, G.; Erturk, M.; Ozgur, T. The Superior Orbital Fissure and Its Contents. Surg. Radiol. Anat. 1999, 21, 181–185. [Google Scholar] [CrossRef]
- Piagkou, M.; Kostares, M.; Duparc, F.; Papanagiotou, P.; Politis, C.; Tsakotos, G.; Pantazis, N.; Natsis, K. The Sphenoidal Emissary Foramina Prevalence: A Meta-Analysis of 6,369 Subjects. Surg. Radiol. Anat. 2022, 45, 43–53. [Google Scholar] [CrossRef]
- Leonel, L.C.P.C.; Peris-Celda, M.; de Sousa, S.D.G.; Haetinger, R.G.; Liberti, E.A. The Sphenoidal Emissary Foramen and the Emissary Vein: Anatomy and Clinical Relevance. Clin. Anat. 2020, 33, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Triantafyllou, G.; Papadopoulos-Manolarakis, P.; Olewnik, Ł.; Duparc, F.; Tsakotos, G.; Zielinska, N.; Piagkou, M. An Accessory Sphenoidal Foramen of the Middle Cranial Fossa Detected on Computed Tomography. Surg. Radiol. Anat. 2025, 47, 89. [Google Scholar] [CrossRef] [PubMed]
- Rusu, M.C. The Sphenopterygoid Canal and Pterygoid Foramen. Surg. Radiol. Anat. 2024, 46, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, J.; Clifton, W.; Dallapiazza, R.F.; Miyamoto, Y.; Komune, N.; Gremillion, H.A.; Dumont, A.S.; Tubbs, R.S. The Pterygospinous and Pterygoalar Ligaments and Their Relationship to the Mandibular Nerve: Application to a Better Understanding of Various Forms of Trigeminal Neuralgia. Ann. Anat. 2020, 229, 151466. [Google Scholar] [CrossRef]
- Pękala, P.A.; Henry, B.M.; Pękala, J.R.; Frączek, P.A.; Taterra, D.; Natsis, K.; Piagkou, M.; Skrzat, J.; Tomaszewska, I.M. The Pterygoalar Bar: A Meta-Analysis of Its Prevalence, Morphology and Morphometry. J. Cranio-Maxillofac. Surg. 2017, 45, 1535–1541. [Google Scholar] [CrossRef]
- Tubbs, R.S.; May, W.R.; Apaydin, N.; Shoja, M.M.; Shokouhi, G.; Loukas, M.; Cohen-Gadol, A.A. Ossification of ligaments near the foramen ovale. Oper. Neurosurg. 2009, 65, ons60–ons64. [Google Scholar] [CrossRef] [PubMed]
- Matys, T.; Ali, T.; Zaccagna, F.; Barone, D.G.; Kirollos, R.W.; Massoud, T.F. Ossification of the Pterygoalar and Pterygospinous Ligaments: A Computed Tomography Analysis of Infratemporal Fossa Anatomical Variants Relevant to Percutaneous Trigeminal Rhizotomy. J. Neurosurg. 2020, 132, 1942–1951. [Google Scholar] [CrossRef]
- Henry, B.M.; Pękala, P.A.; Frączek, P.A.; Pękala, J.R.; Natsis, K.; Piagkou, M.; Tomaszewski, K.A.; Tomaszewska, I.M. Prevalence, Morphology, and Morphometry of the Pterygospinous Bar: A Meta-Analysis. Surg. Radiol. Anat. 2020, 42, 497–507. [Google Scholar] [CrossRef]
- Esen, K.; Özgür, A.; Balcı, Y.; Ten, B. Pterygospinous and Pterygoalar Bars in Children. Surg. Radiol. Anat. 2022, 44, 353–359. [Google Scholar] [CrossRef]
- Simonds, E.; Iwanaga, J.; Oskouian, R.J.; Tubbs, R.S. Duplication of the Sphenomandibular Ligament. Cureus 2017, 9, e1783. [Google Scholar] [CrossRef]
- Cebula, H.; Kurbanov, A.; Zimmer, L.A.; Poczos, P.; Leach, J.L.; De Battista, J.C.; Froelich, S.; Theodosopoulos, P.V.; Keller, J.T. Endoscopic, Endonasal Variability in the Anatomy of the Internal Carotid Artery. World Neurosurg. 2014, 82, e759–e764. [Google Scholar] [CrossRef]
- Luzzi, S.; Giotta Lucifero, A.; Baldoncini, M.; Galzio, R.; Campero, A. Comparative Analysis of Surgical Working Corridors for Meckel Cave Trigeminal Schwannomas: A Quantitative Anatomic Study. Oper. Neurosurg. 2023, 25, e251–e266. [Google Scholar] [CrossRef] [PubMed]
- Karkas, A.; Zimmer, L.A.; Theodosopoulos, P.V.; Keller, J.T.; Prades, J.-M. Endonasal Endoscopic Approach to the Pterygopalatine and Infratemporal Fossae. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2021, 138, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, J.; Kunisada, Y.; Masui, M.; Obata, K.; Takeshita, Y.; Sato, K.; Kikuta, S.; Abe, Y.; Matsushita, Y.; Kusukawa, J.; et al. Comprehensive Review of Lower Third Molar Management: A Guide for Improved Informed Consent. Clin. Anat. 2021, 34, 224–243. [Google Scholar] [CrossRef] [PubMed]
Ossification Center | Anatomical Region | Type | Approximate Onset | Notes |
---|---|---|---|---|
Basisphenoid | PB | Primary | 40–45 days | First visible ossification center |
Presphenoid | AB | Primary | 16 weeks | Fuses later with basisphenoid |
Orbitosphenoid | LWs | Secondary | 8–9 weeks | Derived from membranous ossification |
Alisphenoid | GWs | Mixed | 8–9 weeks | Includes both cartilage and membrane |
Medial and lateral pterygoid plates | PPs | Secondary | 12–14 weeks | Ossify from independent centers |
Intrasphenoidal synchondrosis | Body (midline) | Synchondrosis | Fuses postnatally | Key for skull base elongation |
Sphenoethmoidal synchondrosis | Anterior base | Synchondrosis | Late fetal | Fuses by 7–8 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Triantafyllou, G.; Piagkou, M. The Developing Human Sphenoid Bone: Linking Embryological Development to Adult Morphology. Biology 2025, 14, 1090. https://doi.org/10.3390/biology14081090
Triantafyllou G, Piagkou M. The Developing Human Sphenoid Bone: Linking Embryological Development to Adult Morphology. Biology. 2025; 14(8):1090. https://doi.org/10.3390/biology14081090
Chicago/Turabian StyleTriantafyllou, George, and Maria Piagkou. 2025. "The Developing Human Sphenoid Bone: Linking Embryological Development to Adult Morphology" Biology 14, no. 8: 1090. https://doi.org/10.3390/biology14081090
APA StyleTriantafyllou, G., & Piagkou, M. (2025). The Developing Human Sphenoid Bone: Linking Embryological Development to Adult Morphology. Biology, 14(8), 1090. https://doi.org/10.3390/biology14081090