Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Proteome Extraction from Non-Bleached and Bleached Fragments of M. complanata Hydrocoral
2.3. Proteomic Analysis of Non-Bleached and Bleached Extracts of M. complanata LC-MS/MS
2.4. LC-MS/MS
2.5. Database Search and Protein Identification
2.6. Protein Identification and Validation Criteria
2.7. Functional Annotation and Gene Ontology Term Assignment
2.8. Statistical Analysis
3. Results
3.1. Protein Quantification and Environmental Context of the Bleaching Event
3.2. Proteomic Profiling of M. complanata Under Bleaching Conditions
3.3. Statistical Analysis of Spectral Count Data
3.3.1. Univariate Analyses
3.3.2. Multivariate Analyses
3.4. Functional Annotation and Gene Ontology Term Assignment
3.5. Proteins Differentially Abundant in Bleached M. complanata
No. | Protein Name | Accession Number | MW (kDa) | Protein Level 1 | Effect Size 2 | Fold Change 3 |
---|---|---|---|---|---|---|
Amino acid biosynthesis | ||||||
1 | Hcy-binding domain-containing protein | A0A3M6UII3 | 64 | ↑ | 0.8106 | 4.07 |
Carbohydrate metabolism | ||||||
2 | Phosphopyruvate hydratase | A0A3M6UH98 | 37 | ↑ | 0.8544 | 3.72 |
Cell communication | ||||||
3 | F5/8 type C domain-containing protein | A0A3M6TA43 | 2261 | ↓ | −0.732 | −3.83 |
4 | PDZ domain-containing protein 2 | A0A3M6TV70 | 403 | ↓ | −0.4818 | −3.7 |
Cell cycle | ||||||
5 | Cell division control protein 42 homolog | A0A3M6UBV6 | 21 | ↑ | 0.8021 | 4.45 |
Cytoskeleton component | ||||||
6 | Actin | A0A3M6UP43 | 42 | ↑ | 0.5179 | 0.18 |
7 | Actin | A0A3M6UP81 | 42 | ↑ | 0.0439 | 0.02 |
8 | Actin | A0A3M6UH97 | 56 | ↓ | −0.3848 | −0.31 |
9 | Tubulin beta chain | A0A3M6TMY2 | 17 | ↓ | −0.5705 | −1.27 |
10 | Microtubule-associated proteins 1A/1B light chain 3C-like | A0A3M6U8T6 | 15 | ↓ | −0.8054 | −2.49 |
11 | Tubulin alpha chain | A0A3M6TAX7 | 99 | ↓ | −0.121 | −0.25 |
12 | Myosin motor domain-containing protein | A0A3M6UZZ8 | 228 | ↑ | 0.5668 | 4.84 |
13 | Myosin regulatory light chain ef-hand protein | A0A3M6UI41 | 15 | ↓ | −0.214 | −0.96 |
14 | Actin-related protein 3 | A0A3M6UDC7 | 44 | ↑ | 0.8317 | 3.25 |
15 | Alpha-actinin, sarcomeric | A0A3M6U9E3 | 94 | ↑ | 0.7684 | 3.85 |
DNA repair | ||||||
16 | PDDEXK_1 domain-containing protein | A0A3M6TW03 | 38 | ↓ | −0.4818 | −2.64 |
Extracellular matrix component | ||||||
17 | Collagen alpha chain | B8V7R6 | 88 | ↓ | −0.4818 | −3.22 |
18 | ZP domain-containing protein | A0A3M6U3D9 | 39 | ↓ | −0.4818 | −2.96 |
Protein modification and heat shock response | ||||||
19 | Heat shock protein 70 | Q5FB18 | 74 | ↑ | 0.1967 | 0.42 |
20 | Ubiquitin-60S ribosomal protein L40 | Q93116 | 15 | ↓ | −1.1759 | −1.79 |
21 | Protein disulfide-isomerase | A0A3M6V013 | 37 | ↓ | −0.5419 | −1.52 |
22 | Protein disulfide-isomerase | A0A3M6TV91 | 56 | ↓ | −0.6721 | −2.17 |
23 | Heat shock 70 kDa protein cognate 5 | A0A3M6U177 | 71 | ↓ | −0.6242 | −3.15 |
24 | PX domain-containing protein | A0A3M6TEA6 | 39 | ↑ | 0.6118 | 2.52 |
25 | Peptidyl-prolyl cis-trans isomerase | A0A3M6UIN0 | 18 | ↑ | 0.4965 | 3.3 |
26 | WD repeat-containing protein 11 | A0A3M6UW24 | 141 | ↓ | −0.4818 | −3.7 |
27 | Calreticulin | A0A3M6TB88 | 51 | ↑ | 0.7684 | 3.35 |
28 | UBC core domain-containing protein | A0A3M6UGY3 | 17 | ↑ | 0.7684 | 3.35 |
Redox homeostasis | ||||||
29 | Thioredoxin domain-containing protein | A0A3M6T9K8 | 24 | ↓ | −0.7799 | −1.49 |
30 | Thioredoxin-dependent peroxiredoxin | A0A3M6U7L4 | 22 | ↑ | 0.6057 | 2.26 |
31 | Aldedh domain-containing protein | A0A3M6UUA9 | 58 | ↑ | 0.7784 | 4.35 |
32 | Unspecific monooxygenase | A0A3M6UWA6 | 59 | ↓ | −0.4818 | −3.7 |
Signaling | ||||||
33 | EF-hand domain-containing protein | A0A3M6USF3 | 12 | ↓ | −0.7136 | −1.7 |
34 | EF-hand domain-containing protein | A0A3M6TLA1 | 14 | ↓ | −0.6555 | −1.56 |
35 | PRKG1 interact domain-containing protein | A0A3M6TTF0 | 14 | ↓ | −0.9043 | −4.84 |
36 | Serine/threonine-protein kinase TOR | A0A3M6UZI7 | 272 | ↑ | 0.6923 | 2.45 |
37 | EGF-like domain-containing protein | A0A3M6TYF4 | 198 | ↓ | −0.4818 | −3.7 |
38 | Fibrocystin-L | A0A3M6UHX3 | 719 | ↑ | 0.6551 | 5.11 |
39 | RZ-type domain-containing protein | A0A3M6TXJ4 | 600 | ↓ | −0.4818 | −2.64 |
40 | TNFR-Cys domain-containing protein | A0A3M6UKT4 | 56 | ↓ | −0.4818 | −3.7 |
Transcription | ||||||
41 | Histone H4 | A0A3M6UZ06 | 11 | ↓ | −0.7419 | −1.12 |
42 | Histone H2B | A0A3M6THD8 | 14 | ↓ | −1.0012 | −2.13 |
43 | Histone H3 | A0A3M6T926 | 15 | ↓ | −1.1167 | −6.35 |
44 | DUF3715 domain-containing protein | A0A3M6TH31 | 437 | ↑ | 0.5847 | 2.89 |
45 | CCR4-NOT transcription complex subunit 1 | A0A3M6T4M6 | 278 | ↑ | 0.668 | 5.94 |
Transport | ||||||
46 | Ras-related protein Rab-1A | A0A3M6U070 | 25 | ↑ | 0.7684 | 4.35 |
47 | Amino acid transporter | A0A3M6TNM3 | 181 | ↓ | −0.4818 | −3.22 |
48 | Cationic amino acid transporter C-terminal domain-containing protein | A0A3M6UX14 | 96 | ↑ | 0.6237 | 5.62 |
49 | Ras-related protein Rab-2A | A0A3M6UCJ4 | 29 | ↑ | 0.837 | 4.99 |
50 | Ras-like protein 2 | A0A3M6TKM7 | 22 | ↑ | 0.7684 | 3.35 |
Unknown | ||||||
51 | Uncharacterized protein | A0A3M6V3A1 | 130 | ↓ | −0.3604 | −0.91 |
52 | Uncharacterized protein | A0A3M6U169 | 23 | ↑ | 0.7108 | 3.79 |
4. Discussion
4.1. Cytoskeleton Components
4.2. Extracellular Matrix Component
4.3. Heat Shock Response
4.4. Redox Homeostasis
4.5. Signaling
4.6. Transcription
4.7. Transport
4.8. Carbohydrate Metabolism
4.9. Final Considerations
4.10. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stambler, N. Zooxanthellae: The Yellow Symbionts Inside Animals. In Coral Reefs: An Ecosystem in Transition; Dubinsky, Z., Stambler, N., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 87–106. ISBN 978-94-007-0114-4. [Google Scholar]
- Lough, J.M. Turning Back Time. Nature 2016, 531, 314–315. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, E.R.; Naser, H.; Naser, H. Natural Resources Management and Biological Sciences; IntechOpen: London, UK, 2021; ISBN 978-1-83880-465-7. [Google Scholar]
- Van de Water, J.A.; Tignat-Perrier, R.; Allemand, D.; Ferrier-Pagès, C. Coral Holobionts and Biotechnology: From Blue Economy to Coral Reef Conservation. Curr. Opin. Biotechnol. 2022, 74, 110–121. [Google Scholar] [CrossRef]
- LaJeunesse, T.C.; Parkinson, J.E.; Gabrielson, P.W.; Jeong, H.J.; Reimer, J.D.; Voolstra, C.R.; Santos, S.R. Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts. Curr. Biol. 2018, 28, 2570–2580.e6. [Google Scholar] [CrossRef]
- González-Pech, R.A.; Bhattacharya, D.; Ragan, M.A.; Chan, C.X. Genome Evolution of Coral Reef Symbionts as Intracellular Residents. Trends Ecol. Evol. 2019, 34, 799–806. [Google Scholar] [CrossRef]
- Cziesielski, M.J. Making a Model—Investigating the Molecular Machinery of the Coral Symbiosis Model System Aiptasia. Ph.D. Thesis, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 2019. [Google Scholar]
- Hein, M.Y.; Birtles, A.; Willis, B.L.; Gardiner, N.; Beeden, R.; Marshall, N.A. Coral Restoration: Socio-Ecological Perspectives of Benefits and Limitations. Biol. Conserv. 2019, 229, 14–25. [Google Scholar] [CrossRef]
- Rinkevich, B. The Active Reef Restoration Toolbox is a Vehicle for Coral Resilience and Adaptation in a Changing World. J. Mar. Sci. Eng. 2019, 7, 201. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative Stress in Marine Environments: Biochemistry and Physiological Ecology. Annu. Rev. Physiol. 2006, 68, 253–278. [Google Scholar] [CrossRef]
- Montero-Serra, I.; Garrabou, J.; Doak, D.F.; Ledoux, J.-B.; Linares, C. Marine Protected Areas Enhance Structural Complexity but Do Not Buffer the Consequences of Ocean Warming for an Overexploited Precious Coral. J. Appl. Ecol. 2019, 56, 1063–1074. [Google Scholar] [CrossRef]
- Eakin, C.M.; Sweatman, H.; Brainard, R. The 2014–2017 Global-Scale Coral Bleaching Event: Insights and Impacts. Coral Reefs 2019, 38, 539–545. [Google Scholar] [CrossRef]
- Bissolli, P.; Ganter, C.; Li, T.; Mekonnen, A.; Sanchez-Lugo, A. 7. Regional Climates. Bull. Am. Meteorol. Soc. 2018, 99, S193. [Google Scholar]
- Mellin, C.; Brown, S.; Cantin, N.; Klein-Salas, E.; Mouillot, D.; Heron, S.F.; Fordham, D.A. Cumulative Risk of Future Bleaching for the World’s Coral Reefs. Sci. Adv. 2024, 10, eadn9660. [Google Scholar] [CrossRef]
- Richier, S.; Rodriguez-Lanetty, M.; Schnitzler, C.E.; Weis, V.M. Response of the Symbiotic Cnidarian Anthopleura elegantissima Transcriptome to Temperature and UV Increase. Comp. Biochem. Physiol. Part D Genom. Proteom. 2008, 3, 283–289. [Google Scholar] [CrossRef]
- Desalvo, M.K.; Voolstra, C.R.; Sunagawa, S.; Schwarz, J.A.; Stillman, J.H.; Coffroth, M.A.; Szmant, A.M.; Medina, M. Differential Gene Expression during Thermal Stress and Bleaching in the Caribbean Coral Montastraea faveolata. Mol. Ecol. 2008, 17, 3952–3971. [Google Scholar] [CrossRef] [PubMed]
- Moya, A.; Ganot, P.; Furla, P.; Sabourault, C. The Transcriptomic Response to Thermal Stress Is Immediate, Transient and Potentiated by Ultraviolet Radiation in the Sea Anemone Anemonia viridis. Mol. Ecol. 2012, 21, 1158–1174. [Google Scholar] [CrossRef]
- Kenkel, C.D.; Meyer, E.; Matz, M.V. Gene Expression under Chronic Heat Stress in Populations of the Mustard Hill Coral (Porites astreoides) from Different Thermal Environments. Mol. Ecol. 2013, 22, 4322–4334. [Google Scholar] [CrossRef]
- Maor-Landaw, K.; Karako-Lampert, S.; Ben-Asher, H.W.; Goffredo, S.; Falini, G.; Dubinsky, Z.; Levy, O. Gene Expression Profiles during Short-Term Heat Stress in the Red Sea Coral Stylophora pistillata. Glob. Change Biol. 2014, 20, 3026–3035. [Google Scholar] [CrossRef]
- Seneca, F.O.; Palumbi, S.R. The Role of Transcriptome Resilience in Resistance of Corals to Bleaching. Mol. Ecol. 2015, 24, 1467–1484. [Google Scholar] [CrossRef]
- Pinzón, J.H.; Kamel, B.; Burge, C.A.; Harvell, C.D.; Medina, M.; Weil, E.; Mydlarz, L.D. Whole Transcriptome Analysis Reveals Changes in Expression of Immune-Related Genes during and after Bleaching in a Reef-Building Coral. R. Soc. Open Sci. 2015, 2, 140214. [Google Scholar] [CrossRef] [PubMed]
- Helmkampf, M.; Renee Bellinger, M.; Geib, S.M.; Sim, S.B.; Takabayashi, M. Draft Genome of the Rice Coral Montipora capitata Obtained from Linked-Read Sequencing. Genome Biol. Evol. 2019, 11, 3094. [Google Scholar] [CrossRef] [PubMed]
- Cleves, P.A.; Krediet, C.J.; Lehnert, E.M.; Onishi, M.; Pringle, J.R. Insights into Coral Bleaching under Heat Stress from Analysis of Gene Expression in a Sea Anemone Model System. Proc. Natl. Acad. Sci. USA 2020, 117, 28906–28917. [Google Scholar] [CrossRef]
- Weston, A.J.; Dunlap, W.C.; Beltran, V.H.; Starcevic, A.; Hranueli, D.; Ward, M.; Long, P.F. Proteomics Links the Redox State to Calcium Signaling During Bleaching of the Scleractinian Coral Acropora microphthalma on Exposure to High Solar Irradiance and Thermal Stress[S]. Mol. Cell. Proteom. 2015, 14, 585–595. [Google Scholar] [CrossRef]
- Ricaurte, M.; Schizas, N.V.; Ciborowski, P.; Boukli, N.M. Proteomic Analysis of Bleached and Unbleached Acropora palmata, a Threatened Coral Species of the Caribbean. Mar. Pollut. Bull. 2016, 107, 224–232. [Google Scholar] [CrossRef]
- Oakley, C.A.; Durand, E.; Wilkinson, S.P.; Peng, L.; Weis, V.M.; Grossman, A.R.; Davy, S.K. Thermal Shock Induces Host Proteostasis Disruption and Endoplasmic Reticulum Stress in the Model Symbiotic Cnidarian Aiptasia. J. Proteome Res. 2017, 16, 2121–2134. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Chen, Y.-J.; Lu, C.-Y.; Chen, C.-S. The Proteomic Response of the Reef Coral Pocillopora acuta to Experimentally Elevated Temperatures. PLoS ONE 2018, 13, e0192001. [Google Scholar] [CrossRef]
- Mayfield, A.B. Proteomic Signatures of Corals from Thermodynamic Reefs. Microorganisms 2020, 8, 1171. [Google Scholar] [CrossRef] [PubMed]
- Petrou, K.; Nunn, B.L.; Padula, M.P.; Miller, D.J.; Nielsen, D.A. Broad Scale Proteomic Analysis of Heat-Destabilised Symbiosis in the Hard Coral Acropora millepora. Sci. Rep. 2021, 11, 19061. [Google Scholar] [CrossRef] [PubMed]
- Axworthy, J.B.; Timmins-Schiffman, E.; Brown, T.; Rodrigues, L.J.; Nunn, B.L.; Padilla-Gamiño, J.L. Shotgun Proteomics Identifies Active Metabolic Pathways in Bleached Coral Tissue and Intraskeletal Compartments. Front. Mar. Sci. 2022, 9, 797517. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Aguilar, C.; Kolodziej, G.; Enochs, I.C.; Manzello, D.P. Shotgun Proteomic Analysis of Thermally Challenged Reef Corals. Front. Mar. Sci. 2021, 8, 660153. [Google Scholar] [CrossRef]
- Mayfield, A.B.; Lin, C. Field-Testing a Proteomics-Derived Machine-Learning Model for Predicting Coral Bleaching Susceptibility. Appl. Sci. 2023, 13, 1718. [Google Scholar] [CrossRef]
- Ricaurte, M.; Schizas, N.V.; Weil, E.F.; Ciborowski, P.; Boukli, N.M. Seasonal Proteome Variations in Orbicella faveolata Reveal Molecular Thermal Stress Adaptations. Proteomes 2024, 12, 20. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, X.; Zhang, J.; Zhu, W.; Su, C.; Wang, A.; Li, X. An Integrative Analysis of Proteomics and Metabolomics Reveals the Effects of Active Restoration on Acropora hyacinthus. J. Exp. Mar. Biol. Ecol. 2024, 570, 151972. [Google Scholar] [CrossRef]
- Olguín-López, N.; Hérnandez-Elizárraga, V.H.; Hernández-Matehuala, R.; Cruz-Hernández, A.; Guevara-González, R.; Caballero-Pérez, J.; Ibarra-Alvarado, C.; Rojas-Molina, A. Impact of El Niño-Southern Oscillation 2015–2016 on the Soluble Proteomic Profile and Cytolytic Activity of Millepora alcicornis (“Fire Coral”) from the Mexican Caribbean. PeerJ 2019, 7, e6593. [Google Scholar] [CrossRef]
- Hernández-Elizárraga, V.H.; Olguín-López, N.; Hernández-Matehuala, R.; Ocharán-Mercado, A.; Cruz-Hernández, A.; Guevara-González, R.G.; Caballero-Pérez, J.; Ibarra-Alvarado, C.; Sánchez-Rodríguez, J.; Rojas-Molina, A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata (“Fire Coral”) from the Mexican Caribbean. Mar. Drugs 2019, 17, 393. [Google Scholar] [CrossRef]
- Hernández-Elizárraga, V.H.; Olguín-López, N.; Hernández-Matehuala, R.; Caballero-Pérez, J.; Ibarra-Alvarado, C.; Rojas-Molina, A. Transcriptomic Differences between Bleached and Unbleached Hydrozoan Millepora complanata Following the 2015–2016 ENSO in the Mexican Caribbean. PeerJ 2023, 11, e14626. [Google Scholar] [CrossRef]
- Sproles, A.E.; Oakley, C.A.; Matthews, J.L.; Peng, L.; Owen, J.G.; Grossman, A.R.; Weis, V.M.; Davy, S.K. Proteomics Quantifies Protein Expression Changes in a Model Cnidarian Colonised by a Thermally Tolerant but Suboptimal Symbiont. ISME J. 2019, 13, 2334–2345. [Google Scholar] [CrossRef]
- Wang, W.; Scali, M.; Vignani, R.; Spadafora, A.; Sensi, E.; Mazzuca, S.; Cresti, M. Protein Extraction for Two-Dimensional Electrophoresis from Olive Leaf, a Plant Tissue Containing High Levels of Interfering Compounds. Electrophoresis 2003, 24, 2369–2375. [Google Scholar] [CrossRef] [PubMed]
- Käll, L.; Storey, J.D.; Noble, W.S. Non-Parametric Estimation of Posterior Error Probabilities Associated with Peptides Identified by Tandem Mass Spectrometry. Bioinformatics 2008, 24, i42–i48. [Google Scholar] [CrossRef]
- Nesvizhskii, A.I.; Keller, A.; Kolker, E.; Aebersold, R. A Statistical Model for Identifying Proteins by Tandem Mass Spectrometry. Anal. Chem. 2003, 75, 4646–4658. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sadygov, R.G.; Yates, J.R. A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics. Anal. Chem. 2004, 76, 4193–4201. [Google Scholar] [CrossRef]
- Colinge, J.; Chiappe, D.; Lagache, S.; Moniatte, M.; Bougueleret, L. Differential Proteomics via Probabilistic Peptide Identification Scores. Anal. Chem. 2005, 77, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Mosquim Junior, S.; Siino, V.; Rydén, L.; Vallon-Christersson, J.; Levander, F. Choice of High-Throughput Proteomics Method Affects Data Integration with Transcriptomics and the Potential Use in Biomarker Discovery. Cancers 2022, 14, 5761. [Google Scholar] [CrossRef] [PubMed]
- Morretta, E.; D’Agostino, A.; Cassese, E.; Maglione, B.; Petrella, A.; Schiraldi, C.; Monti, M.C. Label-Free Quantitative Proteomics to Explore the Action Mechanism of the Pharmaceutical-Grade Triticum Vulgare Extract in Speeding Up Keratinocyte Healing. Molecules 2022, 27, 1108. [Google Scholar] [CrossRef]
- Cho, H.W.; Kim, S.B.; Jeong, M.K.; Park, Y.; Miller, N.G.; Ziegler, T.R.; Jones, D.P. Discovery of Metabolite Features for the Modelling and Analysis of High-Resolution NMR Spectra. Int. J. Data Min. Bioinform. 2008, 2, 176. [Google Scholar] [CrossRef] [PubMed]
- Saccenti, E.; Hoefsloot, H.C.J.; Smilde, A.K.; Westerhuis, J.A.; Hendriks, M.M.W.B. Reflections on Univariate and Multivariate Analysis of Metabolomics Data. Metabolomics 2014, 10, 361–374. [Google Scholar] [CrossRef]
- Cano-Corres, R.; Sánchez-Álvarez, J.; Fuentes-Arderiu, X. The Effect Size: Beyond Statistical Significance. Electron. J. Int. Fed. Clin. Chem. 2012, 23, 19–23. [Google Scholar]
- Kenkel, C.D.; Aglyamova, G.; Alamaru, A.; Bhagooli, R.; Capper, R.; Cunning, R.; deVillers, A.; Haslun, J.A.; Hédouin, L.; Keshavmurthy, S.; et al. Development of Gene Expression Markers of Acute Heat-Light Stress in Reef-Building Corals of the Genus Porites. PLoS ONE 2011, 6, e26914. [Google Scholar] [CrossRef]
- Louis, Y.D.; Bhagooli, R.; Kenkel, C.D.; Baker, A.C.; Dyall, S.D. Gene Expression Biomarkers of Heat Stress in Scleractinian Corals: Promises and Limitations. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2017, 191, 63–77. [Google Scholar] [CrossRef]
- Drazic, A.; Aksnes, H.; Marie, M.; Boczkowska, M.; Varland, S.; Timmerman, E.; Foyn, H.; Glomnes, N.; Rebowski, G.; Impens, F.; et al. NAA80 Is Actin’s N-Terminal Acetyltransferase and Regulates Cytoskeleton Assembly and Cell Motility. Proc. Natl. Acad. Sci. USA 2018, 115, 4399–4404. [Google Scholar] [CrossRef]
- Schrank, B.R.; Aparicio, T.; Li, Y.; Chang, W.; Chait, B.T.; Gundersen, G.G.; Gottesman, M.E.; Gautier, J. Nuclear ARP2/3 Drives DNA Break Clustering for Homology-Directed Repair. Nature 2018, 559, 61–66. [Google Scholar] [CrossRef]
- Ramsey, J.S.; Ammar, E.-D.; Mahoney, J.E.; Rivera, K.; Johnson, R.; Igwe, D.O.; Thannhauser, T.W.; MacCoss, M.J.; Hall, D.G.; Heck, M. Host Plant Adaptation Drives Changes in Diaphorina Citri Proteome Regulation, Proteoform Expression, and Transmission of ‘Candidatus Liberibacter Asiaticus’, the Citrus Greening Pathogen. Phytopathology® 2022, 112, 101–115. [Google Scholar] [CrossRef]
- Carbonara, K.; Andonovski, M.; Coorssen, J.R. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021, 9, 38. [Google Scholar] [CrossRef]
- DeSalvo, M.K.; Sunagawa, S.; Voolstra, C.R.; Medina, M. Transcriptomic Responses to Heat Stress and Bleaching in the Elkhorn Coral Acropora Palmata. Mar. Ecol. Prog. Ser. 2010, 402, 97–113. [Google Scholar] [CrossRef]
- DeSalvo, M.K.; Estrada, A.; Sunagawa, S.; Medina, M. Transcriptomic Responses to Darkness Stress Point to Common Coral Bleaching Mechanisms. Coral Reefs 2012, 31, 215–228. [Google Scholar] [CrossRef]
- Maor-Landaw, K.; Levy, O. Survey of Cnidarian Gene Expression Profiles in Response to Environmental Stressors: Summarizing 20 Years of Research, What Are We Heading For? In The Cnidaria, Past, Present and Future: The World of Medusa and Her Sisters; Goffredo, S., Dubinsky, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 523–543. ISBN 978-3-319-31305-4. [Google Scholar]
- Lee, S.T.M.; Keshavmurthy, S.; Fontana, S.; Takuma, M.; Chou, W.-H.; Chen, C.A. Transcriptomic Response in Acropora muricata under Acute Temperature Stress Follows Preconditioned Seasonal Temperature Fluctuations. BMC Res. Notes 2018, 11, 119. [Google Scholar] [CrossRef]
- Zheng, B.; Han, M.; Bernier, M.; Wen, J. Nuclear Actin and Actin-Binding Proteins in the Regulation of Transcription and Gene Expression. FEBS J. 2009, 276, 2669–2685. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.A.; Mullins, R.D. Cell Mechanics and the Cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a Mammalian Homologue of Yeast Apg8p, is Localized in Autophagosome Membranes after Processing. EMBO J. 2000, 19, 5720–5728. [Google Scholar] [CrossRef]
- Mizushima, N.; Yoshimori, T.; Levine, B. Methods in Mammalian Autophagy Research. Cell 2010, 140, 313–326. [Google Scholar] [CrossRef]
- Dunn, S.R.; Schnitzler, C.E.; Weis, V.M. Apoptosis and Autophagy as Mechanisms of Dinoflagellate Symbiont Release during Cnidarian Bleaching: Every Which Way You Lose. Proc. R. Soc. B Biol. Sci. 2007, 274, 3079–3085. [Google Scholar] [CrossRef]
- Downs, C.A.; Kramarsky-Winter, E.; Martinez, J.; Kushmaro, A.; Woodley, C.M.; Loya, Y.; Ostrander, G.K. Symbiophagy as a Cellular Mechanism for Coral Bleaching. Autophagy 2009, 5, 211–216. [Google Scholar] [CrossRef]
- Fan, T.; Wang, R.; Xiang, Y.; An, L.; Cao, S. Heat Stress Induces Actin Cytoskeletal Reorganization and Transcript Profiles of Vegetative Profilins and Actin Depolymerizing Factors (ADFs) in Arabidopsis. Acta Physiol. Plant. 2016, 38, 37. [Google Scholar] [CrossRef]
- Harper, J.W.; Bennett, E.J. Proteome Complexity and the Forces That Drive Proteome Imbalance. Nature 2016, 537, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Barshis, D.J.; Ladner, J.T.; Oliver, T.A.; Seneca, F.O.; Traylor-Knowles, N.; Palumbi, S.R. Genomic Basis for Coral Resilience to Climate Change. Proc. Natl. Acad. Sci. USA 2013, 110, 1387–1392. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L.; Fisher, G.J. UV-Light-Induced Signal Cascades and Skin Aging. Ageing Res. Rev. 2002, 1, 705–720. [Google Scholar] [CrossRef]
- Park, G.; Oh, M.S. Acceleration of Heat Shock-Induced Collagen Breakdown in Human Dermal Fibroblasts with Knockdown of NF-E2-Related Factor 2. BMB Rep. 2015, 48, 467–472. [Google Scholar] [CrossRef]
- Jovine, L.; Qi, H.; Williams, Z.; Litscher, E.; Wassarman, P.M. The ZP Domain Is a Conserved Module for Polymerization of Extracellular Proteins. Nat. Cell Biol. 2002, 4, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Wassarman, P.M. Zona Pellucida Glycoproteins. J. Biol. Chem. 2008, 283, 24285–24289. [Google Scholar] [CrossRef] [PubMed]
- Bokhove, M.; Jovine, L. Chapter Thirteen—Structure of Zona Pellucida Module Proteins. In Current Topics in Developmental Biology; Litscher, E.S., Wassarman, P.M., Eds.; Academic Press: Cambridge, MA, USA, 2018; Volume 130, pp. 413–442. [Google Scholar]
- Drees, L.; Schneider, S.; Riedel, D.; Schuh, R.; Behr, M. The Proteolysis of ZP Proteins Is Essential to Control Cell Membrane Structure and Integrity of Developing Tracheal Tubes in Drosophila. eLife 2023, 12, e91079. [Google Scholar] [CrossRef]
- Császár, N.B.M.; Seneca, F.O.; van Oppen, M.J.H. Variation in Antioxidant Gene Expression in the Scleractinian Coral Acropora millepora under Laboratory Thermal Stress. Mar. Ecol. Prog. Ser. 2009, 392, 93–102. [Google Scholar] [CrossRef]
- Rosic, N.N.; Pernice, M.; Dove, S.; Dunn, S.; Hoegh-Guldberg, O. Gene Expression Profiles of Cytosolic Heat Shock Proteins Hsp70 and Hsp90 from Symbiotic Dinoflagellates in Response to Thermal Stress: Possible Implications for Coral Bleaching. Cell Stress Chaperones 2011, 16, 69–80. [Google Scholar] [CrossRef]
- Sharp, V.A.; Brown, B.E.; Miller, D. Heat Shock Protein (Hsp 70) Expression in the Tropical Reef Coral Goniopora djiboutiensis. J. Therm. Biol. 1997, 22, 11–19. [Google Scholar] [CrossRef]
- Downs, C.A.; Mueller, E.; Phillips, S.; Fauth, J.E.; Woodley, C.M. A Molecular Biomarker System for Assessing the Health of Coral (Montastraea faveolata) During Heat Stress. Mar. Biotechnol. 2000, 2, 533–544. [Google Scholar] [CrossRef]
- Fitt, W.K.; Gates, R.D.; Hoegh-Guldberg, O.; Bythell, J.C.; Jatkar, A.; Grottoli, A.G.; Gomez, M.; Fisher, P.; Lajuenesse, T.C.; Pantos, O.; et al. Response of Two Species of Indo-Pacific Corals, Porites cylindrica and Stylophora pistillata, to Short-Term Thermal Stress: The Host Does Matter in Determining the Tolerance of Corals to Bleaching. J. Exp. Mar. Biol. Ecol. 2009, 373, 102–110. [Google Scholar] [CrossRef]
- Lesser, M.P. Oxidative Stress Causes Coral Bleaching during Exposure to Elevated Temperatures. Coral Reefs 1997, 16, 187–192. [Google Scholar] [CrossRef]
- Jones, R.J.; Hoegh-Guldberg, O.; Larkum, A.W.D.; Schreiber, U. Temperature-Induced Bleaching of Corals Begins with Impairment of the CO2 Fixation Mechanism in Zooxanthellae. Plant Cell Environ. 1998, 21, 1219–1230. [Google Scholar] [CrossRef]
- Downs, C.A.; Fauth, J.E.; Halas, J.C.; Dustan, P.; Bemiss, J.; Woodley, C.M. Oxidative Stress and Seasonal Coral Bleaching. Free Radic. Biol. Med. 2002, 33, 533–543. [Google Scholar] [CrossRef]
- Weis, V.M. Cellular Mechanisms of Cnidarian Bleaching: Stress Causes the Collapse of Symbiosis. J. Exp. Biol. 2008, 211, 3059–3066. [Google Scholar] [CrossRef]
- Oakley, C.A.; Davy, S.K. Cell Biology of Coral Bleaching. In Coral Bleaching: Patterns, Processes, Causes and Consequences; van Oppen, M.J.H., Lough, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 189–211. ISBN 978-3-319-75393-5. [Google Scholar]
- Harada, S. Classification of alcohol metabolizing enzymes and polymorphisms—Specificity in Japanese. Nihon Arukoru Yakubutsu Igakkai Zasshi 2001, 36, 85–106. [Google Scholar]
- Benson, A.A.; Patton, J.S.; Abraham, S. Energy Exchange in Coral Reef Ecosystems. Atoll Res. Bull. 1978, 220, 33–54. [Google Scholar] [CrossRef]
- Tolosa, I.; Treignier, C.; Grover, R.; Ferrier-Pagès, C. Impact of Feeding and Short-Term Temperature Stress on the Content and Isotopic Signature of Fatty Acids, Sterols, and Alcohols in the Scleractinian Coral Turbinaria reniformis. Coral Reefs 2011, 30, 763–774. [Google Scholar] [CrossRef]
- Beepat, S.S.; Davy, S.K.; Oakley, C.A.; Mashini, A.; Peng, L.; Bell, J.J. Increased Cellular Detoxification, Cytoskeletal Activities and Protein Transport Explain Physiological Stress in a Lagoon Sponge. J. Exp. Biol. 2021, 224, jeb242820. [Google Scholar] [CrossRef]
- Starcevic, A.; Dunlap, W.C.; Cullum, J.; Shick, J.M.; Hranueli, D.; Long, P.F. Gene Expression in the Scleractinian Acropora microphthalma Exposed to High Solar Irradiance Reveals Elements of Photoprotection and Coral Bleaching. PLoS ONE 2010, 5, e13975. [Google Scholar] [CrossRef]
- Ren, X.; Ma, H.; Qiu, Y.; Liu, B.; Qi, H.; Li, Z.; Kong, H.; Kong, L. The Downregulation of Thioredoxin Accelerated Neuro2a Cell Apoptosis Induced by Advanced Glycation End Product via Activating Several Pathways. Neurochem. Int. 2015, 87, 128–135. [Google Scholar] [CrossRef]
- Domínguez, D.C.; Guragain, M.; Patrauchan, M. Calcium Binding Proteins and Calcium Signaling in Prokaryotes. Cell Calcium 2015, 57, 151–165. [Google Scholar] [CrossRef] [PubMed]
- Loven, D.P. A Role for Reduced Oxygen Species in Heat Induced Cell Killing and the Induction of Thermotolerance. Med. Hypotheses 1988, 26, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S.; Burkitt, M.J.; Kass, G.E.N.; Dypbukt, J.M.; Nicotera, P. Calcium Ions and Oxidative Cell Injury. Ann. Neurol. 1992, 32, S33–S42. [Google Scholar] [CrossRef]
- Smith, L.M.; Kelleher, N.L. Proteoform: A Single Term Describing Protein Complexity. Nat. Methods 2013, 10, 186–187. [Google Scholar] [CrossRef]
- Verma, N.; Pink, M.; Schmitz-Spanke, S. A New Perspective on Calmodulin-Regulated Calcium and ROS Homeostasis upon Carbon Black Nanoparticle Exposure. Arch. Toxicol. 2021, 95, 2007–2018. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Vanamee, É.S.; Faustman, D.L. The Benefits of Clustering in TNF Receptor Superfamily Signaling. Front. Immunol. 2023, 14, 1225704. [Google Scholar] [CrossRef]
- Reed, K.C.; Muller, E.M.; Woesik, R. van Coral Immunology and Resistance to Disease. Dis. Aquat. Org. 2010, 90, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, T.; Wasmund, K.; Ukani, L.; Seneca, F.; Yellowlees, D.; Miller, D.; Leggat, W. Defining the Tipping Point. A Complex Cellular Life/Death Balance in Corals in Response to Stress. Sci. Rep. 2011, 1, 160. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.-M.; Pervaiz, S. TNF Receptor Superfamily-Induced Cell Death: Redox-Dependent Execution. FASEB J. 2006, 20, 1589–1598. [Google Scholar] [CrossRef]
- Kobayashi, T.; Solaro, R.J. Calcium, thin filaments, and the integrative biology of cardiac contractility. Annu. Rev. Physiol. 2005, 67, 39–67. [Google Scholar] [CrossRef]
- Clapham, D.E. Calcium Signaling. Cell 2007, 131, 1047–1058. [Google Scholar] [CrossRef]
- Surks, H.K.; Mochizuki, N.; Kasai, Y.; Georgescu, S.P.; Tang, K.M.; Ito, M.; Lincoln, T.M.; Mendelsohn, M.E. Regulation of Myosin Phosphatase by a Specific Interaction with cGMP- Dependent Protein Kinase Iα. Science 1999, 286, 1583–1587. [Google Scholar] [CrossRef]
- Casteel, D.E.; Zhuang, S.; Gudi, T.; Tang, J.; Vuica, M.; Desiderio, S.; Pilz, R.B. cGMP-Dependent Protein Kinase Iβ Physically and Functionally Interacts with the Transcriptional Regulator TFII-I. J. Biol. Chem. 2002, 277, 32003–32014. [Google Scholar] [CrossRef]
- Ahn, C.S.; Han, J.-A.; Lee, H.-S.; Lee, S.; Pai, H.-S. The PP2A Regulatory Subunit Tap46, a Component of the TOR Signaling Pathway, Modulates Growth and Metabolism in Plants. Plant Cell 2011, 23, 185–209. [Google Scholar] [CrossRef]
- Meyer, E.; Aglyamova, G.V.; Wang, S.; Buchanan-Carter, J.; Abrego, D.; Colbourne, J.K.; Willis, B.L.; Matz, M.V. Sequencing and de Novo Analysis of a Coral Larval Transcriptome Using 454 GSFlx. BMC Genom. 2009, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.H.; Seneca, F.O.; Palumbi, S.R. Gene Networks in the Wild: Identifying Transcriptional Modules That Mediate Coral Resistance to Experimental Heat Stress. Genome Biol. Evol. 2016, 8, 243–252. [Google Scholar] [CrossRef]
- Tang, H.M.; Talbot, C.C., Jr.; Fung, M.C.; Tang, H.L. Molecular Signature of Anastasis for Reversal of Apoptosis. F1000Research 2017, 6, 43. [Google Scholar] [CrossRef]
- Kumar, K.; Moirangthem, R.; Kaur, R. Histone H4 Dosage Modulates DNA Damage Response in the Pathogenic Yeast Candida Glabrata via Homologous Recombination Pathway. PLoS Genet. 2020, 16, e1008620. [Google Scholar] [CrossRef]
- Hughes, A.D.; Grottoli, A.G.; Pease, T.K.; Matsui, Y. Acquisition and Assimilation of Carbon in Non-Bleached and Bleached Corals. Mar. Ecol. Prog. Ser. 2010, 420, 91–101. [Google Scholar] [CrossRef]
- Wooldridge, S.A. Formalising a Mechanistic Linkage between Heterotrophic Feeding and Thermal Bleaching Resistance. Coral Reefs 2014, 33, 1131–1136. [Google Scholar] [CrossRef]
- Tremblay, P.; Gori, A.; Maguer, J.F.; Hoogenboom, M.; Ferrier-Pagès, C. Heterotrophy Promotes the Re-Establishment of Photosynthate Translocation in a Symbiotic Coral after Heat Stress. Sci. Rep. 2016, 6, 38112. [Google Scholar] [CrossRef]
- Stenmark, H. Rab GTPases as Coordinators of Vesicle Traffic. Nat. Rev. Mol. Cell Biol. 2009, 10, 513–525. [Google Scholar] [CrossRef]
- Hutagalung, A.H.; Novick, P.J. Role of Rab GTPases in Membrane Traffic and Cell Physiology. Physiol. Rev. 2011, 91, 119–149. [Google Scholar] [CrossRef]
- Saraste, J. Spatial and Functional Aspects of ER-Golgi Rabs and Tethers. Front. Cell Dev. Biol. 2016, 4, 28. [Google Scholar] [CrossRef] [PubMed]
- Zoppino, F.C.M.; Militello, R.D.; Slavin, I.; Alvarez, C.; Colombo, M.I. Autophagosome Formation Depends on the Small GTPase Rab1 and Functional ER Exit Sites. Traffic 2010, 11, 1246–1261. [Google Scholar] [CrossRef] [PubMed]
- Gyurkovska, V.; Murtazina, R.; Zhao, S.F.; Shikano, S.; Okamoto, Y.; Segev, N. Dual Function of Rab1A in Secretion and Autophagy: Hypervariable Domain Dependence. Life Sci. Alliance 2023, 6, e202201810. [Google Scholar] [CrossRef]
- Pramod, S.; Annamalainathan, K.; Xavier, S.M.; Sumesh, K.V.; Thulaseedharan, A. Expression Analysis of Genes Encoding sHSP and Rab1 in Hevea brasiliensis. Indian J. Biotechnol. 2017, 13, 391–402. [Google Scholar]
- O’Mahony, P.J.; Oliver, M.J. Characterization of a Desiccation-Responsive Small GTP-Binding Protein (Rab2) from the Desiccation-Tolerant Grass Sporobolus Stapfianus. Plant Mol. Biol. 1999, 39, 809–821. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Chen, C.Y.-h.; Glaven, R.H.; de Graaf, B.H.J.; Vidali, L.; Hepler, P.K.; Wu, H. Rab2 GTPase Regulates Vesicle Trafficking between the Endoplasmic Reticulum and the Golgi Bodies and Is Important to Pollen Tube Growth. Plant Cell 2002, 14, 945–962. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Sylvester, A.W.; Li, D.-Q.; Sun, X.-P. Complementation and Expression Analysis of SoRab1A and SoRab2A in Sugarcane Demonstrates Their Functional Diversification. J. Integr. Plant Biol. 2006, 48, 1450–1457. [Google Scholar] [CrossRef]
- Maringer, K.; Yarbrough, A.; Sims-Lucas, S.; Saheb, E.; Jawed, S.; Bush, J. Dictyostelium Discoideum RabS and Rab2 Colocalize with the Golgi and Contractile Vacuole System and Regulate Osmoregulation. J. Biosci. 2016, 41, 205–217. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Luo, K.; Luan, S.; Cao, B.; Kong, J. cDNA Cloning and Expression Analysis of a Phosphopyruvate Hydratase Gene from the Chinese Shrimp Fenneropenaeus chinensis. Fish Shellfish. Immunol. 2017, 63, 173–180. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Zeng, W.; Yang, Y.; Zhang, J.; Yin, J.; Wu, J.; Lai, K. Characterization and Epitope Prediction of Phosphopyruvate Hydratase from Penaeus Monodon (Black Tiger Shrimp). J. Food Sci. 2021, 86, 3457–3466. [Google Scholar] [CrossRef]
- Leggat, W.; Seneca, F.; Wasmund, K.; Ukani, L.; Yellowlees, D.; Ainsworth, T.D. Differential Responses of the Coral Host and Their Algal Symbiont to Thermal Stress. PLoS ONE 2011, 6, e26687. [Google Scholar] [CrossRef]
- Nogae, I.; Johnston, M. Isolation and Characterization of the ZWF1 Gene of Saccharomyces cerevisiae, Encoding Glucose-6-Phosphate Dehydrogenase. Gene 1990, 96, 161–169. [Google Scholar] [CrossRef]
- Pollak, N.; Dölle, C.; Ziegler, M. The Power to Reduce: Pyridine Nucleotides—Small Molecules with a Multitude of Functions. Biochem. J. 2007, 402, 205–218. [Google Scholar] [CrossRef]
- Ralser, M.; Wamelink, M.M.; Kowald, A.; Gerisch, B.; Heeren, G.; Struys, E.A.; Klipp, E.; Jakobs, C.; Breitenbach, M.; Lehrach, H.; et al. Dynamic Rerouting of the Carbohydrate Flux is Key to Counteracting Oxidative Stress. J. Biol. 2007, 6, 10. [Google Scholar] [CrossRef]
- Ishii, Y.; Maruyama, S.; Takahashi, H.; Aihara, Y.; Yamaguchi, T.; Yamaguchi, K.; Shigenobu, S.; Kawata, M.; Ueno, N.; Minagawa, J. Global Shifts in Gene Expression Profiles Accompanied with Environmental Changes in Cnidarian-Dinoflagellate Endosymbiosis. G3 Genes|Genomes|Genet. 2019, 9, 2337–2347. [Google Scholar] [CrossRef] [PubMed]
- Durbin, B.; Hardin, J.; Hawkins, D.; Rocke, D. A Variance-Stabilizing Transformation for Gene-Expression Microarray Data. Bioinformatics 2002, 18, S105–S110. [Google Scholar] [CrossRef]
- Huber, W.; von Heydebreck, A.; Sültmann, H.; Poustka, A.; Vingron, M. Variance Stabilization Applied to Microarray Data Calibration and to the Quantification of Differential Expression. Bioinformatics 2002, 18, S96–S104. [Google Scholar] [CrossRef]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2013, 1, 92–107. [Google Scholar] [CrossRef]
- Perez-Riverol, Y.; Bandla, C.; Kundu, D.J.; Kamatchinathan, S.; Bai, J.; Hewapathirana, S.; John, N.S.; Prakash, A.; Walzer, M.; Wang, S.; et al. The PRIDE Database at 20 Years: 2025 Update. Nucleic Acids Res. 2025, 53, D543–D553. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alcantar-Orozco, E.d.J.; Hernández-Elizárraga, V.H.; Vega-Tamayo, J.E.; Ibarra-Alvarado, C.; Caballero-Pérez, J.; Rodríguez de San Miguel, E.; Rojas-Molina, A. Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean. Biology 2025, 14, 1042. https://doi.org/10.3390/biology14081042
Alcantar-Orozco EdJ, Hernández-Elizárraga VH, Vega-Tamayo JE, Ibarra-Alvarado C, Caballero-Pérez J, Rodríguez de San Miguel E, Rojas-Molina A. Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean. Biology. 2025; 14(8):1042. https://doi.org/10.3390/biology14081042
Chicago/Turabian StyleAlcantar-Orozco, Esteban de Jesús, Víctor Hugo Hernández-Elizárraga, Jesús Eduardo Vega-Tamayo, César Ibarra-Alvarado, Juan Caballero-Pérez, Eduardo Rodríguez de San Miguel, and Alejandra Rojas-Molina. 2025. "Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean" Biology 14, no. 8: 1042. https://doi.org/10.3390/biology14081042
APA StyleAlcantar-Orozco, E. d. J., Hernández-Elizárraga, V. H., Vega-Tamayo, J. E., Ibarra-Alvarado, C., Caballero-Pérez, J., Rodríguez de San Miguel, E., & Rojas-Molina, A. (2025). Comparative Proteomic Analysis of Non-Bleached and Bleached Fragments of the Hydrocoral Millepora complanata Reveals Stress Response Signatures Following the 2015–2016 ENSO Event in the Mexican Caribbean. Biology, 14(8), 1042. https://doi.org/10.3390/biology14081042